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History of the Calendar
David Singmaster
‘So teach us to number our days’—Psalm 90:12

This is based on extracts from my various chronologies, particularly my Me-
dieval Chronology—From The Greeks To The Renaissance, which includes
much of this material as relating to medieval developments. However, I have
since expanded many of those entries and added a good deal more. I have
done a separate chronology of time [M500 171 1]; the division is basically
that the calendar is concerned with the length of the year and the month
and the arrangement of days into weeks, months and years, while time is
concerned with the length of the day, subdividing it into convenient bits
and measuring these bits. There is some overlap.

The date of Easter is a bit too technical to deal with here and frankly
I find it uninteresting—I will only mention a few points about it.

As with all attempts to summarize ancient history, one finds consid-
erable variance between sources as to dates, origins, even spelling. I have
tried to pick the most authoritative statements, but the more one reads,
the more divergences one finds. For example, two recent books disagree on
what Dionysius Exiguus says about the birth year of Christ. Comments
and amendments are always welcome.

Notes

1 year = 365.242216 or 365.242197 or 365.24219870 or 365.2422166 days;
or 365 days 5 hr 48 min 46 sec = 365.2421990741 days = 31,556,926 sec;
or 365.242199 days (according to the Astronomer Royal, c.1950);
or 365.242195 days (according to NPL, c.1998);
or 365.24219 days (according to the exhibition on Time at Greenwich,
2000).

The year is slowing down by about 6× 10−8 day/yr = 0.005184 sec/yr.

The length of the year depends slightly on the demarcation point and
on the position of the equinoxes, which go through a 21,000 year period.
The average of the lengths is the tropical year and is what is given above.

1 lunar month (synodic) = 29.530598 days = 29 days 12 hr 44 min 3.67 sec;
or 29 days 12 hr 44 min = 29.5305555. . . days;
or 29.530588 days = 29 days 12 hr 44 min 2.8 sec;
or 29.530588715 days = 29 days 12 hr 44 min 2.864976 sec.

1 year = 12.368267 lunar months.

These values are increasing by one or two parts per million each century
due to tidal friction slowing down the earth.

The Saros is essentially the period of the precession of the plane of the
moon’s orbit with respect to the earth’s orbital plane. It gives the basic
period between eclipses. It is almost exactly 223 lunar months, making
6585.323 days or about 18 years 11 days.
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The year has started at different times

1 January. Later Romans. Normans. Medieval Germany and Spain.
Christians after 1582.

13 January. Orthodox churches who did not adopt the Gregorian
calendar.

The first new moon after the sun enters Aquarius or the second
new moon after the winter solstice. China.

1 February. Pre-Christian Irish.

1 March. Early Romans (?—see winter solstice). Medieval Venice.

21 March, the vernal equinox. Zoroastrians and Parsees—but cf.
632. Baha’is. 1920s Persia.

25 March. (The Feast of the Annunciation (or Incarnation)). Some
medieval Christians, following Dionysius Exiguus, but Florentine Style
started on 25 March of the year, while Pisan Style started on 25 March
of the previous year. Cf. late 10C. Britain until 1752 (the English quarter-
days are still based on this: 25 March, Lady Day; 24 June, Midsummer; 29
September, Michaelmas; 25 December, Christmas—with quarters of length
90, 91, 97, 87 days).

Easter. France, Germany & the Netherlands from 9C. to c.1582.

1 April. Christian Europe before 1564–?.

12 April. Hindus.

The summer solstice. Some Zoroastrians and some modern Parsees.
Russia (in 1500–1725). Medieval Christians.

1 July. The Greek Olympic year.

The heliacal rising of Sirius = the flood of the Nile, in July (or late
June). Egypt.

11 August (Feast of St Tiburce). Medieval Denmark.

1 September. Ancient Macedonians.

1, 24 or 29 September. Bede (675–735).

1 Tishri. Jews. (This is always 163 days after Passover.)

The autumnal equinox. French revolutionary calendar. Some mod-
ern Parsees.

New moon around October/November. Hindus, who call this
Diwali, the Festival of Light.

The winter solstice. Early Romans (? see 1 March).

25 December. Anglo-Saxons.
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Undated information

Most oriental cultures have a cycle of the same twelve animals: mouse (or
rat); ox; tiger (or panther); hare; dragon (or crocodile); snake; horse; sheep
(or goat); monkey; chicken; dog; pig (or boar). These are used to denote
a cycle of twelve years, the twelve months, the twelve double hours of the
day. It is claimed that this cycle originated in 1C. Egypt.

The Chinese calendar was lunar with intercalary months to keep in ap-
proximate synchronization with the seasons. Two months were added every
five years, or better, 7 months in 19 years (the Metonic cycle). The method
was simple—if the vernal equinox did not occur in the second month, then
the second month was repeated. New Year was the first new moon after the
sun enters Aquarius (or the second new moon after the winter solstice). The
year had 24 named half-months in China and in early Japan. The months
had 29 or 30 days, but in irregular order. The years are named by two cy-
cles of 10 and 12 years, giving an overall cycle of 60 years, claimed to have
started in −2637. The 12 year astrological cycle is based on the 12 year
period of Jupiter. There was a week of seven days, grouped in four-week
cycles.

