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Pascal’s pyramid, Pascal’s hyperpyramid and
Pascal’s line
Robin Marks
In a previous paper [M500 175 16] we described Pascal’s pyramid. We now
derive a formula for the number of entries in Pascal’s pyramid at a given
number of steps from the origin. We extend this to dimensions other than
3 and we shall see that this will enable us to calculate the number of ways
to score a total of 6 by throwing up to six dice.

To recall: Let {e, f, g } be a set of 3-dimensional position vectors, no
two collinear. Note that vector addition is commutative; that is, e + f = f
+ e. Start at the origin 0 = (0, 0, 0). This is step 0. At step 1, add each
of the three vectors to 0. At step 2, to each of the vector sums obtained at
step 1, we add each of the three vectors. At step n, to each of the vector
sums obtained at step n − 1, we add each of the three vectors. Pascal’s
pyramid gives the number of ways of choosing a route with p legs in the
direction of e, q legs in the direction of f, and r legs in direction g, that is,

(p+ q + r)!

p! q! r!

routes, from the origin to the position given by the vector sum pe+ qf+ rg.

I now wish to calculate the number of different 3-dimensional positions
reachable after n steps. This is the same as the number of different vector
sums possible containing n vectors, each vector belonging to {e, f, g }. We
start at step 0 at the origin, 0. This is located at a single 3-dimensional
position. At step 1 there are three positions 0 + e, 0 + f and 0 + g, that
is, the positions e, f and g. At step 2 we arrive at one of the six positions

e + e, f + f, g + g, e + f, e + g, f + g.

At step 3 we arrive at one of the ten positions

e + e + e, f + f + f, g + g + g,

e+ e+ f, e+ e+ g, e+ f+ f, e+ f+ g, e+ g+ g, f+ f+ g, f+ g+ g.

Let us, for example, add six vectors to 0 in the order e, g, e, e, f, f.
The vector sum is: e + g + e + e + f + f. The same vector sum would be
arrived at by adding these six vectors in any order, since vector addition is
commutative. Let us, then, arrange the vector sum in alphabetical order.
In this example this gives e + e + e + f + f + g. The question now is, how
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many different alphabetically-sorted vector sums are there at step 6? Well,
there are three different vectors and six addition steps. Imagine moving
from the origin to the positions specified by the vector sum expression, step
by step.

We start at step 0 at the position given by the vector 0, that is, the
origin. We choose to add es first. This is represented by the ? at the top
left in the following table.

Vector
Step e f g

0 ?
1 #
2 #
3 # ?
4 #
5 # ?
6 #

The symbol ? marks the vector chosen to be added next; # marks addition
of a vector to the sum.

We add the first e. In the table we step down one row. We add the
second and third es. In the table we step down two more rows. Since there
are no more es, we add fs. In the table we move right one column. We add
the two fs. In the table we step down two more rows. There are no more
fs. We now only have gs to consider. In the table we move right, reaching
the final column. We add the remaining g. In the table we step down one
row to the final row.

What have we achieved? Well, in the 7× 3 table we started at step 0 at
the top left, moved down a total of 7− 1 = 6 rows and to the right a total
of 3− 1 = 2 columns, and ended up at the bottom right. Any combination
of six steps down and two moves to the right in the table will represent
a vector sum. There are (6 + 2)!/(6! 2!) = 28 such combinations. Hence
the number of different vector sums is 28. Hence there are 28 numbers in
Pascal’s pyramid at step 6.

As a matter of interest we can use the same reasoning to calculate the
number of ways to throw a total score of 6 with up to three dice: in the
table above the three columns now represent the three dice; the number of
# signs in the column represents the score on each die (no # signs in a
column means the die has not been thrown. Imagine selecting one die from
the three at random, throwing it, and if the score is less than 6 throwing
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another, and so on until either a total score of 6 is achieved (success) or all
the three dice have been thrown (failure). To check this we can calculate
the number of ways of throwing a particular combination of numbers as

3!

a! b! c! d! e! f ! g!
,

where a is the number of dice not thrown (score zero), b is the number of
dice showing 1, c is the number of dice showing 2, d is the number of dice
showing 3, . . . .

We can throw a l, a 2 and a 3 in
3!

0! 1! 1! 1! 0! 0! 0!
= 6 ways.

We can throw three 2s in
3!

0! 0! 3! 0! 0! 0! 0!
= 1 way.

We can throw a single 6 in
3!

2! 0! 0! 0! 0! 0! 1!
= 3 ways.

We can throw a 4 and two 1s in
3!

0! 2! 0! 0! 4! 0! 0!
= 3 ways.

We can throw two 3s in
3!

1! 0! 0! 2! 0! 0! 0!
= 3 ways.

We can throw a 4 and a 2 in
3!

1! 0! 1! 0! 1! 0! 0!
= 6 ways.

We can throw a 5 and a 1 in
3!

1! 1! 0! 0! 0! 1! 0!
= 6 ways.

Total: 28 ways, which agrees with our formula
(6 + 2)!

6! 2!
= 28.

Generalized Pascal’s hyperpyramid

Let d be a positive integer. In general we can construct a Pascal’s hyper-
pyramid using a set of d vectors, non-collinear and d-dimensional, {e, f, g,
h, . . . }. After n steps this leads to a table sized (n+1)×d, as shown above.
Moving from the upper left to the lower right in the table involves n steps
down and d − 1 steps right. The number of different vector sums after n
steps is therefore (n+ (d− 1))!/(n! (d− 1)!).

Six-dimensional Pascal’s hyperpyramid

When d = 6 we get the 6-dimensional Pascal’s hyperpyramid. The 6-
dimensionaI Pascal’s hyperpyramid gives the number of ways of choosing a
route with p legs in the direction of e, q legs in the direction of f, r legs in
direction g, s legs in direction h, t legs in direction i, and u legs in the di-
rection of j, that is, (p+ q + r + s+ t+ u)!/(p! q! r! s! t!u!) routes, from the
origin to the position given by the vector sum pe+ qf+ rg+ sh+ ti+ uj.
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After step 6 we have

(n+ (d− 1))!

n! (d− 1)!
=

(6 + (6− 1))!

6! (6− 1)!
=

11!

6! 5!
= 462

different vector sums, and therefore 462 entries in the Pascal’s hyperpyra-
mid. The Pascal’s hyperpyramid entry when, for example, p = 1, q = 1,
r = 1, s = 1, t = 1 and u = 1, is

(p+ q + r + s+ t+ u)!

p! q! r! s! t!u!
=

6!

