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Pascal Triangle matrices – I
Sebastian Hayes

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

To recapitulate [see ‘Zero sum Pascal Triangle’, M500 169 1]: The entry in
row n, column r (n, r = 0, 1, 2, . . . ) is given by nCr = n!/(r!(n− r)!). The
columns are the figurate numbers, F0, F1, F2, . . . (so called because F2 = 1,
3, 6, . . . give us the triangular numbers, and F3 the tetrahedral numbers),
with general formula:

F0 = 1, Fr(n) =
n(n+ 1) . . . (n+ r − 1)

r!
, r = 1, 2, . . . , n = 0, 1, 2, . . . .

Each column r —I use variable k instead when speaking of the sets of
figurate numbers—commences with r blank spaces in the triangular pre-
sentation, which explains the difference in the two formulae. Note that the
column number r or k, when speaking of the figurate numbers, is one less
than the natural number that comes in second place (because we commence
with zero); e.g. the fourth column, 1, 4, 10, . . . , is F3.

Inverses of Pascal matrices

The nCr coefficients are usually presented as a triangle but if you fill in with
zeros you get an indefinitely extendible matrix, (R + 1) × (R + 1), R = 1,
2, 3, . . . . 

1 0 0 0 0 . . .
1 1 0 0 0 . . .
1 2 1 0 0 . . .
1 3 3 1 0 . . .
1 4 6 4 1 . . .
1 5 10 10 5 . . .
. . . . . . . . . . . . . . . . . .


.
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This matrix will be called Pascal0. It is a so-called lower triangular matrix:
all entries above the leading diagonal are zero. The determinant of a lower
or upper triangular matrix is just the product of the leading diagonal, in
this case 1! = 1. To see this, think of the definition of a determinant. The
determinant of a trivial 1 × 1 matrix is, by definition, just this entry and
that of a 2 × 2 matrix is, by definition, ad − bc. For square matrices of
higher degree, you take an entry, then mentally blot out row and column
and multiply by the determinant of what’s left. You work along a row or
column in this way imposing the ± grid

+ − + − . . .
− + − + . . .
+ − + − . . .

It is a remarkable feature of square matrices (only square matrices?) that
you get the same result whatever row or column you choose. We choose
the top row since it is nearly all zeros. So we obtain the corner entry x
(the determinant of the inner square matrix) and so on until we reach the
bottom right corner.

So Pascal0 has an inverse since for any R it has a non-zero determinant.
This inverse is pretty obviously the same as Pascal0 with the± grid imposed,
i.e. 

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .

1 −2 1 0 0 0 . . .
−1 3 −3 1 0 0 . . .

1 −4 6 −4 1 0 . . .
−1 5 −10 10 −5 1 . . .
. . . . . . . . . . . . . . . . . . . . .


(There is incidentally no difference between a right and a left inverse for
square matrices.)

This matrix, Pascal−1
0 , though banal at first sight, is not wholly without

interest. Note that every row except the first must sum to zero since it
multiplies the column (1, 1, 1, . . . ) and must give the result zero.

Is Pascal0 the only indefinitely extendible matrix whose inverse is the
same as itself apart from the imposition of the ± grid? No;
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 a
a2 − 1

c
c a


will do for a 2× 2 matrix without looking any further.

If we set a = 1, we get a lower triangular or upper triangular matrix
(the identity matrix counts as both at once). At first it looks as if Pascal−1

0

is the simplest non-trivial example but this turns out not to be the case.

Pascal−1
1

There is perhaps not a lot of use for the inverse of Pascal0 but if we proceed
to construct a whole family of Pascal matrices by slicing off the leading
diagonal and then taking the inverse, there are some interesting results.

Clearly, Pascal1 is just Pascal0 without the 1s, i.e.

1 0 0 0 0 0 . . .
1 2 0 0 0 0 . . .
1 3 3 0 0 0 . . .
1 4 6 4 0 0 . . .
1 5 10 10 5 0 . . .
1 6 15 20 15 6 . . .
. . . . . . . . . . . . . . . . . . . . .


.

This matrix is also lower triangular and has determinant (R + 1)! for any
(R+ 1)× (R+ 1) square matrix (R = 0, 1, 2, . . . ).

Some entries of the inverse can be guessed at once. It is fairly obvious
that the inverse of a lower triangular matrix must also be lower triangular.
Also the leading diagonal of Pascal−1

1 is going to be the Harmonic Sequence,
1, 1/2, 1/3, . . . , since we must get a 1 along the leading diagonal when
Pascal1 and its inverse are multiplied together.

The second diagonal starts with −1/2 since we must have 1 ·1+2x = 0,
x = −1/2. We commence

1 0 0

−1

2

1

2
0

? ?
1

3


 1 0 0

1 2 0
1 3 3

 =

 1 0 0
0 1 0
0 0 1

 .
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We find that the second diagonal is (surprisingly) constant with value
−1/2 because in every case we must solve the equation

rx+
1

r + 1

r(r + 1)

2
= 0,

with solution x = −1/2.

We can fill in a row using the zero sum condition—for, once again, every
row must yield zero when multiplying the column (1, 1, 1, . . . ).

Pascal−1
1 commences

1 0 0 0 0

−1

2

1

2
0 0 0

1

6
−1

2

1

3
0 0

0
1

4
−1

2

1

4
0

− 1

30
0

1

3
−1

2

1

5


.

Now any row of the above (continued indefinitely) gives the coefficients of
the sum of the powers from 0 to n for power r = 0, 1, 2, . . . with just this
one difference: that the second diagonal must be changed from −1/2 to 1/2.
For example, row 2 tells us that

n∑
k=0

k2 =
1

3
n3 +

1

2
n2 +

1

6
n.