Watkins says that the 60 year cycle first appears in the Han and each
year had two characters—one from the ten (or Heaven) stems, that is, the
five elements, each counted twice, the other from the series of twelve (or
Earth) twigs (ti-chih), each of which has an animal name, from the cycle of
twelve animals given above.

The Japanese had several ways of counting years. One was by eras—
an era could be proclaimed by the Emperor for almost any reason, such as
retirement or marriage. They also counted more straightforwardly by years
within the reign of the Emperor, with an interrupted reign extended to the
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following New Year to avoid partial years. They also had a 60-year cycle
based on the zodiac (or list of animal names) and their five elements (earth,
fire, water, wood, metal—though each of these had two forms: natural and
processed). Their year basically had 12 months, but the Emperor could add
days to some months. To correct the year to the lunar year, an intercalary
month was added every third year, but its length had to be adjusted to
compensate for the extra days already added by the Emperor. Watkins
says the Japanese adopted the Chinese calendar in 604 and used it until
Japan adopted the Gregorian calendar in 1873.

The Aztecs had a 260 day religious cycle which overlapped with a year
of 18 20-day months plus five extra unlucky days in a 52-year cycle. The
Mayans also used this 52 year cycle.

The Incas used a calendar of 12 lunar months with intercalations based
on observing a gnomon. They had weeks, but the length may have been
seven, nine or ten days.

The Baha’is have a year of 19 months of 19 days each.

The History

−20000. Evidence of counting; 55 marks on a radius bone of a wolf
found in Moravia—possibly related to two months.

−10000. Grotte du Tai bone with over 1000 notches showing months
with indications of solar year events.

−9000. Ishango bone, with grouped notches. (Recently redated to
−25000 / −20000 and thought to be a 6 month lunar calendar.)

−4214 (or −4236 or −4241). Conjectural start of the Egyptian
calendar—see c.−3000.

−4004. At ‘the entrance of the night preceding’ Sunday 23 October, i.e.
about 18:00 on 22 October: First day of creation of the world, according to
James Ussher, Archbishop of Armagh, in 1650. (The relevant text is quoted
in Robert L. Weber; Science with a Smile; Institute of Physics, Bristol 1992,
pp 430–431. This says it appeared in Ussher’s Annals of the World, vol. ix,
in 1658 and the dates were incorporated into an authorized version of the
Bible in 1701. John Lightfoot, Vice-Chancellor of Cambridge University,
stated that the world began on 23 October, at nine o’clock in the morning.)

−4000. The Masons adopted this as the beginning of their calendar,
claiming it was the beginning of Egyptian culture. However, Freemasonry
is a 17C. development and all its previous history is modern mythology.

−3761. 7 October: Date of creation used as the starting point of the
Jewish calendar. It is basically lunar with 12 months, alternating 29 and
30 days. But it has leap years of 13 months of 30 days to try to keep
the calendar in phase with the seasons. These occur 7 times in every 19
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years—giving a Metonic cycle. It basically derives from the Babylonian
calendar; even the month names are Babylonian and hence derived from
the Sumerians—cf. −5C. Only four of the earlier month names survive in
the Old Testament. See c.342 for the definition of the current Jewish system.
The date of −3761 is a bit dubious due to major changes made in translating
the Hebrew scriptures into Greek in −3C.—the Hebrew dates the call of
Abraham as year of the world 2083 while the translation gives year 3549!
However, the Old Testament makes no mention of the extra months and
it is conjectured that they were simply added whenever the crops would
clearly not be ripe in time for the First-Fruits festival. The Talmud forbids
the study of the heavenly bodies as this might lead to star worship and
divination, and the astronomy in the Old Testament is singularly little and
vague.

−3101. Beginning of the earliest Hindu calendar era, the Kali-Yuga.

c.−3000? The Egyptian official calendar, legendarily due to Thoth,
had 365 days with 12 months of 30 days or 36 decades of 10 days plus 5
days of holidays (epagomenal days). This caused it to cycle through the
seasons every 1461 (or 1460) years (the Sothic cycle). A remark by the
Hellenistic philosopher Censorinus in 238 that the calendar was in phase
with the seasons (the heliacal rising of Sirius) in 139 has led to conjectures
that the calendar started in −4214 (or −4241 or −4236), but this is too
early to be reasonable. Also, the Egyptians recognized the discrepancy and
had inserted intercalary days, but at rather random times. They had three
seasons of four months: sowing, growing and harvesting, but the months
seem to have just been called first, second, . . . , until c.−6C. Their year
started at the autumnal equinox, c.22 September. The Coptic (cf. 284),
Abyssinian and Armenian calendars retain this general structure, which
was also used by the Persians.

−2397. Traditional beginning of Chinese chronology.

c.−2000. Zodiac developed in Babylonia in order to keep track of the
seasons.

−776. First Olympiad, used as the beginning of the Greek calendar
developed by Eratosthenes, c.−240. The Athenian Festival Calendar had
months of alternately 29 and 30 days, with occasional intercalary months,
but this was not done systematically and the months were often out of phase
with the seasons. The year started on 1 July.