1! 1! 1! 1! 1! 1!
= 6! = 720.

Another example of a Pascal’s hyperpyramid entry is p = 0, q = 0, r = 6,
s = 0, t = 0 and u = 0:

(p+ q + r + s+ t+ u)!

p! q! r! s! t!u!
=

6!

0! 0! 6! 0! 0! 0!
= 1.

Pascal’s triangle

When d = 2 we get the familiar 2-dimensional Pascal’s triangle. The 2-
dimensional Pascal’s triangle gives the number of ways of choosing a route
with p legs in the direction e and q legs in the direction f, that is, (p +
q)!/(p! q!) routes, from the origin to the position given by the vector sum pe
+ qf. The number of entries after step 6 is (6+(2−1))!/(6! (2− 1)!) = 7. The
entry for, for example, p = 2 and q = 4 is (p+ q)!/(p! q!) = 6!/(2! 4!) = 15.

Pascal’s line

When d = 1 we get what we will call Pascal’s line. The 1-dimensional
Pascal’s line gives the number of ways of choosing a route with p legs in the
direction e; that is, p!/p! routes, from the origin to the position given by the
vector pe. The number of entries after step 6 is (6+(1−1))!/(6! (1− 1)!) = 1.
The entry for, for example, p = 6 is p!/p! = 6!/6! = 1. In fact Pascal’s line
is just a line of equally-spaced 1s.

Ways to throw a total of 6 with up to 6 dice

We are now able to calculate the number of ways to throw a total of 6
with up to six distinguishable dice thrown one at a time, according to the
following rules: Choose one of the six dice. (We could use a seventh die
to choose.) Throw it. If a 6 is thrown we stop. Otherwise continue by
throwing one of the remaining dice. If a total score of 6 is achieved, stop. If
not continue until all six dice are used, or the total score equals or exceeds
6. If a total score of 6 is achieved, make a note of the score on each thrown
die.
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Answer: We can imagine a table similar to the sorted one above con-
taining # signs, but containing 7 rows, including step 0, and 6 columns,
one each for the vectors e, f, g, h, i, j. Each column represents a die. The
number of # signs in a column represents the number of spots shown on
that die. We have d = 6 and n = 6. So the number of ways to throw a total
of 6 with up to 6 dice is

(n+ (d− 1))!

n! (d− 1)!
=

(6 + (6− 1))!

6! (6− 1)!
=

11!

6! 5!
= 462.

Check: To check this we can calculate the number of ways of throwing a
particular combination of numbers as 6!/(a! b! c! d! e! f ! g!), where a is the
number of dice not thrown (score zero), b is the number of dice showing 1,
c is the number of dice showing 2, d is the number of dice showing 3, . . . .

We can throw six 1s in
6!

0! 6! 0! 0! 0! 0! 0!
= 1 way.

We can throw a single 6 in
6!

5! 0! 0! 0! 0! 0! 1!
= 6 ways

(one way with each die).

We can throw two 3s in
6!

4! 0! 0! 2! 0! 0! 0!
= 15 ways.

We can throw three 2s in
6!

3! 0! 3! 0! 0! 0! 0!
= 20 ways.

We can throw a 4 and a 2 in
6!

4! 0! 1! 0! 1! 0! 0!
= 30 ways.

We can throw a 5 and a 1 in
6!

4! 1! 0! 0! 0! 1! 0!
= 30 ways.

We can throw four 1s and a 2 in
6!

1! 4! 1! 0! 0! 0! 0!
= 30 ways.

We can throw a 4 and two 1s in
6!

3! 2! 0! 0! 1! 0! 0!
= 60 ways.

We can throw a three 1s and a 3 in
6!

2! 3! 0! 1! 0! 0! 0!
= 60 ways.

We can throw two 1s and two 2s in
6!

2! 2! 2! 0! 0! 0! 0!
= 90 ways.

We can throw a 1, a 2 and a 3 in
6!

3! 1! 1! 1! 0! 0! 0!
= 120 ways.

Total: 462 ways, which agrees with our formula:
(6 + 5)!

6! 5!
= 462.
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Two theorems with some applications
David L. Brown
Theorem 1 The radius of the circumcircle of an equilateral triangle is twice
the radius of its incircle.

Proof It is clear that the centre of the circumcircle and the centre of the
incircle of ∆ABC are the same point, O, say. Join O to the vertices and
let D,E, F be the points at which radii of the circumcircle meet the sides
of ∆ABC. By construction, ∠ODA = ∠ODB = ∠OEB = ∠OEC =
∠OFC = ∠OFA = 90◦ and AD = DB = BE = EC = CF = FA (because
O is the centre of the circumcircle of ∆ABC). In the right triangle AOD
(for example), angle OAD = 30◦. Therefore sin 30◦ = DO/AO = 1/2.
Therefore AO = 2DO.

30 °

A B

C

D

EF

O
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Theorem 2 The ratio of the product of the sides of a triangle to the sum of
its sides is twice the product of the radii of its incircle and its circumcircle.

Proof Given triangle ABC with sides of length a, b and c with inscribed
circle of radius r (centre I) and circumcircle of radius R (centre O), it is
required to prove that abc/(a + b + c) = 2rR. If the area of ∆ABC is
∆, then ∆ = ab(sinC)/2. From the sine rule, sinC = c/(2R); therefore
∆ = abc/(4R). The sum of the areas of triangles BIC, CIA and AIB is
the area of triangle ABC. Hence

∆ =
ra

2
+
rb

2
+
rc

2
=

r

2
(a+ b+ c).

Therefore

r

2
(a+ b+ c) =

abc

4R
giving

abc

a+ b+ c
= 2rR.

A

aB

b

C

c
R

r

I

O
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Corollary 1 The above result can be expressed as rR =
abc

2(a+ b+ c)
, or,

verbally: The area of the rectangle contained by the radii of the incircle and
circumcircle of a triangle is equal to the ratio of the product of its sides to
twice their sum.

An alternative way of expressing Corollary 1 is: The area of the rectangle
contained by the radii of the incircle and circumcircle of a triangle is equal
to the ratio of the volume of the cuboid formed by the sides of the triangle
to twice the perimeter of the triangle.

Corollary 2 If ABC is an equilateral triangle, then a = b = c = p (say),
r = R/2 and the centres of the circumcircle and inscribed circle are at the
same point (Theorem 1); hence p3/(3p) = R2 giving p2 = 3R2 from which
we can say: The square contained by a side of an equilateral triangle is three
times the square contained by the radius of its circumcircle.

