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Pascal Triangle matrices – II
Sebastian Hayes

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

To recapitulate [see Part I, M500 173 1]: The entry in row n, column r, is

nCr =
n!

r!(n− r)!
.

The columns are the figurate numbers, F0, F1, F2, . . . (so called because
F2 = 1, 3, 6, . . . give us the triangular numbers, and F3 the tetrahedral
numbers), with general formula

Fr(n) =
n(n+ 1)(n+ 2) . . . (n+ r − 1)

r!
.

The coefficients are usually presented as a triangle but if you fill in with
zeros, you get an indefinitely extendable matrix,

1 0 0 0 0
1 2 0 0 0
1 3 3 0 0
1 4 6 4 0
1 5 10 10 5

 .

This matrix will be called Pascal0.
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Squares of Pascal Matrices

Like any other matrix Pascal0 can be squared, i.e. we multiply row by
column, term by term.

1 0 0 0 0 . . .
1 1 0 0 0 . . .
1 2 1 0 0 . . .
1 3 3 1 0 . . .
1 4 6 4 1 . . .




1 0 0 0 0 . . .
1 1 0 0 0 . . .
1 2 1 0 0 . . .
1 3 3 1 0 . . .
1 4 6 4 1 . . .

 =


1 0 0 0 0 . . .
2 1 0 0 0 . . .
4 4 1 0 0 . . .
8 12 6 1 0 . . .

16 32 24 8 1 . . .

 .

The first column consists of the powers of two, 1, 2, 22, . . . , as it must
do since every row of Pascal’s Triangle is being multiplied by unity and
then summed, and the sum of any row n of Pascal’s Triangle is 2n. And
the diagonals in the above are just the figurate numbers multiplied by the
appropriate power of 2. Thus the third diagonal is 22(1, 3, 6, . . . ). Once
again we have the familiar pattern of an initial value fixed once and for all
and a set of ‘conversion factors’ which always consist of the figurate numbers
Fk, k = 0, 1, 2, . . . , in some combination or other.

Transpose squares

When taking matrix squares, the full lines such as 1 3 3 1 do not actually
confront each other. I wondered what would happen if they did. The first
results are

1 · 1 = 1

1 · 1 + 1 · 1 = 2

1 · 1 + 2 · 2 + 1 · 1 = 6

1 · 1 + 3 · 3 + 3 · 3 + 1 · 1 = 20

This does not, at first sight, exhibit any particular pattern. (The reader
might like to pause here and deduce a general formula.)

However, after glancing over Pascal’s Triangle, I noted that all these
numbers, 1, 2, 6, 20, . . . , appear as the middle term of a row of Pascal’s
Triangle with n even. (There are n+1 terms in a row.) The mid-term for n
even is nCn/2. This led to the conjecture that the square of any row n = 0,
1, 2, . . . is simply 2nCn. Thus the sum of the square of 1 4 6 4 1 is 8C4 = 70.
Why should this be so? We can lay out nCr as an isosceles triangle instead
of a right-angled one. Thus

1
1 1

1 2 1
1 3 3 1 . . .
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Also, we can work backwards from the mid-point of an odd numbered row,
creating another isosceles triangle. Starting with 252, which is the mid point
of row 10,

252
126 126

56 70 56
21 35 35 21

6 15 20 15 6
1 5 10 10 5 1

Entries in Pascal’s Triangle are built up by adding two from the row above,
or, in this presentation, from the row below. We have

(1)252 = (1)126 + (1)126

= (1)56 + (1)70 + (1)70 + (1)56

= (1)56 + (2)70 + (1)56

= (1)21 + (3)35 + (3)35 + (1)21.

The nCr coefficients 1, 1 1, 1 2 1, 1 3 3 1, . . . reappear as they are bound to
do because of the way Pascal’s Triangle is constructed. We find, if we start
with the middle of the tenth row, 10C5 = 252, that by the time we get to
the fifth row we have as coefficients (1 5 10 10 5 1) and so we end up with
the matrix square

1 · 1 + 5 · 5 + 10 · 10 + 10 · 10 + 5 · 5 + 1 · 1 = 252.

In fact, if we build up a diamond shape, the matrix product of any two
symmetrically placed rows will always be the same, in this case 252.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
1 5 10 10 5 1

6 15 20 15 6
21 35 35 21

56 70 56
126 126

252
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More generally, for any even numbered row, there will be 2n + 1 entries—
since we start at nC0 —and the central entry will be 2nCn. Applying the
fundamental rule of formation nCr = n−1Cr−1 + n−1Cr, i.e. every entry in
row n is the sum of the two entries above it, we can reduce 2nCn by n steps
to the full row nCn with coefficients which turn out to be 1, n, n(n− 1)/2,
. . . , or nCr, r = 0, 1, 2, . . . . Thus every single entry 2nCn is the ‘square’ of
row nCr.

These numbers are in fact the leading diagonal of the product of Pascal0
with its transpose PascalT0 (which is formed by interchanging rows and
columns).

1 0 0 0 0 . . .
1 1 0 0 0 . . .
1 2 1 0 0 . . .
1 3 3 1 0 . . .
1 4 6 4 1 . . .




1 1 1 1 1 . . .
0 1 2 3 4 . . .
0 0 1 3 6 . . .
0 0 0 1 4 . . .
0 0 0 0 1 . . .

 =


1 1 1 1 1 . . .
1 2 3 4 5 . . .
1 3 6 10 15 . . .
1 4 10 20 35 . . .
1 5 15 35 70 . . .

 .

Another surprising result is that if we take any even numbered row,
and take the matrix square of nCr by nCr with alternating signs, the result
is ± the middle term. (In the case of an odd numbered row, n = 3, 5,
7, . . . , the result is always zero since entries cancel each other out; e.g.
−1 · 1 + 3 · 3− 3 · 3 + 1 · 1 = 0.) For example,

−1 · 1 + 2 · 2 +−1 · 1 = 2

−1 · 1 + 4 · 4− 6 · 6 + 4 · 4− 1 · 1 = − 6

−1 · 1 + 6 · 6− 15 · 15 + 20 · 20− 15 · 15 + 6 · 6− 1 · 1 = 20.

(The sign depends on whether the row number n is a multiple of 4 or not.)