It is not at all obvious why this is so. Before attempting an explanation, let
us examine how this inverse is built up. We can envisage each diagonal of
Pascal−1

1 as the product of a starting value and a set of conversion factors
which in this case take the form rCk/r−k+ 1 with r = 0, 1, 2, . . . and k =
0, 1, 2, . . . , r. Each column is stepped back (because we are dealing with a
lower triangular matrix) and starts with k zeros followed by unity.
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k = 0 k = 1 k = 2 k = 3 k = 4 . . .

initial value 1 −1

2

1

6
0 − 1

30
. . .

r = 0 1 0 0 0 0 . . .

r = 1
1

2
1 0 0 0 . . .

r = 2
1

3
1 1 0 0 . . .

r = 3
1

4
1

3

2
1 0 . . .

r = 4
1

5
1 2 2 1 . . .

. . . . . . . . . . . . . . . . . . . . .

r
1

r + 1
1

r

2!

r(r − 1)

3!

r(r − 1)(r − 2)

4!
. . .

The initial values are determined by the requirement that we start with 1 in
the corner and from then onwards every row of Pascal−1

1 must sum to zero.
Note that if the initial value is zero, as in the case of the fourth column,
the column (which becomes a diagonal of Pascal−1

1 ) will, once multiplied,
be zero everywhere notwithstanding the conversion factors.

In fact, if we return to Pascal−1
0 we can set out the diagonals in the

same way and the initial values turn out to be just +1 and −1 and the
columns are just the sets of figurate numbers, i.e.

value +1 −1 +1 −1 +1
r = 0 1 0 0 0 0
r = 1 1 1 0 0 0
r = 2 1 2 1 0 0
r = 3 1 3 3 1 0
r = 4 1 4 6 4 1

Here, we have a constant first diagonal (presented as a column), namely the
leading diagonal with 1, 1, 1, . . . , while in the case of Pascal−1

0 we had a
constant non-zero second diagonal with value −1/2.
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If we now proceed to Pascal2 and Pascal−1
2 , i.e. excise the second diag-

onal of the Pascal Triangle and take the inverse, we obtain


1 0 0 0
1 3 0 0
1 4 6 0
1 5 10 10 . . .

 and



1 0 0 0

−1

3

1

3
0 0

1

18
−2

9

1

6
0

1

90

1

18
−1

6

1

10
. . .


This time the leading diagonal of Pascal2 is the set of triangular numbers,
F2, and the determinant is the product r(r + 1)/2!. The inverse must have
leading diagonal 1/F2. As always, the sum of any row (except the first)
must be zero and we have once more a constant diagonal, the third, with
value 1/18. If we lay out the inverse in the same manner, we obtain

k = 0 k = 1 k = 2 k = 3

initial value 1 −1

3

1

18

1

90

r = 0 1 0 0 0

r = 1
1

3
1 0 0

r = 2
1

6

2

3
1 0

r = 3
1

10

1

2
1 1

r = 4
1

15

2

5
1

4

3

r
2

(r + 1)(r + 2)

2

r + 1
1

r

3

Or, in terms of the sets of figurate numbers we have

F0(r + 1)

F2(r + 1)

F1(r)

F2(r)

F2(r − 1)

F2(r − 1)

F3(r − 2)

F2(r − 2)
.
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One can see an agreeable pattern building up, and I confidently con-
jecture that Pascal−1

3 will have as leading diagonal 1, 1/4, 1/10, . . . , or
F0(r)/F3(r) and that the fourth column will be constant. More generally,
for Pascal−1

j the ‘conversion factors’ will be F0/Fj , F1/Fj , F2/Fj , . . . . The
constant diagonal occurs whenever we get Fj/Fj . The initial values cannot
be given by a formula but must be worked out using the zero sum condition.

Indeterminate Coefficients

But why does Pascal−1
1 , which begins

1 0 0 0 0

−1

2

1

2
0 0 0

1

6
−1

2

1

3
0 0

0
1

4
−1

2

1

4
0

− 1

30
0

1

3
−1

2

1

5


give us the coefficients of the sum of the powers?

Assume that for every power r we can express the result of summing
the natural numbers from 0 to n with a single set of the form

A0 +A1n+A2n
2 + · · ·+Arn

r +Ar+1n
r+1 + . . . = f(n, r).

However, the ‘coefficients’ Ak are not constants but functions in r—possibly
constant functions.

If n = 0, then the grand result is bound to be zero whatever the value
of r. So A0 = 0, i.e. there is no coefficient independent of n.

If n = 1, then for any power r, the sum of the r-functional coefficients
for this r must be unity—a very useful result. (For example, in the case of
the sum of the squares we have 1/3 + 1/2 + 1/6 = 1.)
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We can work out the specific values for a particular r simply by using
Pascal’s Triangle and the method of indeterminate coefficients. For example:

1 + 23 + 33 + · · ·+ n3 = f(n, 3),

1 + 23 + 33 + · · ·+ (n+ 1)3 = f(n+ 1, 3).

But this difference is just the last term (n+ 1)3 i.e.

n3 + 3n2 + 3n+ 1 = f(n+ 1, 3)− f(n, 3)

= A1 +A2(2n+ 1) + · · ·+Ar(rn
r−1 +

r(r − 1)

2
nr−2 + . . . )

+Ar+1((r + 1)nr + . . . ).

Equating coefficients, we find that all Ak with k > 4 must be zero and that
A4 = 1/4. Working backwards we obtain the other coefficients. In matrix
form, this is equivalent to solving

4 0 0 0
6 3 0 0
4 3 2 0
1 1 1 1




A4

A3

A2

A1

 =


1
3
3
1

 .

This is Pascal1 turned on its head as it were, and the inverse Pascal−1
1 also

gets skewed round, but the individual entries are not affected.

Continuing in this way we can solve for any particular power r, but what
one really wants is a general formula. Very early on, after reading Barry
Lewis’s original article (M500 162), I guessed that the general formula for
coefficient Ar−k+1 was

Ar−k+1 = (1− coefficients obtained so far )
rCk

r − k + 1
.

Here r varies with the power while k = 0, 1, 2, . . . , r. It is to be understood
that the coefficients within the brackets are previously obtained functions
in r which have been given the current value of k.

For powers higher than the (r + 1)th the coefficients must be zero, so

we commence with Ar−0+1(k = 0), which gives (1− 0)
rC0

r − 0 + 1
=

1

r + 1
.
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For k = 1, Ar−1+1 =

(
1− 1

2

)
r

r
=

1

2
.