Corollary 3 If triangle ABC is right-angled at C then c = 2R; therefore

abc

a+ b+ c
= 2Rr = cr.

Therefore r =
ab

a+ b+ c
and hence we can say that: The radius of the

incircle of a right-angled triangle is equal to the ratio of the product of the
non-hypotenuse sides to the sum of the three sides.

An alternative way of stating Corollary 3 is: The radius of the incircle
of a right-angled triangle is equal to the ratio of the rectangle contained by
the non-hypotenuse sides to the perimeter.

Corollary 4 From Corollary 3 we know that, for a right-angled triangle

with hypotenuse equal to c, r =
ab

a+ b+ c
. But c = 2R; hence for the

special case where a = b = q (say), r =
q2

2q + 2R
giving q2 = 2r(q + R).

Therefore we can say that: The square of one of the equal sides of a right
isosceles triangle is twice the rectangle contained by radius of the incircle
and the sum of the remaining equal side with the radius of the circumcircle.

Corollary 5 If q is the length of one of the equal sides of a right isosceles
triangle and R is the length of the radius of its circumcircle, then c = 2R.
But c2 = 2q2. Therefore q = R

√
2. Hence it could be stated that: The equal

sides of a right isosceles triangle are
√

2 times the radius of its circumcircle.
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Constructions

1. To construct a line of length n
√

3.
From Corollary 2, p2 = 3R2. There-
fore p = R

√
3, so construct a circle

with radius R = n. From any point
P on the circumference, find A and
B that

PA = PB = n.

Then AB = n
√

3, because it is a side
of the equilateral triangle ABC.

2. To construct a line of length
p/
√

3. From Corollary 2 we have
that

R =
p√
3
.

Hence we have the following
method. Construct an equilateral
triangle with side of length p and
its circumcircle, the radius of which
will be of length p/

√
3, making

AB = BC = CA = p;

therefore R = p/
√

3.

3. To construct a line with length
equal to n

√
2, we apply Corollary 5

as follows. Put n = R. Construct
a circle with radius R and let the
perpendicular bisector of a diame-
ter AB meet the circumference at C.
Then CA (or CB) will be of length
R
√

2, since ∠ACB = 90◦.

A

A

A

B

B

B

C

C

C

P

R

R

R

O

O
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4. To construct a line equal
to n/

√
2. Construct triangle ABC,

right-angled at C and with AC =
CB = n. Find the midpoint, D.
Then AD = DB = n/

√
2 because

the radius of the circumcircle will be
the midpoint of the hypotenuse and,
according to Corollary 5, R = n/

√
2,

where n = p.

Corollary 6 From Corollary 4 we

know that r =
ab

a+ b+ c
. If a = b =

q (say), then c2 = 2q2, so

A B

C

D

R = n

R = n� 2

r =
q2

2q + c
=

q2

2q + q
√

2
=

q

2 +
√

2
.

From this relationship we are able to construct any multiple of the reciprocal
of 2 +

√
2. This relationship can be expressed as q = (2 +

√
2)r; so: The

equal sides of a right isosceles triangle are 2 +
√

2 times the radius of its
incircle.

Problem 177.1 – Eight cubes
Tony Forbes
Eight cubes each have a pair of opposite faces marked with
‘X’ and ‘O’. They are placed in a box in configuration A.
Get them into configuration B. The only legal move is to
roll or slide a cube into the vacant space (leaving a hole
behind it for the next move). No lifting out and putting
back.

Twenty-two moves are sufficient; for example,

O O O

O O

O O O

X X X

X X

X X X

A

B

LURR DLDL UuRD lRdR lRuu DL,

where upper case letters L, R, U, D denote roll a cube to the left, to the
right, up, down respectively and the corresponding lower case letters l, r, u,
d denote the ‘slide’ moves.

Although one can use ‘brute force’ methods to verify that it cannot be
done in less than 22 moves, we are after something more enlightening. Can
you devise a short, human-readable proof that 22 is best possible?



M500 177 Page 11

Solution 175.2 – Reciprocal inequalities
Determine functions f(n) and g(n, s) such that(

a1 +
1

a1

)
+

(
a2 +

1

a2

)
+ · · ·+

(
an +

1

an

)
≥ f(n)

and(
a1 +

1

a1

)s

+

(
a2 +

1

a2

)s

+ · · ·+
(
an +

1

an

)s

≥ g(n, s),

where n and s are positive integers and a1, a2, . . . , an are any
positive numbers such that a1 + a2 + · · ·+ an = 1.

John Bull
In each case the left hand side is a minimum when a1 = a2 = · · · = an. As
there are n variables, and all the variables sum to 1, the expression must
be minimum when a1 = a2 = · · · = an = 1/n, There are n components in
the expression, so the functions must be

f(n) = n

(
1

n
+ n

)
= 1 + n2, g(n, s) = n

(
1

n
+ n

)s

.

Problem 177.2 – Four spheres
Colin Davies
Here is an interesting problem in solid geometry. It is alleged to be ‘An
Aenigma set by women for women’, and is quoted in a book I just read, Dr
Johnson’s London by Liza Picard (Weidenfeld & Nicolson, 2000) as coming
from The Ladies’ Diary or Woman’s Almanac for 1760.

If three spheres of brass are in contact, and their diameters are 8,
9 and 10 inches, and they support a fourth sphere weighing 12 lb,
what quantity of weight does each supporting sphere sustain?

I think there is a lack of data here. Presumably the contacting spheres
are on a flat plane, but I think we need to know either the diameter of the
12 lb sphere, or, assuming the spheres are solid, the density of brass.

‘The Electronic Frontier Foundation is offering a $100,000 award to the first
person to discover a ten million-digit prime number. Entropia are trying to
find the largest known prime number. . . ’—The Times. [Spotted by JRH.]
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Solution 175.5 – abc
Suppose a+ b+ c = ab+ bc+ ca = 0. Prove that

an + bn + cn =

{
3(abc)n/3 if n is a multiple of 3
0 otherwise.

Peter Fletcher
The way to do this problem is to somehow get an equation involving an +
bn + cn on one side and terms involving abc on the other; and hopefully
simplify the terms in abc to either 3(abc)n/3 or 0.

We have

an−1(a+ b+ c) = an + an−1b+ an−1c = 0,

bn−1(a+ b+ c) = abn−1 + bn + bn−1c = 0,

cn−1(a+ b+ c) = acn−1 + bcn−1 + cn = 0.