I found this result, innocuous though it seems, impossible to prove; so
I have set it as a problem for M500 readers! [Problem 173.1, M500 173 16.]

nCr − nCr−1

Pascal’s Triangle is built up by setting the initial entry in the left hand top
corner at 1 and assuming everything else in the row is zero. Adding two
consecutive entries in a row gives you the entry below the second one, i.e.
nCr−1 + nCr = n+1Cr. Instead of taking the sum I wondered what would
happen if I took the difference.

The difference between two successive entries in a row turns out to be
the same as the difference between the two in the row above but missing
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out one, i.e.
nCr − nCr−1 = n−1Cr − n−1Cr−2.

For example, 6 − 4 from the row 1 4 6 4 1 = 3 − 1 from the row 1 3 3 1.
What happens if we continue in this way? The following curious pattern
emerges

r r − 1 r − 2 r − 3 r − 4 r − 5 r − 6 r − 7
n 1 −1 0 0 0 0 0 0
n− 1 1 0 −1 0 0 0 0 0
n− 2 1 1 −1 −1 0 0 0 0
n− 3 1 2 0 −2 −1 0 0 0
n− 4 1 3 2 −2 −3 −1 0 0
n− 5 1 4 5 0 −5 −4 −1 0
n− 6 1 5 9 5 −5 −9 −5 −1

n− k 1 k − 1 . . .

The third column is the set of triangular numbers less 1, i.e. 1 − 1, 3 − 1,
6 − 1, . . . , with three initial entries hors série. And so we go on with the
tetrahedral and higher figurate numbers appearing somewhat camouflaged
because the third column, r − 2, is (triangular −1) each time. Note that
every row is symmetrical about the middle—apart from sign—and that
every row (n odd) has 0 as entry in the middle (why?).

Using this table we can read off the difference between any two suc-
cessive entries in a row in terms of any earlier row simply by multiplying
the coefficients above by the appropriate entries in Pascal’s Triangle. For
example, suppose we want to have the difference between 8C4 and 8C3 (70
and 56 respectively) in terms of row 5. The result is, applying

1 2 0 −2 −1 0 to

5 10 10 5 1

= 5 + 20 + 0− 10− 1 = 14 = 70− 56.

The procedure works even when the difference is negative: if we took 8C5

and 8C4 we would end up with −14, which is given by the matrix product

1 2 0 −2 −1 0

1 5 10 10 5 1 = 1 + 10 + 0− 20− 5 + 0 = − 14.

Pascal’s Triangle is in fact just a special case of a matrix obeying the
follow-ing rules: 1) the top left corner entry is unity, or 0X0 = 1; 2) any
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entry, row n column r, is the sum of the entry above and to the left, or
nXr−1 + nXr = n+1Xr.

In the case of Pascal’s Triangle, we assume that the second entry in the
top line is zero (as are all succeeding entries) but if we start with 1−1, we get
the indefinitely extendable matrix just given, which tells us the coefficients
to use for nCr − nCr−1. If we start with 1− 2, we get the coefficients that
apply to the case nCr − 2nCr−1, namely

1 −2 0 0 0 0 0 0 0
1 −1 −2 0 0 0 0 0 0
1 0 −3 −2 0 0 0 0 0
1 1 −3 −5 −2 0 0 0 0
1 2 −2 −8 −7 −2 0 0 0
1 3 0 −10 −15 −9 −2 0 0

The entries per row are no longer symmetrical, and a zero appears amongst
them every third row, not every other row. The leading diagonal is −2 and
not −1. Like Pascal’s Triangle Matrix, this matrix is indefinitely extendible
to the right and below, and indeed we could imagine it extending to the
left and above also with zero everywhere. It is not immediately evident
whether it has an inverse but this seems likely since the first few square
inner matrices have non-zero determinants.

nCr × Fk

If we make columns (or rows) alternate in sign, what happens when a column
of figurate numbers (discounting the initial zeros) multiplies a row term by
term? As stated in my article Zero sum Pascal Triangle (M500 169) if k
(or r) < n, the result is zero. Thus, for example,

(1 − 3 6 − 10 15)× (1 4 6 4 1) = 1− 12 + 36− 40 + 15 = 0.

More specifically, we have the theorem:

If a column k from Pascal’s Triangle is multiplied term by term by a row
from Pascal’s Triangle with alternating signs, ±nCr, and then slid across,
the result is k+ 1 zero sums and then the coefficients of ±n−(k+1)Cr (which
sum to zero).
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Thus

−1 4 −6 4 −1 = 0, n = 4, r = 0, 1, . . . , 4
1 2 3 4 5 = 0

1 2 3 4 = 0
1 2 3 = −1

1 2 = 2
1 = −1

Here (1, 2, 3, . . . ) is F1. Proof of the theorem is by repeated induction. In
that article I did not discuss what happens if we set k = n, or let k > n. If
k = n, we find that the result is always +1 or −1, in fact, (−1)n, e.g.

(1 −2 1) 1
3 = (−1)2 = 1.
6

And for k > n, we find the same numbers of Pascal’s Triangle reappearing
like perennials in a flower bed. Thus, trying the next set of figurate numbers,
(1 4 10), against (1 −2 1) we find we get result 3, the next set (1 5 15) gives
6, and so on—i.e. we get the triangular numbers 1, 3, 6, 10, . . . . The full
results are set out in matrix form below.

F0 1 1 1 1 1 . . . 1 1 1 1 1 1
F1 1 2 3 4 5 . . . 0 −1 −2 −3 −4 −5
F2 1 3 6 10 15 . . . 0 0 1 3 6 10
F3 1 4 10 20 35 . . . 0 0 0 −1 −4 −10
F4 1 5 15 35 70 . . . 0 0 0 0 1 5
F5 1 6 21 56 126 . . . 0 0 0 0 0 −1

=

1 0 0 0 0 0 . . .
1 −1 0 0 0 0 . . .
1 −2 1 0 0 0 . . .
1 −3 3 −1 0 0 . . .
1 −4 6 −4 1 0 . . .
1 −5 10 −10 5 −1 . . .

The general formula is

n∑
r=0

Fk(r)(−1)r nCr = (−1)n kCk−n.