For k = 2, Ar−2+1 =

(
1−

(
1

3
+

1

2

))
rC2

r − 2 + 1
=

r

12
.

So the formula seems to be working. Further coefficients are

Ar−2 = 0,

Ar−3 = − r(r − 1)(r − 2)

6 · 5!
,

Ar−4 = 0,

Ar−5 = − r(r − 1)(r − 2)(r − 3)(r − 4)

6 · 7!
.

This led to the conjecture that all further coefficients Ar−k with k odd are
of the form −r(r − 1) . . . (r − k + 1)/(6 · k!).

Now this procedure of evaluating the coefficients is practically identical
with the matrix treatment given earlier, with entries worked out according
to ‘initial values’ and ‘conversion factors’. But what about this one anomaly
that the second diagonal in Pascal−1

1 is −1/2 instead of 1/2? All the trouble
comes because we must have unity and not zero in the bottom right (or top
left) corner of the matrix. (If we put zero we have a singular matrix and the
whole thing collapses.) Instead of the coefficients summing to unity, a row
in the inverse matrix sums to zero—except the original corner 1×1 ‘matrix’,
namely (1), which sums to 1.

Proof? What about proof? In fact, I found the recursive formula for
the sum of the powers, so easily obtained, devilish to prove and, although
I eventually did obtain an elementary proof (i.e. one that does not employ
calculus or other advanced techniques), it is rather tiresome and will not be
given here. (Barry Lewis has himself communicated an elementary proof
which only uses the theory of equations to me privately.)

Note that this trick of summing values of a function from 0 to n+1 and
subtracting the sum from 0 to n can be applied to any function in n. For
someone ambitious enough, it should be possible to work out a recursive
formula for summing from 0 to n any of the sets of figurate numbers to any
power r —not just F1, the natural numbers, to power r. And then there
are plenty of other functions in n and r . . . .

Part II will appear in M500 174 (June 2000).
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Problem 169.2 – Chords – An interesting
observation
John Bull
This note derives some interesting results from the chords problem, although
the results do not lead to an analytical solution (at least, no more directly
than other published solutions [M500 171, 172]).

A

B

CD

E

R

S

T

U

x

x

yy

1
O

Assuming all the preliminaries, we can arrive at the position shown in
the diagram, where triangle ATO is similar to ASD, and triangle ARO is
similar to AUE. It follows that

AT

AO
=

AS

AD
=

y

1
=

√
4y2 − x2

2y
,
AR

AO
=

AU

AE
=

x

1
=

√
4x2 − y2

2x
,

x2 = 4y2 − 4y4, y2 = 4x2 − 4x4.

This is quite a remarkable symmetry. The graphs of these two equations
are shown on the next page.

For the original chords problem we would now need to show that
(22xy)2 = 16x2y2 = 5. A result can be shown numerically, but again one
has to resort to trigonometry to make progress with an analytical solution.
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-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Substitutions x = sinα and y = sinβ give the simultaneous equations

x = 2y
√

1− y2 = sinα = 2 sinβ cosβ = sin 2β,

α = 2lπ + 2β or (2k + 1)π − 2β,

y = 2x
√

1− x2 = sinβ = 2 sinα cosα = sin 2α,

β = 2lπ + 2α or (2k + 1)π − 2α.

Unfortunately, this does not help very much, although the result is inter-
esting. Now extend the method to a 7-gon.

A

B

C

DE

F

G

R

S

T

U

V

W

x

x

yy

zz

1

O
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With reference to the diagram, triangle ATO is similar to ASE, ARO is
similar to AUG, and AWO is similar to AVF. This gives

AT

AO
=

AS

AE
=

z

1
=

√
4z2 − x2

2z
, x2 = 4z2 − 4z4,

AR

AO
=

AU

AG
=

x

1
=

√
4x2 − y2

2x
, y2 = 4x2 − 4x4,

AW

AO
=

AV

AF
=

y

1
=

√
4y2 − z2

2y
, z2 = 4y2 − 4y4.

For the original chords problem we would now need to show that (23xyz)2

= 64x2y2z2 = 7. Again, a numerical result can be derived. The graph has
the form shown on the right.

Following through as
before with substitutions

x = sinα,

y = sinβ

and

z = sin γ,

we derive the simultane-
ous equations

sinα = sin 2β,

sinβ = sin 2γ,

sin γ = sin 2α.

The general result for an odd n-gon is now obvious, although apparently
this does not help very much towards an analytical solution. However, it is
quite remarkable that the problem for an odd n-gon ends up with a series
of simultaneous equations of the form:

sin θ1 = sin 2θ2, sin θ2 = sin 2θ3, . . . , sin θ(n−1)/2 = sin 2θ1.

For interest, the numerical results (subject to rounding) are:

5-gon: x = 0.587785, y = 0.951057,
7-gon: x = 0.433884, y = 0.781832, z = 0.974928.
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Solution 170.2 – Rational square

R. M. Boardman

PQRS is a square.
We require a point
O such that the dis-
tances OP, OQ, OR
and PQ are integers.

It is easier to solve the problem
for rational distances and then
multiply by the LCM of the de-
nominators to convert the dis-
tances to integers.

The methods used to solve
this problem date back to Pierre
de Fermat (1601–1665). They
find individual solutions rather
than the general solution, and
no more general methods are
known.

P Q

RS

A

B
O

First choose A on PQ such that OA is perpendicular to PQ and choose
B on QR such that OB is perpendicular to QR.

It is well known that the sides of a right-angled triangle satisfy x2 +
y2 = z2 and that integer solutions to this equation may be generated by
x = u2 − v2, y = 2uv, z = u2 + v2. If u and v have no common factor and
are not both odd, these numbers have no common factor. Otherwise, they
still generate a solution but it may have a common factor. If we want a
specific common factor, we multiply by an extra term w.

The triangle OQP is made up of two right-angled triangles with a com-
mon side OA. A triangle of this type can be generated by:

OA = 2uvw, AP = (u2 − v2)w, QA = v(u2 − w2),

OP = (u2 + v2)w, OQ = v(u2 + w2).