From these three equations,

an + bn + cc = − (an−1b+ an−1c+ bn−1a+ bn−1c+ cn−1a+ cn−1b).

Next,

an−2(ab+ bc+ ca) = an−1b+ an−2bc+ an−1c = 0,

bn−2(ab+ bc+ ca) = abn−1 + bn−1c+ abn−2c = 0,

cn−2(ab+ bc+ ca) = abcn−2 + bcn−1 + acn−1 = 0.

From these three equations,

−(an−1b+ an−1c+ bn−1a+ bn−1c+ cn−1a+ cn−1b)

= an−2bc+ abn−2c+ abcn−2.

Therefore,
an + bn + cc = an−2bc+ abn−2c+ abcn−2.

This can be factorized to give

an + bn + cc = abc(an−3 + bn−3 + cn−3).

Replacing n by n− 3 and multiplying by abc gives

abc(an−3 + bn−3 + cn−3) = (abc)2(an−6 + bn−6 + cn−6).



M500 177 Page 13

Repeating this k times and adding all these equations so that terms which
appear on both sides cancel out gives

an + bn + cc = (abc)k(an−3k + bn−3k + cn−3k). (1)

If n = 3k, i.e. a multiple of three, so that k = n/3, then

an + bn + cn = (abc)n/3(a0 + b0 + c0) = 3(abc)n/3.

If n is not a multiple of 3, two cases arise. If n = 3k + 1, the second factor
on the right of (1) becomes a+ b+ c = 0. If n = 3k + 2, the second factor
on the right of (1) is a2 + b2 + c2. But a+ b+ c = 0, so that

(a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ bc+ ca) = 0

and, since ab+ bc+ ca = 0, a2 + b2 + c2 = 0.

Solution 175.1 – Nested roots
Prove that√

1 + x

√
1 + (x+ 1)

√
1 + (x+ 2)

√
. . . =

x2 − 1

x2 − 1

x2 − 1

. . .
+ 2

+ 2

+ 2.

John Bull
We have

f(x) = x+ 1 =
√

1 + 2x+ x2 =
√

1 + xf(x+ 1)

=

√
1 + x

√
1 + (x+ 1)f(x+ 2)

=

√
1 + x

√
1 + (x+ 1)

√
1 + (x+ 2)f(x+ 3)

etc., etc. Also

f(x) = x+ 1 =
(x+ 1)(x− 1)

x+ 1
+ 2 =

x2 − 1

f(x)
+ 2

=
x2 − 1

x2 − 1

f(x)
+ 2

+ 2 =
x2 − 1

x2 − 1

x2 − 1

f(x)
+ 2

+ 2

+ 2

etc., etc.
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A new solution to a classic problem
John Bull
The following problem is a classic, having been published in many mathe-
matical puzzle books. An early reference was [1], but an example currently
in print can be found in [2].

20 2020 20

80 80 80

Θ Θ

Figure 1 Figure 2

P
P Q

A

B C

A

B

C D

E

With reference to Figure 1, suppose ∆ABC is isosceles with AB = AC
and ∠BAC = 20◦. And suppose P is on side AB such that AP = BC.
Determine ∠ACP = θ.

The classic solution, as published in [2], is as follows:

Construct Figure 2, using three 80◦ : 80◦ : 20◦ triangles, and let Q be on
AE so that ∠APQ = 60◦. Then ∆APQ is equilateral and PQ = AP = CD.
Congruent triangles give CP = DQ. The quadrilateral PQDC therefore has
opposite sides equal and is a parallelogram. But by the figure’s symmetry,
each of the four angles on the quadrilateral is a right-angle (as can easily
be proved by congruent triangles). Therefore ∠ACP = 90◦ − ∠ACD =
90◦ − 80◦ = 10◦.
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Here is another solution that, as far as I am aware, has never been
published before.

Construct Figure 3, so that ∆SAP is the same shape as ∆ABC and AS
= PS = BA = CA. Angle PAS = 80◦ and ∠BAC = 20◦, so ∠CAS = 60◦.
Therefore ∆ACS is equilateral. Angle ASC = 60◦ and ∠ASP = 20◦, so
∠PSC = 40◦. Also AS = CA = SC = PS, so ∆SPC is isosceles. Hence,
∠CPS = 70◦. From ∆CPA it is now easy to calculate that ∠ACP = 10◦.

20

60

80
70

80
60

20
40

Θ

Figure 3

P S

A

B C

Which solution is ‘best’ is a matter of personal preference. However, the
moral of the story is that just because one particular solution is published
in many books, many times, it doesn’t mean that there isn’t some other
equally neat and appealing solution out there somewhere.
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Problem 177.3 – Mahatma’s triangle
John Bull
There is another [see p. 14] related classic problem known as Mahatma’s
triangle. In this problem, shown in Figure 1, below, there is an isosceles
80◦ : 80◦ : 20◦ triangle as before, but this time with T on AB, and R on
AC, such that ∠BCT = 50◦ and ∠CBR = 60◦. The problem is to find
∠BRT = θ.

The problem can be generalized to that shown in Figure 2, where
∠BAC = 2x, ∠BCT = 2x + 30◦ and ∠CBR = 90◦ − 3x. Again, the
problem is to find ∠BRT .

Full solutions to Mahatma’s triangle can be found in Tim Sole’s The
Ticket to Heaven, and other Superior Puzzles, but there may be ‘better’
solutions than the ones in the book! Maybe M500 readers would like to
offer some.

Figure 1 Figure 2
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B C

T

R

A

B C

T

R

20
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20

60

30

50

2x

Θ

90 - 3x

2x + 30

‘Nottingham City Transport – Driver Recruitment. Excellent re-numeration
package, . . . ’—Advertisement on a Nottingham bus. [Spotted by Martin
Luck.]
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Solution 175.3 – Series squared

Prove that

( ∞∑
k=2

k2 − 2

k!

)2

=

∞∑
k=2

k3 − 5

k!
.

Peter Fletcher
The easiest way to do this problem is to evaluate both sides separately and
show that they equal the same number.

Denote by Θ the differential operator x
d

dx
. For any non-negative integer

n, we have
∞∑
k=0

knxk

k!
= Θnex. (1)

This is proved by induction. First,

∞∑
n=0

k0xk

k!
= ex = Θ0ex,

so (1) is true if n = 0. Suppose (1) holds for n and consider n+ 1. Then

∞∑
n=0

kn+1xk

k!
=

∞∑
n=0

x
d

dx

(
knxk

k!