We define nC−r as 0 for all n. Then if k < n, the total is 0; if k = n,
the total is ±1; if k > n, the total is kCn. A curious result is that if we
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introduce the relevant set of figurate numbers back to front as it were, we
get the same sums in reverse order i.e.

−1 4 −6 4 −1 = 0
1 = −1
2 1 = 2
3 2 1 = −1
4 3 2 1 = 0
5 4 3 2 1 = 0

The triangle has simply been turned upside down; (−1, 4,−6, 4,−1) is a
symmetric set: in the case of an antisymmetric set such as (−1, 3,−3, 1) we
would get the signs of n−(k+1)Cr reversed, but that is the only difference.

If we define F−k as indicating this, we can extend the original matrix
above the top line and make a sort of mirror image.

−1 5 −10 10 −5 1
0 1 −4 6 −4 1
0 0 1 −3 3 −1
0 0 0 1 −2 1
0 0 0 0 1 −1
0 0 0 0 1 0 1 0 0 0 0 0

1 1 0 0 0 0
1 2 1 0 0 0
1 3 3 1 0 0
1 4 6 4 1 0
1 5 10 10 5 1

According to Eli Maor (e, The Story of a Number, ch. 8) it was this
trick of extending Pascal’s Triangle above the top line and alternating the
signs (though not in this way) that suggested to Newton that the Binomial
Expansion could work for negative indices. Newton tried

n = − 3 1 −3 6 −10 15 . . .
n = − 2 1 −2 3 −4 5 . . .
n = − 1 1 −1 1 −1 1 . . .
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Reciprocal Pascal

If we take reciprocals of Pascal’s Triangle and alternate the sign of columns,
we obtain

1 1
1 −1 0
1 −1/2 1 1 + 1/2
1 −1/3 1/3 −1 0
1 −1/4 1/6 −1/4 1 1 + 2/3
1 −1/5 1/10 −1/10 1/5 −1 0
1 −1/6 1/15 −1/20 1/15 −1/6 1 1 + 3/4

The odd numbered rows (the first is row zero) are symmetric sets and thus,
since the signs alternate, sum to zero.

For n even the sum is 1 +

n

2
n

2
+ 1

or
2(n+ 1)

n+ 2
with limit 2 as n increases

without bound. Thus

n∑
r=0

(−1)r

nCr
=

 0 n odd
2(n+ 1)

n+ 2
n even.

ln 2 and its successors

The second diagonal 1, −1/2, 1/3, −1/4, . . . is convergent and is today
called ln 2.

Several 17th century mathematicians including Newton discovered this
series independently as the sum of the area under the hyperbola y =
1/(1 + x) between limits 0 and 1. At this time the exponential and log-
arithmic functions had not been defined as such (though in the air) and
the summation was done by slogging it out from first principles (something
nobody ever does these days) on the basis of

1 = (1 + x)(x− x2 + x3 + · · ·+ (−1)n+1xn−1)− (−1)n+1xn

with x taking the values 0, 1/n, 2/n, . . . , n/n.

I wondered whether the other diagonals, i.e. the reciprocals of figurate
numbers with alternating signs such as 1, −1/3, 1/6, −1/10, . . . , or 1, −1/4,
1/10, . . . , converged. In fact they all do.
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The ratio test is inconclusive since for every series it is 1, and series
with tn+1/tn = 1 can diverge, since the Harmonic Series does. But the
conditions for Leibnitz’s Alternating Series test are met, an —the sequence
disregarding sign—is decreasing and lim an = 0. Actually, it might be worth
proving convergence from first principles for the benefit of those who, like
myself, were unfamiliar with this test.

I choose 1, −1/2, 1/3, . . . but the argument applies to all the figurate
sets with ±-alternating terms. Chop up the series of partial sums t1, t2, t3,
. . . into odd and even numbered series. Thus todd starts 1, 1 − 1/2 + 1/3,
1− 1/2 + 1/3− 1/4 + 1/5, . . . . This series is decreasing since the difference
between successive terms is always of the form 1/(2n + 1) − 1/(2n) < 0.
However, the series is bounded below, by 0, since it can be written as a sum
of positive quantities (1− 1/2) + (1/3− 1/4) + . . . +1/(2n+ 1). Thus, by
the Axiom of Completeness, this series converges to limit L1 say. In much
the same way one can show that teven is increasing but less than 1, so it
converges to a limit L2 say. But teven up to term 2n is just todd up to term
2n−1 plus −1/(2n). Then limit teven = lim todd+lim−1/(2n) = lim todd+0.
Thus the two limits are equivalent and the joint series converges.

Whether (−1)n + Fk/2—the sets of figurate numbers with alternating
signs—converge to anything mathematically interesting I do not know.

ln 2 as multiplying set

If we remove the last term from the Pascal Triangle, i.e. we use

0
1
1 2
1 3 3
1 4 6 4

and multiply by ln 2 : 1, − 1/2, 1/3 ,−1/4, . . . , we obtain

n−1∑
r=0

(−1)r
nCr

r + 1
=

{
0 n for n even

2

n+ 1
n for n odd.

Removing a second term we obtain 1 for n even,
1

2(n+ 1)
− 1 for n odd.
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Reciprocal figurate numbers as multiplying sets

We now try out the sets of figurate numbers as multiplying sets, with alter-
nating sign applying them to nCr;

F0 = 1, − 1, 1, − 1, . . .

and the result when applied to nCr is 0.

F1 = 1, − 1

2
,

1

3
, − 1

4
,

1

5
, . . . , (−1)n−1

1

n
, . . . ,

with result when applied

1 1
1 1 1/2
1 2 1 1/3
1 3 3 1 1/4

nC0
nC1

nC2
nC3 . . . nCn 1/(n+ 1);

F2 = 1, − 1

3
,

1

6
, − 1

10
, (−1)n−1

2

n(n+ 1)
,

1 1
1 1 2/3
1 2 1 1/2 = 2/4
1 3 3 1 2/5

nC0
nC1

nC2
nC3 . . . nCn 2/(n+ 2);

F3 = 1, − 1

4
,

1

10
, − 1

20
, (−1)n−1

3!

n(n+ 1)(n+ 2)

1 1
1 1 3/4
1 2 1 3/5
1 3 3 1 3/6

nC0
nC1

nC2
nC3 . . . nCn 3/(n+ 3).