When combined with the rest of the figure, this ensures that all the lines
are integers except OR. Again using Pythagoras’ theorem we have

(OR)2 = (QA)2 + (QA+AP −OA)2.
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That is

(OR)2 = v2(u2 − w2)2 +
(
−2uvw + (u2 − v2)w + v(u2 − w2)

)2
= u4w2 + v4w2

+ v3
(
4uw2 − 2w(u2 − w2)

)
+ v

(
−4u3w2 + 2u2w(u2 − w2)

)
+ v2

(
2u2w2 − 4uw(u2 − w2) + 2(u2 − w2)2

)
.

Dividing by w2 gives

(OR)2

w2
= u4 + v4 + v3

(
4u− 2u2

w
+ 2w

)
+ v

(
−4u3 +

2u4

w
− 2u2w

)
+ v2

(
−2u2 +

2u4

w2
− 4u3

w
+ 4uw + 2w2

)
.

Fermat found a rational solution to this by replacing the left hand side

with
(
v2 +mv + n

)2
. When expanded, the coefficient of v4 is 1 in both

cases and we can choose m and n such that the coefficients of v3 and v2 are
also the same. That is,

n =
1

2

(
−4u2 +

u4

w2
+ w2

)
, m = 2u− u2

w
+ w.

When we insert these values, the terms in v4, v3 and v2 cancel and only the
terms in v and the constant term are left:

− (u2 − w2)2(u2 − 2uw − w2)(u2 + 2uw − w(4v + w))

4w4
.

We equate this to zero and solve for v giving

v =
u2 + 2uw − w2

4w
.

If we insert this value for v back in the equation for (OR)2 it makes it into
a perfect square.

(OR)2 =
(5u4 + 4u3w − 6u2w2 − 4uw3 + 5w4)2

256w2
.
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Hence, inserting this value for v into the original values for OA , QA and
AP we get a 2-parameter solution to the original problem:

OA =
1

2
u(u2 + 2uw − w2),

AP =
(u2 + 2uw − w2)(−u2 + 2uw + w2)

16w
,

QA =
(u2 − w2)(u2 + 2uw − w2)

4w
.

This will in general be a rational solution and can be converted to an integer
solution by multiplying by the lowest common multiple of the denominators.
For example, putting u = 2, w = 1 gives OA = 7, AP = 15/16, QA = 21/4.
Multiplying throughout by 16 gives OA = 112, AP = 15, QA = 84. The
side of the square is 84 + 15 = 99. In this case O is outside the square.

While this method is elegant and gives a family of solutions, it does not
give all solutions. A ‘brute force’ computer search finds the following:

OA QA Side of square

24 45 52
48 140 195

112 84 99
168 99 148
280 165 228
297 396 700

Problem 173.1 – Binomial coefficients squared
Sebastian Hayes
Show that

n∑
r=0

(−1)r (nCr)
2

=

{
0 for n odd
±nCn/2 for n even.

Here, nCr is the binomial coefficient n!/(r!(n− r)!). The sign of the even
result depends on whether n is divisible by 4 or not. For example,

12 − 42 + 62 − 42 + 12 = 6.
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An early protractor
Alan Slomson
I was intrigued by Dirk Bouwens’s description (M500 171 18) of the method
he was told by a builder for constructing angles. The trigonometry involved
is not too difficult.

We have a semicircle centred on
O, BC = BA, and the claim is that
if the point P divides AO in the ra-
tio λ : 1−λ then OD divides the an-
gle AOE in approximately the same
ratio.

Suppose that the length of OA
is 1 unit. Then BC has length 2 and
so, by Pythagoras, OC has length√

3. For convenience we put µ = 1−
λ, and applying Pythagoras to the
triangle COP, we have that CP =√
µ2 + 3. In the triangle OPD, we

have

sinβ = sin(π − γ) = sin γ,

and from the right angled triangle
COP we see that

sin γ =

√
3√

µ2 + 3
.

AB

C

D

E

O P
Α Β

Γ

∆

Now, applying the sine formula to triangle OPD we have
sin δ

µ
=

sinβ

1
and

so sin δ = µ sinβ =

√
3µ√

µ2 + 3
. Thus we have that

α = π − β − δ = π − sin−1

( √
3√

µ2 + 3

)
− sin−1

( √
3µ√

µ2 + 3

)
. (1)

Using the fact that sinα = sin(β+δ) = sinβ cos δ+cosβ sin δ, and replacing
µ by 1− λ, we can see that (1) is equivalent to

α = sin−1

(
√

3

√
1 + 4λ− 2λ2 − (1− λ)2

4− 2λ+ λ2

)
. (2)
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It is easy to check that (2) gives α = 0 when λ = 0, and α = 90 when
λ = 1. Also when λ = 2/3, α = 60. So in this last case OD also divides
the angle AOE in the same ratio as P divides AO. Indeed in this case the
triangles POD and PCA are similar, so the angle POD equals the angle
PAC, which is 60 degrees.

The surprising thing is that the graph of (2) for 0 ≤ λ ≤ 1 is very close
to a straight line and so, over the whole range of values of λ, OD divides
the angle AOE in approximately the same ratio as P divides AO. Thus the
comment that the approximation only works when the line OA is divided
into 9 or some multiple of 9 is not correct.

Some numerical data is given below. The maximum error in the approx-
imation occurs for λ ≈ 0.18 when the angle AOD is 0.637 degrees greater
than the correct angle. In the table, the first column gives the value of 90λ
(the angle which divides 90 degrees in the ratio λ : 1 − λ) and the second
column gives the value of α calculated from formula (2).

It would be interesting to know of any printed sources for this problem,
and also whether anyone can come up with a mathematical analysis of why
the graph of (2) is so close to a straight line.

90λ 0 10 20 30 40 50 60 70 80 90
α 0 10.57 20.62 30.47 40.28 50.11 60 69.96 79.96 90

Mick Bromilow
The problem posed by Dirk Bouwens in M500 171 18 is a nice example of
mathematics in the raw. I used Mathcad to investigate the relationship.
The problem is to compare the angle DOA in degrees with the function
90(1− x) where x is the distance from O that the line CD cuts the x-axis.
I have set the radius of the circle to be 1 unit.