)
= x

d

dx

( ∞∑
n=0

knxk

k!

)

= x
d

dx
(Θnex) = Θn+1ex,

as required.

We use (1) to solve the problem. The left-hand side before squaring is

∞∑
n=2

k2 − 2

k!
= 3 +

∞∑
n=0

k2 − 2

k!
= 3 +

[
Θ2(ex)− 2ex

]
x=1

= 3 +
[
x2ex + xex − 2ex

]
x=1

= 3

and the right-hand side is

∞∑
n=2

k3 − 5

k!
= 9 +

∞∑
n=0

k3 − 5

k!
= 9 +

[
Θ3(ex)− 5ex

]
x=1

= 9 +
[
x3ex + 3x2ex + xex − 5ex

]
x=1

= 9.

Also solved by John Bull.
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TeX
Bob Margolis
John Hudson’s bit on TeX [M500 175 30] was nice to see, but I’d like to
point out that there is hope for people who do not want to install Linux,
though that is, itself, a worthy ambition.

There is a CD-ROM, ‘TeXLive!’ which will install a complete TeX
system under Windows 9x or NT, as well as under Unix-alikes. There are
other TeX systems available, but that one is probably the best for someone
starting out now.

Perhaps it is worth explaining what TeX is, and is not. TeX itself is
a document compiler, developed by D. E. Knuth. It accepts a source file
which it converts into a generic ‘machine code’ for display devices. (Such
devices include screens, printers and so on.) This generic output file has to
be processed before its contents can be realized on any actual device. The
programmers amongst you will recognize the TeX processing as the ‘compile’
phase of program development, whilst the generic output file corresponds
roughly to an object file. Producing actual visible output is roughly equiv-
alent to the linker–loader phase of programming.

TeX is not a word processor. Indeed, TeX has no real built in editing
facility, it is a command-line program with file input and output, though it
can communicate with the user so that limited interactive source error cor-
rection can be done, though the corrections are not saved to the source file.
It is important to note that there is only one TeX program—the document
compiler. LaTeX is not another program, see later. Before an implemen-
tation can be called TeX, it must correctly process a test input file called
trip.tex. This torture device examines a number of dark corners of the code
so that there is a reasonable chance that the implementation will typeset
documents correctly.

Over the years since a fairly stable release of TeX appeared (in 1983), a
number of development environments have appeared to make working with
TeX easier for those who hate command-line utilities. (Even those who
can only cope with a single mouse button can have TeX.) Lyx and KLyx
(the name depends on which Linux desktop environment you use) are two
excellent examples, but they also exist for Win 9x and NT. This is being
written using one such under NT. The current version of TeX dates from
1989 when, amongst other things, support for languages with large character
sets was added. It is heavily used in the academic community and has a
considerable following in some commercial publishing houses, apparently
more so in continental Europe than in the UK.

Various pundits have been predicting, with great confidence, the immi-
nent death of TeX for some 10 years. It has proved remarkably resilient,
possibly because the death of the printed word is not as close as some
would wish. For high-class typesetting, particularly of technical material,
TeX takes a lot of beating. Moreover, it is free, though copyrighted by
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Knuth.

TeX has a small number of built-in commands; things like \sf \par,
which inserts a paragraph break, and \sf \def, which enables new com-
mands to be invented. Most commands, or macros, are ‘secondary’ ones,
defined using \sf \def. There are a number of macro packages, but the
most widely used one is LaTeX, originally produced by Leslie Lamport.
The current version is still in development, though perfectly usable, by a
team which includes the OU’s Chris Rowley. Many TeX users have only
ever prepared documents using the LaTeX macros. They do make life a
lot easier. The main advantage is that it is possible to completely separate
the design features of a document from the logical structure. The author is
free to concentrate on content and its organization into sections, subsections
and so on, whilst TeXie designers can concentrate on layout, page size, line
lengths and so on.

Not only is TeX a good typesetting/document compiler system, it seems
to be the only one which can handle the typesetting of mathematics really
well. Most of the ‘wysiwyg’ equation editors are totally hopeless in com-
parison.

The entire source of the TeX program is published in TeX – the Program,
by Knuth. It is not object-oriented, though someone is currently completing
a Java implementation which is. The language is, more or less, Pascal, but
anyone who has met at least one procedural language should be able to read
it. It is a large program; the annotated source runs to about 500 pages. All
procedural programming is there: linked lists, lexical analysis, mutually
recursive procedures, searching, sorting and all the rest of the traditional
stuff. There is also a lot about the subtleties of fixed point arithmetic (for
accuracy) and of typesetting itself.

In order to make it possible to port TeX to various machines and oper-
ating systems, the WEB programming system was developed. This provides
a rather more readable method of adapting code than the mess of nested
#if . . . #else . . . #endif conditionals so beloved of the C programming com-
munity. It also encourages the proper description of how the code works,
as you develop it. If curious, Weaving a Program by Sewell (Van Nostrand
Reinhold) is as good an introduction to the system as any, I think.

To get all these goodies, try looking at the TeX archive network site:
www.tex.ac.uk.

‘The obvious mathematical breakthrough would be development of an easy
way to factor large prime numbers.’—Bill Gates, The Road Ahead. [Spotted
by Norma Rosier.]

ADF—We’re divided on this. Factoring primes? Seems trivial. How-
ever, surely an integer N is not factorized until (i) all the factors of N are
found, and (ii) all the factors are proved prime. If N is prime, (ii) can be
difficult. Try ‘factorizing’ 214114 − 3, for example.
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Multiplication
Colin Davies
An article in a recent issue of IEE News describes a fascinating method of
doing multiplication.

A mathematically challenged tribe cannot multiply and divide except
to double and halve, and since they only deal with items like goats and pigs
they ignore all fractions. They proceed with their calculations as shown,
but, being superstitious, they consider even numbers on the left to be evil
and so eliminate them, together with their counterparts in the other column.

A tribesman wanting to purchase 13 goats at £7 each calculates as
follows:

13 7

6 3 (eliminate)
3 28
1 56

91 = 7 + 28 + 56

Amazingly they always get it right.

Tony Forbes writes—This technique, or, rather, the same thing with dou-
bling replaced by squaring and addition replaced by multiplication, is well-
known to that tribe consisting of people who write computer programs for
discovering large primes. The simplest test for probable-primality is to com-
pute 2N (mod N) and see if the answer is 2. If N is big, say N > 1010000,
the task looks impossible but with the square-and-multiply method it is
actually quite fast.