The sum is, for figurate numbers Fk, k = 0, 1, 2, 3, . . . ,
n∑

r=0

nCr
1

Fk(r + 1)
=

k

n+ k
,

r = 0, 1, 2, . . . , k = 0, 1, 2, . . . , n = 1, 2, 3, . . . .

Note that the formula works even for k = 0 on the understanding that
F0 = 1, 1, 1, . . . , with alternating signs, for the result is then 0/(n+0) = 0.
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Non-regular dice
David Singmaster

[ADF—When I set ‘Problem 171.1 – Cylinder’ (Throw a short,
fat cylinder, such as a coin, up in the air and let it fall on to
a flat surface. It will almost certainly land on one of its faces,
‘heads’ or ‘tails’. Do the same with a long, thin cylinder and it
is far more likely to land on its curved surface. At what radius-
to-height ratio will the probabilities be equal?) in M500 171, I
was completely unaware that there exists a considerable body
of work that deals with this very difficult question. In fact there
is no satisfactory answer. The same applies to all other solids
which have an element of asymmetry. If we don’t count limiting
cases such as spheres and discs, the five regular polyhedra seem
to be the only solid objects where there is an adequate theoret-
ical model for allocating probabilities. The problem is unsolved
even for a simple 2× 1× 1 brick.]

This deals with determining the probability of the various faces of a die
which is not a regular polyhedron. The immediate approach is a simple
geometric model—the probability of a face should be proportional to the
solid angle subtended by that face viewed from the centroid. However, this
fails to agree with reality and a number of authors have attempted to explain
the real situation by more complex modellings of the physical situation.

Scott Beach Musicdotes. Ten Speed Press, Berkeley, California, 1997,
p. 77. Says Jeremiah Clarke (c.1674–1707), the organist of St. Paul’s Cathe-
dral and a composer best known for the Trumpet Voluntary (properly the
Prince of Denmark’s March, long credited to Purcell) became enamoured of
a lady above his station and was so despondent that he decided to commit
suicide. Being somewhat indecisive, he threw a coin to determine whether
to hang himself or drown himself. It landed on the ground and stuck on
edge! Failing to recognise this clear sign, he went home and shot himself!
(The text is given as a Gleaning: A loss of certainty, submitted by me, in
Math. Gaz. 66 (No. 436) (1982) 154.)

J. D. Roberts ‘A theory of biased dice.’ Eureka 18 (1955) 8–11. Deals
with slightly non-cubical or slightly weighted dice. He changes the lengths
by s and ignores terms of order higher than first order. He uses the simple
geometric theory.

L. E. Maistrov Probability Theory. A Historical Sketch. Academic
Press, 1974. Heilbronner says he measured ancient dice at Moscow and
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Leningrad, finding them quite irregular—the worst cases having ratios of
edge lengths as great as 1.2 and 1.3.

Scot Morris The Book of Strange Facts and Useless Information.
Doubleday, 1979, p. 105. Says 6 is the most common face to appear on an
ordinary die because the markings are indentations in the material, making
the six side the lightest and hence most likely to come up. He says that
this was first noticed by ESP researchers who initially thought it was an
ESP effect. The effect is quite small and requires a large number of trials to
be observable. (I asked Scot Morris for the source of this information—he
couldn’t recall but suspected it came from Martin Gardner. Can anyone
provide the source?)

Frank Budden Note 64.17: ‘Throwing non-cubical dice.’ Math. Gaz.
64 (No. 429) (October 1980) 196–198. He had a stock of 15 mm square rod
and cut it to varying lengths. His student then threw these many times to
obtain experimental values for the probability of side versus end.

David Singmaster ‘Theoretical probabilities for a cuboidal die.’
Math. Gaz. 65 (No. 433) (October 1981) 208–210. Gives the simple geo-
metric approach and compares the predictions with the experimental values
obtained by Budden’s students and finds they differ widely.

Correspondence with Frank Budden led to his applying the theory to a
coin and this gives probabilities of landing on edge of 8.1% for a UK 10p
coin and 7.4% for a US quarter.

Trevor Truran. ‘Playroom: The problem of the five-sided die.’ The
Gamer 2 (September/October 1981) 16 & 4 (January/February 1982) 32.
Presents Pete Fayers’ question about a fair five-sided die and responses,
including mine. This considered a square pyramid and wanted to determine
the shape which would be fair.

Eugene M. Levin. ‘Experiments with loaded dice.’ Am. J. Physics
51:2 (1983) 149–152. Studies loaded cubes. Seeks formulae using the acti-
vation energies, i.e. the energies required to roll from a face to an adjacent
face, and inserts them into an exponential. One of his formulae shows fair
agreement with experiment.

E. Heilbronner. ‘Crooked dice.’ J. Recreational Math. 17:3 (1984–
5) 177–183. He considers cuboidal dice. He says he could find no earlier
material on the problem in the literature. He did extensive experiments,
à la Budden. He gives two formulae for the probabilities using somewhat
physical concepts. Taking r as the ratio of the variable length to the length
of the other two edges, he thinks the experimental data looks like a bit of
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the normal distribution and tries a formulae of the form exp(−ar2). He
then tries other formulae, based on the heights of the centres of gravity,
finding that if R is the ratio of the energies required to tilt from one side to
another, then exp(−aR) gives a good fit.

Frank H. Berkshire. The ‘stochastic’ dynamics of coins and irregular
dice. Typescript of his presentation to BAAS meeting at Strathclyde,1985.
Notes that a small change in r near the cubical case, i.e. r = l, gives a change
about 3.4 times as great in the probabilities. Observes that the probability
of a coin landing on edge depends greatly on how one starts it—e.g. stand-
ing it on edge and spinning it makes it much more likely that it will end up
on edge. Says professional dice have edge 3/4′′ with tolerance of 1/5000′′

and that the pips are filled flush to the surface with paint of the same den-
sity as the cube. Further, the edges are true, rather than rounded as for
ordinary dice. These carry a serial number and a casino monogram and
are regularly changed. Describes various methods of making crooked dice,
citing Frank Garcia, Marked Cards and Loaded Dice, Prentice Hall, 1962,
and John Scarne, Scarne on Dice, Stackpole Books, 1974. Studies cuboidal
dice, citing Budden and Singmaster. Develops a dynamical model based
on the potential wells about each face. This fits Budden’s data reasonably
well, especially for small values of r. But for a cylinder, it essentially re-
duces to the simple geometric model. He then develops a more complicated
dynamical model, which gives the probability of a 10p coin landing on edge
as about 10−8. He has presented this material in a number of recent talks.