The use of similar triangles (draw a vertical line through D and note
that the length of OC is

√
3) shows that

sinα =
−
√

3 · x2 +
√

9− 6x2

3 + x2
,

where α is the angle DOA, measured in radians. We thus need to consider
the function

y(x) = sin−1

(√
9− 6x2 −

√
3 · x2

3 + x2

)
· 180

π
,
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sin−1

(√
9− 6x2 −

√
3 · x2

3 + x2

)
· 180

π
− 90(1− x)

which gives the angle DOA in degrees. Drawing graphs of this function and
of the function

z(x) = 90(1− x)

shows that they are remarkably similar over the whole range of values of x
between 0 and 1. The plot of y(x)−z(x) shows that the maximum difference
is about 0.6 degrees when the angle is approximately 18 degrees.

The accuracy of the method does not depend on the number of points
taken.

Problem 173.2 – Nine darts
JRH
In standard darts play, the aim is to score 501 cumulatively, ending on a
double, or ending on a bullseye, which scores 50. One dart can score from 0
to 20, or double those numbers, or treble those numbers, or 25 or 50. How
many 9-dart finishes are there, ignoring the order of scoring for the first
eight darts?
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Re: Problem 171.1 – Cylinder
A coin is a short, fat cylinder. Throw it up in the air and let it
fall on to a flat surface. It will almost certainly land on one of its
faces, ‘heads’ or ‘tails’. Do the same with a long, thin cylinder
and it is far more likely to land on its curved surface rather than
on one of its flat ends. At what radius-to-height ratio will the
probabilities be equal.

David Singmaster
I think this problem arose from a paper by Frank Budden [Frank Budden,
‘Note 64.17: Throwing non-cubical dice’, Mathematical Gazette 64 (No.
429) (October 1980) 196–198] in which he reported that he had some square
rod which he cut into various lengths of cuboids and had his students throw
them and record the frequency of landing on a square end. He had no theory
for this. I wrote a response [David Singmaster, ‘Theoretical probabilities for
a cuboidal die’, Math. Gaz. 65 (No. 433) (October 1981) 208–210] giving
a simple geometric probability—the probability of a face is proportional to
the solid angle it subtends, viewed from the centroid. However, the theory
did not agree with the observed results! I corresponded with Budden about
this and he suggested that the cylinder had easier geometry. For a cylinder
of height h and radius r, let s = 2r/h be the ‘shape’ parameter. Then
Budden applied my geometric theory to get that the probability of landing
on the side (i.e. not one of the circular faces) is P (s) = (1 + s2)1/2.

For the present problem, setting this equal to 1/2 gives s =
√

3, or the

diameter should be
√

3 times the height. However, this formula is highly
suspect as applying it to a 10p coin, which has s = 12.3, we get that the
probability of landing on edge is P = 8.1%, but in experience it is essentially
zero! I wrote to Victor Bryant giving two anecdotes about coins landing on
edge. The first appeared in Math. Gaz. 66 (No. 436) (1982). Since then I
have seen a number of other comments, for example, J. M. Sharpey-Schafer,
a student on an OU maths course in 1971, tossed a coin 1000 times and on
the 653rd throw, it landed on edge [The Guardian (20 July 1989) 31].

I have discovered earlier and later work, mostly on dice, but some work
has considered cylinders. Correspondence with Joe Keller reveals that Fred
Mosteller, at Harvard, tried the same type of experiments as Budden, but
with pieces cut from a broom handle, i.e. with cylinders, and proposed
the same theory that I and Budden did, though it’s not clear if he ever
published anything. I mentioned the problem to Sir Hermann Bondi, who
has published an article on the cylindrical problem, which considers three
different modes of bouncing. Other shapes have also arisen.
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Problem 173.3 – Primality testing
Tony Forbes
Let A be an algorithm for deciding whether numbers are prime or composite.
There are two inputs to A: n and P ; n is the number to be tested and P is
any finite set of primes. The output of A is given by

A(n, P ) =

 0 n if n is composite
1 n if n is prime
2 n if A cannot tell whether n is prime or composite

Furthermore, A is valid if and only if all the numbers in P are primes.

Is it the case that if A(p, P ) = 1 for all numbers p in P , then every
number in P is prime?

The sort of thing I have in mind is this: Suppose you want to prove that
n is prime. One way of doing this is to factorize n−1. Suppose n−1 = FR,
where F = pα1

1 pα2
2 . . . pr

αr and p1, p2, . . . , pr are prime. Suppose also that
for each prime factor p of F , there is an integer b co-prime to n such that
gcd(b(n−1)/p − 1, n) = 1 and bn−1 ≡ 1 (mod n). Suppose furthermore that
F >

√
n. Then n is prime.

Let A represent this procedure and let P contain p1, p2, . . . , pr. For A to
be valid we need to prove that p1, p2, . . . , pr are prime. We use A. But then
we need prime factors q1, q2, . . . qs, say, of (p1−1)(p2−1) . . . (pr−1); so let us
assume P contains these as well. Similarly, we use A to prove that q1, q2, . . . ,
qs are prime, and therefore we add prime factors of (q1−1)(q2−1) . . . (qs−1)
to P . And so on. Eventually we will have enough factors in P to prove that
n is prime. However, for the algorithm to work we need to have proved that
all the numbers in P really are prime.

I maintain that we can logically and consistently verify all the primes
p ∈ P by applying the algorithm to them, one by one. If A(x, P ) 6= 1 for
just one number x ∈ P then possibly P contains composite numbers and in
any case the algorithm is not valid for any number m that makes use of x
as a factor of m− 1.