Getting back to the original problem, here is what they are really doing:
Start with Y = 0 and A = 7. Scan the binary digits of 13 right-to-left. If
0, double A; if 1, add A to Y and then double A. Read off the answer at Y
when all the binary digits have been processed.

The corresponding procedure for 2N (mod N) is: Start with Y = 1 and
A = 2. Scan the binary digits of N right-to-left. If 0, square A (mod N); if
1, multiply Y by A (mod N) and then square A (mod N).

I mention all this because there is an interesting variation: Start with
Y = 0. Scan the binary digits of 13 left-to-right. If 0, double Y ; if 1, double
Y and add 7.
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13 = 1 1 0 1 Y = 0
↑ 0× 2 + 7 = 7
↑ 7× 2 + 7 = 21
↑ 21× 2 = 42
↑ 42× 2 + 7 = 91

This has a profound implication. If we assume they work naturally in bi-
nary notation, the tribespeople now have only to master doubling and the
addition of a constant to a number.

The consequences are even more important for primality testing because
multiplication by 2 is so much faster than general multiplication. Here’s how
to compute 2N (mod N):

Start with Y = 1. Scan the binary digits of N left-to-right. If
0, do Y → Y 2 (mod N); if 1, do Y → 2Y 2 (mod N).

If N ≈ 1010000, this involves about 33220 square-mod-N operations and a
number of binary shifts; a few minutes work on a reasonably powerful PC.

Units
Eddie Kent

0.000001 fish = 1 microfiche
0.01 mentals = 1 sentimental
2 monograms = 1 diagram
2 wharves = 1 paradox
3 miles of intravenous surgical tubing at Yale University Hospital

= 1 I.V. League
3.333. . . tridents = 1 decadent
8 nickels = 2 paradigms
10 cards = 1 decacards
10 monologues = 5 dialogues = 1 Decalogue
100 rations = 1 C-ration
500 millinaries = 1 seminary
2000 mockingbirds = two kilomockingbird
2240 pounds of Chinese soup = Won Ton
500000 bicycles per second = 1 MHz
1000000000000 microphones = 1000000 phones = 1 megaphone
1000000000000 Fermat = 1 terra firma
1000000000000000000000 piccolos = 1 gigolo

Any more?
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Letters to the Editors
Big River
Dear Tony,

The ‘solution’ to Jeremy Humphries’s ‘Big River’ problem (M500 175)
might be hidden in the way he poses the question.

Gravity varies between the equator and the poles and therefore, I as-
sume, the pressure head varies.

When hydrologists talk about ‘uphill’ they really mean ‘from a low to
a high total hydraulic head’ which, because the elevation head is usually a
significant factor, fits our conventional view of what we mean by ‘uphill’.

But, if the difference between the elevation heads at St Paul and the
Gulf of Mexico is small relative to the difference between the pressure heads,
as would be the case of a river meandering over long distances in a north-
south direction, ‘downhill’ in terms of the total hydraulic head might involve
‘rising’ to an elevation where the total hydraulic head is lower as a result of
the lower pressure head (and presumably in the case of the Mississippi the
lower velocity head).

Talking about ‘flowing against gravity’ confuses the issue because grav-
ity is not constant and therefore its contribution to the total hydraulic head
varies with latitude.

This may not be the answer to the question and I don’t have the figures
to test this hypothesis but it would be worth exploring before adding another
variable into the equation.

John Hudson

Goldbach again
Goldbach’s conjecture [that every large even integer can be expressed as
the sum of two primes] can be rephrased, but let’s take a look at primes in
general first. The primes do follow a pattern, unique to themselves. There
is no simple mathematical formula that can generate them all; each new
prime has to be calculated individually.

As we run through the natural numbers we sometimes encounter an odd
number k that cannot be factorized using any combination of the primes up
to k/2. For example, after reaching 40 we find that k = 41 is not divisible
by 2, 3, 5, 7, 11, 13, 17, 19 and so 41 becomes the next prime.

It has already been proved that the number of primes is infinite. They
become less frequent as the natural numbers increase with apparently the
occasional occurrence of twin primes, one large pair being 1,000,000,000,061
and 1,000,000,000,063.
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Back to Goldbach.

If we call each even integer 2n then n will include all the natural num-
bers, even, prime and odd composite. For Goldbach’s conjecture to hold,
each composite n ≥ 2 must lie midway between at least one pair of primes.
When n = 2p, p prime, there appear to be a smaller number of pairs of
primes equidistant from n than when n is any other type of composite num-
ber.

As Goldbach’s conjecture depends upon the distribution of primes it
might be easier to aim for a counterexample than a proof. A counterexample
would probably be an enormous number, n = 2p, that did not lie midway
between two primes, and 2n would be an even number that could not be
expressed as the sum of two primes.

I look forward to hearing that the M500 Editorial Board have received
one million dollars from Faber. In the meantime I’ll stick to organic chem-
istry with the Science Faculty.

Barbara Lee

PS. Pascal’s pyramid [M500 175 16] is Pascal’s tetrahedron from
TM361, unit 4, which is useful for calculating trinomial coefficients and
leads to the multinomial theorem discovered by Leibniz.—BL

M500 Special Issue
I was saddened to read that this year’s Special Issue might be the last.

I completed my degree three years ago but did write a number of articles
for the Special Issue over the years. Despite my promise to myself never
to study again, circumstances have engineered themselves so that I am just
coming to the end of the first year of my second degree. This time it’s
humanities rather than maths and science, but I suspect that somewhere
along the line, these topics will reappear in my profile.

This morning when the Special Issue arrived, I was literally starting to
write down my thoughts on A103 for submission for next year’s issue.

I always found these publications of great interest and use—the only
way to assess a course in advance is to read the views of those who have
done it. Whilst not always ‘heeding a warning’, generally I never made a
course choice before considering the views expressed in your publication.

If this were to be lost, then I think it would be a great shame. Whilst I
am an avid user of the Internet, I fear that transferring this to a Web site
will only serve to render its demise complete. There is no substitute for the
written booklet itself falling through the letter box. People tend to forget
to check up-dates, etc., on Web sites.

I appreciate that there seems to be a general lack of interest in providing



Page 24 M500 177

articles and this is a shame. I believe that those of us who get something
out of the OU should in some small way put something back and your
publication enables one to do that.