David Singmaster. ‘On cuboidal dice.’ Written in response to the
cited article by Heilbronner and submitted to JRM in 1986 but never used.
The experimental data of Budden and Heilbronner are compared and found
to agree. The geometric formula and Heilbronner’s empirical formulae are
compared and it is found that Heilbronner’s second formulae gives the best
fit so far.

I had a letter in response from Heilbronner at some point, but it is
buried in my office.

Joseph B. Keller. ‘The probability of heads.’ American Mathematical
Monthly 93:3 (March 1986) 191–197. Considers the dynamics of a thin coin
and shows that if the initial values of velocity and angular velocity are
large, then the probability of one side approaches 1/2. One can estimate
the initial velocity from the amount of bounce—he finds about 8 ft/sec.
Persi Diaconis examined coins with a stroboscope to determine values of
the angular velocity, getting an average of 76π rad/sec. He considers other
devices, e.g. roulette wheels, and cites earlier work on these lines.
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Frank H. Berkshire. The die is cast. Chaotic dynamics for gamblers.
Copy of his OHP’s for a talk, June 1987. Similar to his 1985 talk.

J. M. Sharpey-Schafer. Letter: ‘On edge.’ The Guardian (20 July
1989). An OU course asks students to toss a coin 100 times and verify that
the distribution is about 50:50. He tried it a 1000 times and the coin once
landed on edge.

D. Kershaw. Letter: ‘Spin probables.’ The Guardian (10 August 1989.
Responding to the previous letter, he says the probability that a spun coin
will land on edge is zero, but this does not mean it is impossible.

A. W. Rowe. Letter. The Guardian (17 August 1989). Asserts that
saying the probability of landing on edge in zero admits ‘to using an over-
simplified mathematics model’.

K. Robin McLean. ‘Dungeons, dragons and dice.’ Math. Gaz. 74
(No. 469) (October 1990) 243–256. Considers isohedral polyhedra and shows
that there are 18 basic types and two infinite sets, namely the duals of the
5 regular and 13 Archimedean solids and the sets of prisms and antiprisms.
Then notes that unbiased dice can be made in other shapes, e.g. triangu-
lar prisms, but that the probabilities are not obvious, citing Budden and
Singmaster, and describing how the probabilities can change with differing
throwing processes.

Joe Keller, in an e-mail of 24 February 1992, says Frederick Mosteller
experimented with cylinders landing on edge ‘some time ago’, probably in
the early 1970s. He cut up an old broom handle and had students throw
them. He proposed the basic geometric theory. Keller says Persi Diaconis
proposed the cuboidal problem to him c.1976. Keller developed a theory
based on energy loses in rolling about edges. Diaconis made some cuboidal
dice and students threw them each 1000 times. The experimental results
differed both from Diaconis’ theory (presumably the geometric theory) and
Keller’s theory.

Hermann Bondi. The drop of a cylinder. European J. Physics. 1994.
Considers a cylindrical die, e.g. a coin. Considers the process in three cases:
inelastic, perfectly rough planes; smooth plane, for which an intermediate
case gives the geometric probabilities; imperfectly elastic impacts.

In late 1996 through early 1997, there was considerable interest in this
topic on NOBNET due to James Dalgety and Dick Hess describing the
problem for a cuboctahedron. I gave some of the above information in
reply.
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Re: Problem 171.1 – Cylinder
Gordon Alabaster
A coin is a short fat cylinder. With what radius-to-height ratio will it have
an equal probability of falling on its curved edge or its flat faces?

I found myself thinking about this while trying to get to sleep, as such
things work marvels for me.

Consider a cylinder with a length about equal to its diameter. (I did
not remember the question to the letter.) With the cylinder standing on
its curved surface, consider a view perpendicular to the axis of circular
symmetry. This will present a rectangular outline with the diameter as
height and length as width. (See top of diagram.)

Since the cylinder has circular symmetry when viewed from an end, the
above side view is the only one we need consider.

The cylinder is standing on its curved surface. Tip it over slowly to
the left and as long as the centre of gravity (CoG) is still vertically over
the rectangle base, if released it will return to equilibrium standing on its
curved surface. Once the CoG is vertically over the left side, if released it
will move to the equilibrium position lying on its face. The same happens
if tipped to the right.

We are looking for the probability of the cylinder landing on the bottom
or top of this rectangle against landing on either of the two sides. This view
has rectangular symmetry, so let’s just consider 180 degrees of starting
positions, from lying on the left face, through lying on the bottom, to lying
on the right face. (See bottom of diagram.) The other 180 degrees would
be from lying on the right face, through lying on the top, to lying on the
left face.

Cylinder

25% 25% 25%
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As indicated in the diagram (bottom row of images), the solution will
have equal probability of landing on curved surface or face if it has equal
probability for each indicated range over the 180 degrees being considered.
This occurs when tipping the rectangle to the unstable equilibrium points
is a 45 degree tip, which makes the rectangle a square. That is when the
cylinder length is equal to the diameter.

In terms of the question, ‘A cylinder with a radius-to-height ratio of 1
to 2 will have an equal probability of falling on its curved edge or its flat
faces.’

Solution 172.1 – 345 triangle
An equilateral triangle encloses a point. The point is 30 metres
from one corner, 40 metres from another corner, and 50 metres
from the remaining corner. What is the length of the triangle’s
side?

Dave Ellis
Thanks for publishing my letter in M500 172. I’m expecting some of your
readers to come up with neat analytical solutions, but, if it’s of interest,
here’s how I did it.

If the triangle’s side is x, the total area is 0.25x2
√

3. Then [see diagram
on next page]

Area A =
√

(1225− 0.25x2)(0.25x2 − 25)

Area B =
√

(1600− 0.25x2)(0.25x2 − 100)

Area C =
√

(2025− 0.25x2)(0.25x2 − 25)

When a value for x is found that sets the total area equal to the sum of
areas A, B, and C, we have a solution.