On the other hand, if A(p, P ) = 1 for all p ∈ P , it is clear that P
must contain only primes. I believe that similar reasoning applies to any
primality-proving algorithm. Am I right?
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Recurrence systems using the TI80 calculator
Patrick Meehan
Students who are considering taking MST121 will come across, in the course
materials, a method of calculation known as recurrence systems, also called
sequences. These sequences are based on the idea of using an answer of a
previous calculation as part of the formula for the present calculation. In
effect, a feedback loop is set up with each calculation relying on previous cal-
culations. In MST121 there are three main types of sequences; arithmetic,
geometric, and linear. Their formulas are shown below:-

U0 = a, Un = Un−1 + c, n = 1, 2, 3, . . .
U0 = a, Un = kUn−1, n = 1, 2, 3, . . .
U0 = a Un = kUn−1 + c, n = 1, 2, 3, . . .

Each of these formulas is of the open form variety. There is also a closed
form formula for each type; only the open form formulas will be under dis-
cussion here. The value a is the starting value of the sequence. For the
arithmetic and linear sequences, c is the value added each time to the pre-
vious answer (the step size). For the geometric and linear sequences, k is
a predefined constant which is used to multiply the answer of the previous
calculation. The variable n holds the value of how many calculations are
to be carried out and is also used as an index to obtain the answer to the
previous calculation which will be held in a table. Hence, Un represents
a table of values and by varying the value of n any particular answer can
be retrieved. When using MathCAD 5.0 in MST121 to calculate sequences
the results of each calculation will be stored in a table which you can scroll
through. However, it is not always convenient to power up a PC in order to
use MathCAD; a calculator is often close at hand. Unfortunately, for stu-
dents who have taken MU120, having gained considerable ability in using
a TI80 calculator you will find that you are unable to directly calculate se-
quences. Only more advanced models such as the TI83 have this capability.
The program listed below, called ITERATE, will enable calculations of the
basic open form sequences to be carried out on a TI80.

The program has four parts to it. The first part is just a simple menu
front end which enables you to choose between an arithmetic, geometric,
and linear sequence calculation. Each type of sequence calculation is coded
as a stand alone program which can then be called, as a subroutine, from
the front end menu program.

ITERATE uses the Lists of the TI80 to store the results of a sequence
calculation. List L6 has been chosen as this should rarely be used during
your course work on MST121 and therefore should not interfere with your
studies. Also letters of the alphabet, such as K, are used so that they do
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not clash with the letters used by programs like QUADRAT, which are
programmed in MU120. The program uses variable K to index into L6,
e.g. if K = 3 then L6(K) means L6(3), the third element in L6. (Note:
variable K has no relationship to k as used in the basic formulas above.)

ITERATE
:ClrHome :Disp "l. ARITH"
:Disp "2. GEOM"
:Disp "3. LINEAR"
:Input W
:If W=1
:prgmARITH
:If W=2
:prgmGEOM
:If W=3
:prgmLinear

ARITH
:ClrHome
:Input "STEP SIZE ", L
:For (K, 2,10,1)
:L6(K-1)+L - L6(K)
:End

GEOM
:ClrHome
:Input "MULTIPLIER ",L
:For (K, 2,10,1)
:L*L6(K-1) - L6(K)
:End

LINEAR
:ClrHome
:Input "MULTIPLIER ",L
:Input "STEP SIZE ",M
:For (K, 2,10,1)
:L*L6(K-1)+M - L6(K)
:End

Before any of the programs are run List L6 needs to be initialised with
the first value which equates to the constant a in the above basic formulas.
As can be seen, nine calculations are carried out (K-1=10-1) and the ten
results are stored in List L6. These simple programs can be modified to
carry out more complex calculations. All you have to do to obtain a greater
number of calculations is to increase the value in the For loop where the
number 10 resides. But a word of warning: the TI80 can hold a maximum
of 99 elements in each List so when editing the above programs make sure
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this limit is not exceeded. The ability to store elements in each List will
also be constrained by the amount of memory (RAM) that is free in your
calculator. The TI80 has only 8KB of memory, of which approximately 6KB
is actually free for your programs. The more programs you have stored the
less memory there will be for temporary storage etc., although it has to be
said that the TI80’s BASIC seems very efficient at tokenising the BASIC
commands and hence is not wasteful of memory. Do not forget to clear your
List before calculating a new sequence. This is particularly important where
you are altering the length of the sequence calculations in the For loop. If
you are already in the List editor then you can scroll to the top of L6 until
the cursor is on the heading, i.e. the title L6, then press the Clear button
and scroll back down into the List. This will have the effect of clearing the
List.

As an example, if you enter as the first value in L6, 0.4, and then run
the LINEAR program, with the value 4 for the multiplier and 0.3 as the
constant (step size), L6 will contain the following 10 values: 0.4, 1.9, 7.9,
31.9, 127.9, 511.9, 2047.9, 8191.9, 32767.9, 131071.9. As can be seen when
using only small values in a recurrence system the resulting answers can
grow to large values very rapidly. This should be taken into consideration
when using a calculator as its maximum range can soon be exceeded when
calculating long sequences. In this case a computer and a software package
like MathCAD would be more appropriate. For MST121 you will find that
many sequences can be handled by a TI80 calculator. Frequently you will
be looking for some form of relationship or trend, like convergence towards
some value, so only the first few values need be calculated, because either
convergence occurs rapidly or an implied general trend can be detected
which can then be verified, if need be, on a computer.

A major benefit of the ITERATE program, even on calculators like the
TI83 (which ITERATE was developed on) is that values are stored as a table
of values. The sequence function on calculators like the TI83 only calculate
the first seven values of any particular sequence, which is the number that
can be seen when entering table view mode. As soon as you scroll down (or
up) to see more values the calculator has to start a new calculation, and
this occurs for every new value that you scroll on to. For more complex
sequences this become very laborious and time consuming, even for a TI83
which has a 6 MHz Z80B processor under its bonnet. ITERATE will first
calculate all the required number of sequence calculations which you can
then easily scroll through quickly in List L6. So, even with the relatively
slow processor as used in the TI80, once the calculations have been done
there is no processing overhead in scrolling through the tabulated values.
Also as the values are stored in L6 it is a trivial matter to plot them. This
would be useful in order to verify any conjectures about convergence etc.
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Observations on Problem 171.2 – 7n+ 1
Barbara Lee
You could write a book on this problem but I only intend to skim the
surface. For each positive integer we have the choice:-

divide by 2
divide by 3
divide by 6
multiply by 7 and add 1.