Two suggestions :

(1) Perhaps contribution of an article of any length should be made a
condition of membership? Probably ‘unenforceable’.

(2) An increase in the membership fee of say £5 per annum refundable
against the following year’s subscription upon submission of an article? Self
regulating—M500 Society does not have to return cash paid (and spent)
but could verify each year upon receipt of subscriptions.

At the very least : Please, in considering this matter, try one more time.
Let’s have Special Issue 2001 and prompt people about needing submissions
in each issue of M500. Then if things are as ‘bleak’ twelve months hence, it
will no doubt be ‘to the Web’ or worse!

Kind regards.

Richard Woolf

OK. It just happens that (apparently—I haven’t seen them) another ten
Special Issue items have mysteriously turned up. Also the un-editing part
of the M500 Committee were pretty chagrined at the unilateral decision the
Editorial Board had sneaked past them, so it looks like 2001 is safe.—Eddie
Kent

The Parrot’s Theorem
I have just read a novel called The Parrot’s Theorem by Denis Guedj (Wei-
denfeld & Nicolson, 2000). Evidently this was a best seller when originally
published in France. I suspect it was a best seller in France for much the
same reason as Hawking’s A Brief History of Time was a best seller here,
though it requires far less thought to understand it.

To my mind it does not have a deep or gripping plot, though there is a
bit of skullduggery with kidnapping and arson involved. In fact the plot is
very weak to my mind, and I had guessed the outcome long before finishing
the book. However, the cast of characters listed in the back covers six sides
of text, and includes well over 150 mathematicians from Thales in 620 BC
to Andrew Wiles now.

If anyone wants an easy read on the history of mathematics, The Par-
rot’s Theorem is quite amusing. And I did learn a few things I did not know
before.

Colin Davies
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Who wants to be another millionaire?
Eddie Kent
Landon T. Clay is a 74-year-old Boston financier. From 1971 to 1997 he
was chairman of the Eaton Vance Corporation, an investment company.
Then in 1999 he set up the Clay Mathematics Institute in Boston. Here
mathematicians are paid to work on unusual problems during their holidays,
or to teach gifted students at summer school. Now, following the lead of
Faber & Faber, who have offered a prize of a million dollars for a proof of
Goldbach’s conjecture (M500 175 33), he has founded the Clay Millennium
Prizes.

Clay went up to Harvard to read English and American Literature, but
dropped out of the introductory mathematics course. ‘I didn’t get very far
before realizing that academic life was not for me. Before coming to Harvard
I was in the Second World War, and when I arrived at college I saw people
a lot younger and smarter than me. I felt very ill prepared.

‘I didn’t make the most of what Harvard had to offer. To me, math
is just a spectator sport. Still, even though mathematics was like Mount
Everest to me, I’m happy to watch other people do the climbing.’

Clay’s prizes are a million dollars each for seven problems that have so
far eluded mathematicians. There is the Riemann hypothesis, which states
that the zeta function has no non-trivial zeros except on the line <z = 1/2.
Of course like many such conjectures this has been checked for millions of
cases, and you might remember that G. H. Hardy once claimed to have
proved it, just before setting off on a sea journey, arguing that God would
not let him die with such a story uncorrected. He had clearly forgotten
what happened to Fermat.

Other problems include P/NP, the computational problem of deciding
if certain types of algorithm can run in polynomial time; the Navier–Stokes
equations in continuum mechanics; and the Yang–Mills equations in particle
physics. Look at www.claymath.org for full details.

The panel choosing the problems includes Sir Andrew Wiles. The chair-
man is Arthur Jaffe, Landon T. Clay Professor of Mathematics and Mathe-
matical Sciences at Harvard. He explained ‘These are all classic math prob-
lems and are regarded as the ones that, if solved, would have the biggest
influence on mathematics.’

In contrast to the Faber offer on Goldbach, there is no time limit for
these prizes. And it is also written into the conditions that if more than one
person can be shown to have produced significant work towards a result, the
prize will be divided. This is to ensure that results continue to be published
as they are found.

Timothy Gowers, Rouse Ball Professor of Mathematics at Cambridge,
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in an interview with The Times, said that ‘these problems are so enormously
important that people are motivated to solve them with or without money.
If someone did succeed they would shoot to worldwide fame anyway. There’s
an undeniable element of ego, of wanting to impress other mathematicians.’

The Fields Medal of the International Mathematical Union is the main
honeypot for mathematicians, since they cannot get the Nobel Prize (for
reasons of a somewhat scandalous nature). It was funded in 1936 by the
will of the Canadian analyst John Charles Fields, and is given every four
years. But there are no millions involved—it is worth just $15000.

Let us give Clay the last word. ‘I feel that math is not recognized,
not appreciated. It’s the queen of the sciences, the key to a fundamental
understanding of the world. It’s pretty clear in America that the government
is reducing its support for pure science. I think that’s a great mistake. I
remember reading about Andrew Wiles having proved Fermat’s last theorem
on the front page of the New York Times and feeling very excited. Giving
this money is a testimonial that people should be rewarded and excited to
labour in this field.’

Solution 175.3 — The first prime
The prime numbers are arranged alphabetically. Which is the
first?

Tony Forbes
By ‘alphabetically’ we intended to mean that the numbers are arranged in
the usual lexicographical order when translated into their standard English
expressions.

One response was 83. Someone else offered both 83 and 811; the same
person also showed great initiative by changing the language to German,
and came up with the simple answer 3 (drei). I was most impressed until I
remembered the German for 8 (acht). Perhaps another language might be
more obliging.

Ralph Hancock suggests 8,000,000,081, eight billion and eighty one.

We are leaving the problem open because there are arguable points.
Does one count the ‘and’? A simple computer sort places ‘eight billion and
eighty one’ before ‘eight billion eight hundred . . . ’ but a human dictionary-
compiler would reverse the order. Punctuation may also have an effect.
And Eddie reminds me that ‘billion’ was once used (in Britain but not in
the USA) to represent 1012 rather than 109.

If it helps, I have a PC program that converts numbers to English. I
wrote it years ago, in response to a request in M500 136 (January 1994) by
Eddie Kent, who asked for an algorithm to ‘convert a numeric value to a
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text string that could be written on a cheque.’ If you are interested, I shall
try and remember to place a copy at www.ltkz.demon.co.uk/adfchq.zip. It
works best on an original IBM 8086 PC, for then it runs so slowly that you
can have a lot of fun watching the substitutions take place.