It remains only to define a search range for x. By inspection it must be
more than 50, so this will be the minimum value in the search range. The
equation for Area A imposes the most severe constraint on the maximum
value for x, because 1225− 0.25x2 could leave us trying to find the square
root of a negative number, and we’re not looking at complex solutions here.
This indicates x must not be greater than 70, giving a search range of 50 to
70.

I chose to conduct the search using the bisection method to zero in on
the correct answer. I elected to work to three decimal places. Here’s the
code:



Page 18 M500 174

C

B

A

P

40

30

50

x

x x
A

B

C
Φ Θ

DECLARE FUNCTION func! (x!)

min = 50: max = 70: ’ search range

CLS

DO

mean = (max + min) / 2

f = func(mean)

IF f > 0 THEN

max = mean

ELSE

min = mean

END IF

LOOP UNTIL ABS(f) < .001

PRINT USING "##.###"; mean

FUNCTION func! (x)

y = .25 * x * x

TotalArea = y * SQR(3)

AreaA = SQR((1225 - y) * (y - 25))

AreaB = SQR((1600 - y) * (y - 100))

AreaC = SQR((2025 - y) * (y - 25))

func = TotalArea - AreaA - AreaB - AreaC

END FUNCTION
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This appears to run instantaneously, the result popping onto the screen
before you blink! And the answer is: 67.664 metres.

An alternative approach is to use the cosine rule to calculate each of the
three angles at the centre of the triangle in terms of x. The sum of these
angles is 2π radians, so we have another equation which is easily solved by
iterative methods:

2π− cos−1
(

4100− x2

4000

)
− cos−1

(
3400− x2

3000

)
− cos−1

(
2500− x2

2400

)
= 0

I coded and ran this, and got the same results as before equally quickly.

Martyn Hennessy
Firstly, the triangle is scaled by a factor of 1/10 to make the algebra easier
to handle. So let y = x/10 in the diagram on page 18. Using the cosine
formula:

y2 = 32 + 42 − 2 · 3 · 4 cosφ,

y2 = 42 + 52 − 2 · 4 · 5 cos θ,

y2 = 33 + 52 − 2 · 3 · 5 cos(φ+ θ).

This gives

cosφ =
25− y2

24
, (1)

cos θ =
41− y2

40
. (2)

Also cos(φ+ θ) =
34− y2

30
= cosφ cos θ − sinφ sin θ; hence

(sinφ sin θ)2 =

(
cosφ cos θ − 34− y2

30

)2

= (1− cos2 φ)(1− cos2 θ). (3)

Substituting cosφ and cos θ from (1) and (2) into (3) gives an expression in
y only. After much simplification this reduces to a quadratic in y2:

y4 − 50y2 + 193 = 0.

So

x = 10y = 10

√
25 + 12

√
3, 10

√
25− 12

√
3 (67.66, 20.53).

The first solution gives the point P inside the triangle while the second gives
P outside the triangle.
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John Bull
The problem is, as they say, an old chestnut. The most elegant solution I
know of can be found in Mathematical Quickies by Charles W. Trigg (Dover,
1967, ISBN 0-486-24949-2), Problem 201. It was originally discussed in the
School Science and Maths Magazine, No. 33 (April 1933), page 450.

ADF—I have it here in front of me. On the diagram (page 18) draw an
equilateral triangle PCF so that F is to the north-west of BC. (I have to keep
my wits about me because Trigg’s triangle is labelled differently.) Draw a
triangle CEB with P on CE and angle CEB = 90◦. Angles PCA and FCB
are equal because they are both 60◦ minus angle PCB. Also PC = FC = 30
and CA = CB. Therefore triangles PCA and FCB are congruent. Hence
FB = 50, FPB is a 3 : 4 : 5 triangle, angle FPB is 90◦, angle BPE is 30◦,
BEP is a 1 :

√
3 : 2 triangle, BE = 20, EP = 20

√
3. Thus

BC =

√
202 + (30 + 20

√
3)2 = 10

√
25 + 12

√
3.

However, I prefer Martyn’s solution because the diagram does not need to
be modified. Then along came this next contribution . . . .

Chris Pile
Whenever M500 drops through my letter-box everything else is neglected
until I have, at least, perused the entertainment within. I particularly enjoy
the problems because there is often more than one method of solution—as
in the case of 170.1.

The hard way to do this problem is to use the ‘semi-perimeter’ formula
for the area of a triangle,

√
s(s− a)(s− b)(s− c), for each of the three small

triangles and equate the sum to the area of the equilateral triangle, x2
√

3/4.
The resulting equation can be solved—using a ‘simple computer program’
to perform the iterations to the desired accuracy. Anyone who does this
may wonder why the area of the smallest triangle is exactly equal to 3, and
begin to detect the aroma of a scarlet kipper.

The easy way is to use insight, intuition and a bit of Pythagoras.

Start with a 3 : 4 : 5 triangle [we are working in tens of meters] and
complete the rectangle. Erect an equilateral triangle on each of the two
adjacent sides. Joining the vertices of these triangles and the starting point
produces the problem figure. The side length of the large equilateral triangle
can then be found:

x2 = (BQ)2 + (AQ)2 = (3 +
√

12)2 + 22.

Hence x = 6.76643 (or for the problem as posed, 67.6643 meters).
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C

B

A

P

4

3

5

3

4

Book review
Alan Turing: The Enigma by Andrew Hodges
Vintage paperback, 1982, 592 pp., ISBN 0-09-911641-3

John Lee
This book is a biography of the mathematician Alan Turing. It was written
by Andrew Hodges, also a mathematician, in 1983 after two years research,
and reissued in 1992 as above.

The biography takes us through the life of Alan Turing, from his child-
hood within a middle-class family (which was spent at public school because
his parents were in India—his father was a civil servant in Madras) to his
final years in Manchester as head of the new computing department until
his death in 1954, officially a verdict of suicide, but thought by his mother
to be an accident.

His school days give us a good understanding of life in the 1920s – 30s
public school system, where he completed his early education before going
to Kings College, Cambridge to study for a degree in mathematics.