1 ×7 + 1 11 ×7 + 1 21 ÷3
2 ÷2 12 ÷6 22 ÷2
3 ÷3 13 ×7 + 1 23 ×7 + 1
4 ÷2 14 ÷2 24 ÷6
5 ×7 + 1 15 ÷3 25 ×7 + 1
6 ÷6 16 ÷2 26 ÷2
7 ×7 + 1 17 ×7 + 1 27 ÷3
8 ÷2 18 ÷6 28 ÷2
9 ÷3 19 ×7 + 1 29 ×7 + 1
10 ÷2 20 ÷2 30 ÷6

This gives a cycle of six operations that continues for all positive in-
tegers. Note that 7n + 1 applies to all primes and to all composite odd
numbers that are not divisible by 3. Side-stepping for a moment, this pat-
tern will give you a formula for detecting where primes and twin primes can
possibly be found, but don’t get too excited because this is not a method
for finding the exact positions of all the primes without testing individual
integers.

The sequence starting at 19 is a loop of 30 integers, odd and even,
ranging from 19 to 20168. Other sequences can enter this loop at any of
the 30 on offer. The highest entry point is 121008÷ 6 = 20168. Between 1
and 100 there are about fifteen integers whose sequences enter the 19 loop.
They are not evenly distributed but most start as a prime and they enter
the loop at 31, 37 or 65.

Some integers are ‘bunched’. For example, the sequence from 71 takes
27 iterations to reach 1 and includes 83, 85 and 97.

Numbers 1 and 73 both take one iteration to reach a power of 2. Also
4681, 299593, 19173961 and 1227133513 behave in the same way. Similarly,
5, 185, 6665, 239945 and 8638025 all reach a power of 6 on the first iteration.
These two patterns can be continued.
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It is only worth testing primes and odd composites not divisible by
3. All other integers will result in a sequence that reduces to 1 or to a
previously tested integer.

Numbers 75, 79 and 91 generate sequences that increase much faster
than 31, rapidly rising to 11 digits and remaining there for at least 100
iterations. These need further investigation.

Finding a solution to this problem will not be easy.

Lies, damned lies & statistics
Andrew Pettit
Three statisticians and three epidemiologists are travelling by train to a
conference. The statisticians ask the epidemiologists whether they have
bought tickets. They have.

“Fools!” say the statisticians. “We’ve only bought one between us!”

When the ticket inspector appears, the statisticians hide together in the
toilet. The inspector knocks and they pass the ticket under the door. He
clips the ticket and slides it back under the door to the statisticians.

The epidemiologists are very impressed, and resolve to adopt this tech-
nique themselves. On the return they purchase one ticket between them,
and share the journey with the statisticians, who again ask whether they’ve
all bought tickets.

“No,” they reply, “we’ve bought one to share.”

“Fools!” say the statisticians; “we’ve not bought any.”

“But what will you do when the inspector comes?”

“You’ll see.”

This time when the inspector appears, the epidemiologists hide together
in the toilet. The statisticians walk up to the door and knock on it. The
epidemiologists slide their ticket under the door, and the statisticians take
it and use it as before—leaving the epidemiologists to be caught by the
inspector.

The moral of this story is that you should never use a statistical tech-
nique unless you are completely familiar with it.

We’ve all heard that a million monkeys banging on a million typewriters
will eventually reproduce the works of Shakespeare. Now, thanks to the
Internet, we know this is not true. —Robert Wilensky of the University of
California.

[Sent by John Bull.]
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Letters to the Editors
Points
Point 1. 1666, the year of the fire in Pudding Lane, when written in Roman
numerals is MDCLXVI, each letter once in descending numerical order.

Point 2. Heard on ‘Big Break’: ‘400 degrees F is the same as 200 degrees
C, true or false?’ ‘False,’ replied the contestant. ‘Wrong, it’s true, just look
on your cooker.’ Serves me right for watching, I suppose.

M500 158, Numbers in swimming pools. My local pool, Liskeard, Corn-
wall, has the following numbers for depths: 0.850, 1.350 and 1.800. The en-
gineer in me tells me that this means that the depth is controlled to within
0.5 mm. This is obviously wrong because it varies by about ±2 ins. The
figures come from the conversion from imperial to metric. Thus 0.850 is
approx. 33.46 ins, a bit over 2 ft 9 ins, and 2 ft 9 ins is 0.8382 m. Writing
this as a round number gives 0.850. Similarly 1.350 ≈ 53.15 ins or 4 ft 6
ins is 1.372 m and 1.800 ≈ 70.87 ins or 6 ft is 1.829 m. One decimal place
would give more sensible figures. Many years ago, the chain on my motor
bike had to have play of approximately 0.5 ins at the point between the two
cogs. This meant: try it, if movement is about 0.5 ins, it’s OK, otherwise
adjust the spacing between the cogs. When the handbook was metricated
the measurement became approximately 12.7 mm, giving the impression
that the tolerance was now ± 0.05 mm. What was wrong with ‘between 10
and 15 mm’? Lack of common sense is the answer.

M500 163, Four-legged table joke. In my local they have four-legged
stools and a composite floor around the bar. I have checked the stools,
and the legs are the same length. But the floor is not flat, it has small
imperfections that make the stools wobble, about an inch at seat height.
‘You’ll not stop the wobble,’ say the locals. ‘The mean value theorem says I
will,’ I reply, remembering the old M203 TV programme of that name and
rotating the stool for zero wobble. Now nobody comments on my rotations.

Can any readers supply answers to the following questions?

Euclid’s definitions mean that it is impossible to draw a point, a line, a
circle or anything using them, e.g., a square. This is akin to Plato’s Forms.
When we think of a triangle, the thought is perfect but reality is not. The
lines, or edges if it is an object, will not be perfectly straight, and the angles
will not sum to 180 degrees. When we draw a line, it has thickness, and if
viewed through a magnifying glass will show imperfections.