The main procedure of the program is listed below. It calls various
subroutines, which perform much as you would expect. The only one that
needs any explanation is AddAfter(n, X). This adds the character-string X
just after the nth ‘#’ sign, counting from the right.

Finally, a related question. I would like extend the range of my program.
Is it possible to express arbitrarily large numbers in words?

Does the sequence {‘one’, ‘two’, ‘three’, . . . } extend indefinitely?

Replace "0", " ZERO#"
Replace "1", " ONE#"
Replace "2", " TWO#"
Replace "3", " THREE#"
Replace "4", " FOUR#"
Replace "5", " FIVE#"
Replace "6", " SIX#"
Replace "7", " SEVEN#"
Replace "8", " EIGHT#"
Replace "9", " NINE#"
AddAfter 2, "TY"
AddAfter 3, " HUNDRED AND AND"
AddAfter 4, " THOUSAND"
AddAfter 5, "TY"
AddAfter 6, " HUNDRED AND"
AddAfter 7, " MILLION"
AddAfter 8, "TY"
AddAfter 9, " HUNDRED AND"
AddAfter 10, " BILLION"
AddAfter 11, "TY"
AddAfter 12, " HUNDRED AND"
AddAfter 13, " TRILLION"
...
AddAfter 29, "TY"
AddAfter 30, " HUNDRED AND"
AddAfter 31, " NONILLION"
AddAfter 32, "TY"
AddAfter 33, " HUNDRED AND"
AddAfter 34, " DECILLION"
AddAfter 35, "TY"
AddAfter 36, " HUNDRED AND"
AddAfter 37, " GARBAGE"
Remove "#"
Remove " ZERO HUNDRED AND"
Remove " AND AND ZEROTY ZERO"
Remove " AND ZEROTY ZERO"
Remove " ZEROTY"
Remove " ZERO"
Replace " AND AND", " AND"
Replace "ON NONILLION", "ON"

Replace "ON OCTILLION", "ON"
Replace "ON SEPTILLION", "ON"
Replace "ON SEXTILLION", "ON"
Replace "ON QUINTILLION", "ON"
Replace "ON QUADRILLION", "ON"
Replace "ON TRILLION", "ON"
Replace "ON BILLION", "ON"
Replace "ON MILLION", "ON"
Replace "ON THOUSAND", "ON"
Replace "ONETY", "TEN"
Replace "TWOTY", "TWENTY"
Replace "THREETY", "THIRTY"
Replace "FOURTY", "FORTY"
Replace "FIVETY", "FIFTY"
Replace "EIGHTTY", "EIGHTY"
Replace "TEN ONE", "ELEVEN"
Replace "TEN TWO", "TWELVE"
Replace "TEN THREE", "THIRTEEN"
Replace "TEN FOUR", "FOURTEEN"
Replace "TEN FIVE", "FIFTEEN"
Replace "TEN SIX", "SIXTEEN"
Replace "TEN SEVEN", "SEVENTEEN"
Replace "TEN EIGHT", "EIGHTEEN"
Replace "TEN NINE", "NINETEEN"
AddAtBeginning "#"
Replace "# DECILLION", "#"
Replace "# NONILLION", "#"
Replace "# OCTILLION", "#"
Replace "# SEPTILLION", "#"
Replace "# SEXTILLION", "#"
Replace "# QUINTILLION", "#"
Replace "# QUADRILLION", "#"
Replace "# TRILLION", "#"
Replace "# BILLION", "#"
Replace "# MILLION", "#"
Replace "# THOUSAND", "#"
Replace "# AND", "#"
AddAtEnd "#"
Replace "##", "# ZERO"
Remove "#"
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Problem 177.4 – e in nine digits
Jeremy Humphries
Find the best approximation of the mathematical constant e = 2.7182818. . .
using only the digits 1 through 9 inclusive—once and only once each. Addi-
tion, division, multiplication, subtraction, exponentiation, parentheses and
decimal points—and nothing else—are allowed.

To give you some idea of what to aim at, we know that there is a solution
which is accurate to better than 1039 (sic) decimal places.

What about π?

Problem 177.5 – 3 theta
David L. Brown
Show that

sin 3θ

sin θ
− cos 3θ

cos θ
= 2.

Are there any others? That is, interesting equalities of the form

trigonometric expression involving θ = positive integer

(apart from Pythagoras’s theorem).—ADF

Find the missing terms
Colin Davies
Find the missing terms and give the rule of formation.

3, 127, 379, 499, 6079, ?, ?

3, 29, 53, 61, 251, ?, ?

ADF—Here’s another.

Milly, ?, ?, ?, Dotty

Some time ago, Jeremy heard a news item on R4 that the five piglets cloned
at the PPL Therapeutic Plant, Virginia, have names ‘ranging from Milly to
Dotty’. We are particularly interested in the rule of formation.
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Problem 177.6 – Factorial derivative
Tony Forbes
Prove that if n is a positive integer,[

dn

dxn
(1− xn)

1/n

]
x=0

= − (n− 1)!.

The Science of Secrecy
Once again we welcomed author Simon Singh to our September Week-
end at Aston University, this time to give a talk based on another of his
passionate interests—codes and ciphers. After the lecture, there was a great
demand for his books, and supplies soon ran out.

If you would like to buy a signed copy of Fermat’s Last Theorem, The
Code Book or The Science of Secrecy (which accompanied his recent Channel
4 TV series), you can do so by visiting www.simonsingh.com.

The website also offers translations of Fermat’s Last Theorem and The
Code Book in various languages. Furthermore, 30 per cent of your payment
will go to the charity Sightsavers.

Twenty-five years ago
From M500 28
David Wells—How to see a million things all at once: make up a metre
square of millimetre graph paper.

Bill Shannon—Ship A with a maximum speed of 30 knots is chasing ship
B whose maximum speed is 15 knots. Neither ship has radar. Ship B
enters an extensive fog bank and from then on is invisible to ship A. On
the assumption that ship B changes course and maintains its new direction
unchanged at maximum speed, what plan should ship A follow to guarantee
that ship B will be intercepted.

Thank you all for your contributions to the magazine. We still have a quite
a lot in hand, enough for a good start to 2001, so watch out for a bigger-
than-average M500 in February. The Special Issue, too, is alive and well;
why not use the break to write about your OU courses? Send Special Issue
items to Eddie Kent and articles for the regular M500 to me. Meanwhile,
have a Merry Christmas, and best wishes for the New Year, the true dawn
of the new millennium.—ADF
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