After graduating, he stayed on at Kings as a lecturer and to under-
take further research in mathematics. His paper ‘On computable numbers,
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with an application to the Entscheidungsproblem’ (Proc. London Math. Soc.,
Series 2, Volume 42, 230–265) was a significant contribution in 1936. It de-
feated one of the Hilbert problems set in 1900, which asked ‘was mathemat-
ics decidable?’, meaning ‘did there exist a definite method which could, in
principle, be applied to any assertion, and which was guaranteed to produce
a correct decision as to whether that assertion was true?’

The answer to this question was ‘No’, there could exist no ‘definite
method’ for solving all mathematical questions.

Alan Turing was 24 years old when he solved this problem in Computable
Numbers.

The book contains much of what was at the forefront of mathematics
in the 1930s – 1940s, but in a non-technical format for the general reader.

It looked as though Turing was to have a life in teaching in Cambridge,
but then the war intervened, and he was to find himself at Bletchley Park,
as a member of the code breakers, ultimately to head a team in breaking
the German ‘Enigma’ cipher.

The systems used in breaking the codes ranged from educated guesses,
index cards, overlays and the Bombes, so called because of the ticking noise
they made as they worked through the millions of possible combinations to
decode the messages.

Much of this information was suppressed after the war and has only
recently been removed from the official secrets, permitting the publication
of such information and the names of those involved in this work.

After the war ended, he took up a position at Manchester University.
He was involved in the development of the first computers there until his
tragic death at the age of 41.

I would recommend this book to anyone interested in the history of
mathe- matics and the life of a brilliant mathematician.

Problem 174.1 – Four people
JRH
A group of four people, A, B, C and D, have to get across a bridge at
night. The bridge cannot take more than two people at a time. They have
one torch, and no crossing can be made without the torch. The torch must
always be carried. It cannot be thrown, etc. A can cross the bridge in one
minute, B in two minutes, C in five minutes and D in ten minutes. When
two people cross, they travel at the speed of the slower person.

What is the shortest time for the whole group to get across?
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Nine matches
In M500 172 we asked: Move one match to correct this sum: .

JRH—So far we [JR & Rose] have three, or four if you are a pedant:

1. Take the vertical one off the + and angle it against the rightmost
one, so 5− 1 = 4.

2. Take the horizontal one off the + and cross it over the leftmost one,
so 11 divided by 1 = 11.

3. Take one of the V matches and put it in your pocket, so that 1 + 1
= 2.

4. Ditto with the other V match.

EK—Re. 1: ? Re. 2: Sorry, I can’t see it. If anything it becomes 10 / 11
= 11, surely. Re. 3 and 4: Move does not mean remove, nohow. Anyhow 1
does not slope.

The canonical answer is: .

Not only I did not spot that instantly, but also I had seen it before and
forgotten. That Al Z gets about quite a bit for an old ’un.

ADF—X + I = II? You have ‘X’, which is the Roman abbreviation for
1111111111, ten in base 1, and ‘II’ is eleven in base 10. I’m sorry, you just
cannot change the number base whenever you feel like it. Goodness knows
what might be if you could. Indeed, the original sum is perfectly valid if
you interpret ‘II’ as six in base 5.

Martin Cooke— and both seem correct.

Problem 174.2 – Incredible identity
Show that√

11 + 2
√

29 +

√
16− 2

√
29 + 2

√
55− 10

√
29 =

√
5 +

√
22 + 2

√
5.

ADF—A nice little formula to keep you busy for an evening or two! I found
it in Henri Cohen’s book, A Course in Computational Algebraic Number
Theory (Springer-Verlag, 1995). He attributes it to Daniel Shanks, who
published a number of similar expressions under the title ‘Incredible iden-
tities’ in Fibonacci Quarterly (1974).
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Solution 170.2 – Rational square
Find a point which is a rational distance from three corners of
a unit square.

Chris Pile
I spent some considerable time (more than 10 minutes) on this problem,
using trial and error, to no avail. I consulted my list of Pythagorean triples—
again with no success. So I gave up and wrote a simple computer program,
sat back and waited.

Very soon (less than 10 minutes) the computer produced an answer.

52

52

7 45

28

24

25

51

53
7 17

After some considerable time there were no more solutions (apart from
reflections and multiples). So I switched off the computer.

Problem 174.3 – Eight wires
Malcolm Maclenan
I am on the third floor with one end of an 8-way cable (all eight wires are
identical) and I know the other end is in the basement. Given a continuity
meter, what is the least number of trips to the basement I must make to
identify each wire?
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Solution 172.4 – Grandfather clock
My grandfather clock needs winding every so often. The diffi-
culty is that one or both of the two holes into which the winding
handle goes are periodically covered up by one or both hands.
The minute hand covers a winding hole between 15 and 21 min-
utes and between 39 and 45 minutes during an hour. The hour
hand covers a hole between 7:44 and 9:06, and again between
2:48 and 9:10. What is the probability that I can wind the clock?

Ken Greatrix
The minute hand covers a hole for 12 minutes every hour. Let P (M) =
12/60 = 1/5. The hour hand covers a hole for 164 minutes in 12 hours.
Let P (H) = 164/720 = 41/180. During each 82-minute period both hands
cover a hole for 13 and 12 minutes, respectively. Let

P (B) = P (H)

(
13

82
+

12

82

)
=

5

72
.

Then

P (W ) = 1− (P (M) + P (H)− P (B))

= 1−
(

1

5
+

41

80
− 7

12

)
=

77

120
.

There is almost 2/3 probability that you can wind the clock.

Problem 174.4 – 32 pounds
JRH
You start with £32 and bet against your opponent on the toss of a coin.
On each turn you stake half your capital (£32 plus or minus any wins or
losses), and your opponent matches your stake. You play six times, and you
win half of the plays. What is your capital now?

I notice that my local supermarket is selling kiwi fruit at 15p each, ten for
a pound. What’s a fair price for nine? Would they insist on £1.35 (because
9 < 10), or would they let you purchase an imaginary kiwi fruit to make
the number up to ten?—ADF
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Sixteen matches
Ken Greatrix

In my solution to the problem [M500 170 28: move two matches in the left-
hand diagram, below, to make four squares], I appealed to the semantics of
the situation and thus I offer two variations:

i. ‘Move’ means ‘remove’. Remove A and B, or C and D.

ii. ‘Move’ means ‘move to another position’. The problem says nothing
about the size of the squares.