Parallel lines, railway lines for example, are possible in our minds but
impossible in practice. If you look along railway lines they are not perfect,
bends can be seen in one line that are not in the other line. This is not
important if the bends are small, say within 0.5 inches (1.5 cm), as the
width of the wheel, with the internal flanges, will keep the wheels on the
track. (High speed track may have stricter requirements, but slow speed
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lines do show bends.)

Railway lines have a spacing of 4 ft 8.5 ins or 1.435 metres. Now try
to imagine that there is a 10 km straight (Plato) railway track. True
(Plato/Euclid) parallel railway lines can have a line crossing them (e.g.,
a sleeper) at 90 degrees to each line. Now suppose there are two more true
lines running alongside this track, but the lines are not parallel, the crossing
line making an angle of 90 degrees with one line and 89.99 degrees with the
other. These lines will cross at a point 8.22 km away.

Question 1. If we stood at the point of correct spacing and looked along
the pair of tracks, would we see any difference? The parallel lines would
appear to meet, and the other pair would meet (five miles away), but could
we tell the difference? Will they appear to meet at the same place or closer
than five miles?

Question 2. If we stood at the other end, where they cross, and looked
back along the pair of tracks, would we see any difference? The parallel
lines would appear to meet, and the other pair would diverge but would we
notice it? Would they appear to converge?

Question 3. At what angle of divergence would the lines appear to be
parallel?

Pete Charlton

Galileo
Dear Jeremy,

I was interested in David Singmaster’s entry at 1581 [‘A history of time’,
David Singmaster, M500 171, 1-9]. ‘Galileo notes constancy of the pendu-
lum, but he does not use it for timing rolling bodies.’ This does not explain
why Galileo (or anyone) should have wanted to time rolling bodies, but,
having done S100 around 1972, I immediately thought of Galileo’s circle-
chord theorem. This was the subject of the first home experiment of the
course, and involved rolling a ball down a sloping surface and timing it.

Galileo studied pendulums, and noted that the period of a conventional
pendulum, in which a bob is constrained to fall down the arc of a circle,
is somewhat dependent on amplitude. He worked out by geometry that
if the bob could be constrained to fall down the chord of a circle, then
provided (and I think he was guessing at Newton’s later results) that the
acceleration of a falling object was proportional to the force applied to it
by gravity (which he also assumed to be constant), the period should not
depend on the amplitude. It should be constant for any chord of the circle,
including free fall down the diameter. He tried to test this by rolling a ball
down a channel; timing it with a water clock. The sloping channel was
modelled as a chord of a circle. Experiments using this method do support
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the theory, but because the ball picks up rotational kinetic energy as well
as translational KE, its acceleration is reduced, and the value obtained for
g is lower than it should be.

Galileo may not have realised this problem of rotational KE, but is this
the reason for the remark about not timing rolling bodies?

Yours sincerely,

Colin Davies

Lottery odds
Dear Jeremy,

Thank you for sending me M500 143 along with details of the M500
Society. The reason I wanted that particular issue was because I was told
that on page four Andrew Pettit dealt with a probability problem which I
have been studying. This was not the case however but the article did help
to point me in what seems to be the right direction.

Here is a small taste of some of what I am working on. If you pick
n numbers instead of six (n > 6) then, choosing from the standard 49
numbers 49Cn combinations, what then are the probabilities of six correct,
five and the bonus correct, five correct, four correct, three correct, etc. for
the general case?

Can anyone help? Many thanks,

Richard Hill

Complex complex complex
Dear Tony,

Two entries for your ‘repeated word’ sentences. The first was said by
the keeper of a cockney pub, the Hand and Glove to a signwriter about a
new pub sign: “You’ve left too much space between ’AND and AND, and
AND and GLOVE.”

The second concerns an English Grammar Exam taken by two school-
boys: “Jim, where John had had ‘had’, had had ‘had had’; ‘had had’ had
had the approval of the examiner.”

Dick Boardman

A topical entry for the ‘Complex complex complex’ series?

‘To predict the winner of an American election, study the first important
results; that is, the outcome of the primary primary Primary.’

Jean Robertson
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Twenty-five years ago
From M500 21/22
Cover—‘The Horn of a (Mathematical) Dilemma.’ [ADF—That was the
title attached to a hand-drawn representation of the surface

64(z2 + y2) + x4 − 16zx2 + 4x2 = 256,

which appeared on the front of M500 21. After a certain amount of exper-
imenting I managed to persuade Mathematica to display it for the cover
of this issue. It works best in the parametric form(

8(cosu)(cos t), 2(cosu)(sin t), 8(cosu)2(cos t)2 + 2 sinu
)
,

0 ≤ t ≤ 2π, − π

2
≤ u ≤ π

2
.]

Sue White—It’s good to get back to the comparative sanity of the Maths
Faculty after spending last year studying T100. This was my second foun-
dation course, chosen by a process of elimination—didn’t fancy any others,
so I thought I’d give it a try. Since I’m no technologist (my husband won’t
even trust me with a screwdriver) and managed to come out with a distinc-
tion (nobody more surprised than me!) based, I suspect, more on knowledge
gleaned from M100 than T100, I recommend the course to anyone stumped
for a choice. Summer School especially was fun—not much academically,
but 12 women being pampered by 200 men is an experience not to be missed.

Harold Moulson—A quadrilateral ABCD has AB = BC; angle ABC =
∠BCD = 90◦; AD = 2 units and the area = 4 square units. Determine the
length of AB. An obvious answer is 2, i.e. the figure is a square. Are there
any other solutions?

M500 Mathematics Revision Week-end 2000
The 26th M500 Society Mathematics Revision Week-end will be
held at Aston University, Birmingham over 15–17 September 2000.

We plan to present most OU maths courses. Tutorial sessions start at
19.30 on the Friday and finish at 17.00 on the Sunday. On the Saturday
night there is a mathematical guest lecture, a disco, and folk singing. The
Week-end is designed to help with revision and exam preparation, and is
open to all OU students. For full details and an application form, send an
SAE to Jeremy Humphries.
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