C A

B

D

Problem 174.5 – Root 11
Barry Lewis
This problem is concerned with the numbers of the form (

√
11 + 3)2n+1,

where n is a positive integer. For each value of n, we can split such a
number into its fractional part f and its integer part I. Prove that these
parts have the following properties:

i the fractional part is given by f = (
√

11− 3)2n−1;

ii the integer part of (
√

11 + 3)2n+1, I, is divisible by 2n+1;

iii and finally, that f =
1

2

(√
I2 + 22n+3 − I

)
.

You must be medically able to wear breathing apparatus and a full,
valid driving licence, . . . [Advert for Sewage Treatment Process Operators,
Bromsgrove Advertiser. Spotted by JRH.]
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Letters to the Editors
Millennium
Dear Tony,

Re Millennium—Issue 172.

Here we are in February 2000 and we are still worrying about the change-
over from 1999 to 2000! Isn’t it time to look ahead and make plans for the
next major change-over?

The main problem with the 1900s was that many programmers settled
for abbreviated two digit years. All computers have now been trained to
understand four digit years and so we are safe for the next 8000 years. But
what happens in the year 9999 when dates flip back to 0000?

I predict absolute chaos unless we take action soon.

Give thought to our children’s children’s children’s . . . children’s chil-
dren.

Ron Potkin

Three people
Dear Jeremy,

I was thinking about shorter questions for the Three People problem
[identify as cheaply as possible, at a cost of 1 Mz per word, a liar, a truth-
teller and one who alternates between lying and truth-telling, by asking
them questions and listening to their answers].

Here is a quite elegant way which costs only 16 Mz.

Ask two of them ‘Is Mussolini dead?’ twice. Two identical questions
positively identify any of the three, so there is no need to question the third.

If you are paying for answers only, this costs 4 Mz, as opposed to my
earlier solution [M500 171 17] which cost 3 Mz. That, too, could be got
down to 16 Mz for all words:

As before, one of the three is asked: Is Mussolini dead? Is Mussolini
dead? Is your more truthful colleague the taller? But I wouldn’t rate these
questions as elegant. They still expect that the person asked has knowledge
of the other two, though I think that this is assumed in problems of this
kind unless stated otherwise. And you might have to measure two people if
they were nearly the same height, and so might the person asked—and how
many mega-zlotys would he charge for the job?

Ralph Hancock



Page 28 M500 174

A curvature anomaly
A cylinder has constant curvature along its length, a cone does not. An
ellipse can be formed from the sections of a cylinder or a cone. How can
this be?

Ken Greatrix

Decimal currency
Barbara Lee
As long ago as 1853 a House of Commons Committee on a Decimal System
of Coinage recommended the adoption of a decimal currency system.

Four different schemes were proposed, all having their relative advan-
tages and disadvantages. The most popular one was based on the sovereign
(one pound) which in those days was divided into 240 pennies and each
penny into 4 farthings.

The sovereign was to be divided into 10 florins, each florin into 10 cents
and each cent into 10 mils. The mil would have been necessary in those
days because copper coins included the farthing and halfpenny, which were
widely used by poor people. Intermediate coins such as the half-sovereign
and a double florin were to be included.

This scheme would still have left us with the pound of the same value
as today, and the mil probably abandoned about halfway through the 20th
century. The other three schemes were based on the half-sovereign, penny
and farthing respectively but all gave rise to many disadvantages. Due
to lack of public interest this proposed introduction of a decimal coinage
system was never made the subject of an Act of Parliament.

Surprisingly, the 1864 Metric Act of Parliament was passed to permit
the use of metric weights and measures, and the teaching of the principles
of the metric system in schools in anticipation of this system being adopted
in the near future once the decimal coinage was established!

Unfortunately, the use of metric weights for buying and selling resulted
in conviction, and we are left with a lot of bad feeling about the loss of
the imperial system even though the metric system has been with us in
education and science for so many years.

‘. . . fees guaranteed not to exceed more than 4.5 per cent of each trans-
action value . . . ’

[Internet Magazine article on getting your site to take credit cards. Spot-
ted by JRH.]
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Twenty-five years ago
From M500 23 & 24
Richard Ahrens—Three men, A, B and C, decide to fight a pistol duel
along the following lines. They will first draw lots to determine who fires
first, second and third. After positioning themselves at the vertices of an
equilateral triangle, they will fire single shots in turn and continue in the
same cyclic order until two of them have been hit. The man whose turn it
is to fire may aim wherever he pleases. Once a man has been hit, whether
killed or not, he takes no further part in the duel. All three men know
that A always hits whatever he aims at, B is 80% accurate, and C is 50%
accurate.

Assuming that all three adopt the best strategy, and that no-one is hit
by a shot not aimed at him, who has the best chance to escape unscathed?
What is the exact probability of escape of each of the three men?

Peter Weir—‘Stop Press 3’ for MST282 gives details of changes to the
format of the exam paper. I was shocked to see that no less than 15% of
the marks will be given to an essay question. I thought immediately of two
reasons for this—firstly that this was an attempt to reduce the high marks
that embarrass the Maths Faculty, and secondly that essays are a sop to
that infamous Kettle plan.

Essays are not new in Maths courses. In M100 1973 a TMA question
involved an essay on mode vs. arithmetic mean—to get full marks merely
involved disguising a simple list of pros and cons as an essay. But 15% is
beyond a joke.

Let mathematicians be literate as well as numerate, by all means. But
do not erect barriers in the way of specialists. Have mathematical courses,
and courses to improve communication and literacy, but not all combined.

Is this evidence of a trend in the OU? Will we be asked to write on such
topics as ‘Social aspects of the Lebesgue Integral’?

M500 Mathematics Revision Week-end 2000
The 26th M500 Society Mathematics Revision Week-end will be
held at Aston University, Birmingham over 15 – 17 September 2000.

Tutorial sessions start at 19.30 on the Friday and finish at 17.00 on the
Sunday. On the Saturday night there is a mathematical guest lecture, a
disco, and folk singing. The Week-end is designed to help with revision and
exam preparation, and is open to all OU students. We plan to present most
OU maths courses.

For full details and an application form, send an SAE to Jeremy
Humphries.
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