−752. Legendary date of foundation of Rome and beginning of the
Roman calendar, legendarily established by Romulus. However, Roman
scholars already disagreed over this date, variously putting it at −751 or
−754, and I have also seen −752 and −753 and even −735 (probably a
misprint for−753). Consequently numerical years were never widely used by
the Romans. The calendar had a year of only 304 days in ten months, based
on the growing season, with March as the first month. The rest of the days
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were not counted—or else the months drifted through the year? Romulus’s
successor, the semi-legendary King Numa Pompilius (c.−650 or c.−700 or
reigned −716/−673) added January at the beginning and February at the
end (or both at the beginning or both at the end—the last leaves the year
beginning in the spring?), extending the year to 354 days with months
alternating between 30 and 29 days. An extra day was added, because
odd numbers were luckier, giving a year of 355 days, compared to 12 lunar
months, which is 354.37 days. (To avoid an even number of days in a month,
four 30-day months were given an extra day, while December and February
were reduced to 29 and 28 days—however, it’s not clear when this was done
and the Romans tended to fiddle the calendar.) To correct for the obvious
inaccuracy, Numa decreed an intercalary month of Mercedonius to be added
between 23 & 24 February of every third year (or an intercalary month of
22 days every second year or of alternately 22 and 23 days every second
year; another source says it was 27 or 28 days every other year, but then
the last five days of February were dropped—sometimes the extra month
was omitted when things got out of phase), making a year of 377 or 378
days. The last of the methods gives 1465 days in four years, making a year
of 366.25 days, which was later recognized as too long and supposed to be
corrected every 24 years. As can be seen, there is considerable uncertainty—
one source says no one really knows how many days were in this month. Just
to confuse matters, the name Mercedonius only occurs in Plutarch’s Lives,
which were written in Greek—the Romans apparently never had a definite
name for it beyond ‘mensis intercalaris’. In −452 or −153, February was
shifted from 12th to 2nd month, so the beginning of the year was 1 January.
The intercalations were done so poorly that the calendar was out by 117
days in −190 and 75 days in −168. Apparently Roman officials often added
months in order to extend their time in office. Caesar reformed the calendar
in −46 (q.v.).

−669/−630. Ashurbanipal (= Assurbanipal, also known as Sardana-
palus). Dominates Babylon and Elam. He was a scholar and created a
library at Ninevah, which was found in the 1840s. Reformed the calendar,
introducing rest days on the 7, 14, 19, 21, and 28 of each month.

−613. 6 August: The Mayan calendar might begin on this date, but
the earliest date found so far is −98. They have 12 months, alternating
between 29 and 30 days. They have a 52-year cycle, like the Aztecs, cf.
Undated information, p. 4.

−594. Solon of Athens establishes a calendar with months alternating
between 29 and 30 days.

c.−624/c.−548. Thales of Miletus, first mathematician known by
name, began the study of astronomy. Said to have brought knowledge
of the 365-day year from Egypt to Greece. He is credited with predicting
the eclipse of 23 (or 28) May −585. Herodotus tells of this eclipse while
describing a battle of the Lydians and Medes.
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c.−543. Death of Buddha. Beginning of Buddhist calendar.

−587/−538. Babylonian Captivity of the Jews. The Jews essen-
tially adopt the Babylonian calendar—only four of the earlier month names
are preserved in the Old Testament. The Babylonian months are: Nisa
(or Abib), Iyyai (or Zif), Sivan, Tammuz, Ab, Ellul, Tisri (or Ethanin),
Markeshvan (or Bul), Chiseleu, Tebeth, Shebal, Adar. Two months could
have extra days to keep the months in phase with the moon. When nec-
essary to keep in phase with the sun, an extra month of We-Adar was in-
tercalated, but the process was a secret to the Sanhedrin or Great Council
in Jerusalem—cf. 330/365—though the method was essentially the Metonic
cycle adopted in Babylonia in c.−383. Another source says the Jewish cal-
endar was not established until c.342, q.v. The Jews use Ashurbanipal’s
seven-day week (cf. −669/−630) but the Jewish day starts at sunset while
the Babylonian day starts at dawn. (Others think the Jewish and Baby-
lonian seven-day weeks were independent.) The Jewish religious and civil
years start on different days giving two new year’s days! The more common
New Year’s Day is 1 Tisri (Tishri).

−6C. Cleostratus of Tenedos develops a cycle of 2922 days in 99 months
in eight years, giving 29.51515 days per lunar month and 365.25 days per
year. This was a regular intercalation of three 30-day months every eight
354-day years, a period called an Octæteris. Based on a similar Babylonian
cycle.

−527. Death of Vardhamana, founder of the Jainists. Beginning of
Jain calendar.

c.−500. Nabu-rimanu or Naburianos determines year as 365 days 6
hr 15 min 41 sec = 365.26089 days. This seems to be the first careful
determination of the length of the year. The Saros is determined as 223
lunar months, making 65851/3 days.

c.−480. The Babylonian calendar was lunar, with irregular intercalary
months. About this time, it began to be studied systematically and the
Metonic cycle is known by −383.

Mid −5C. Greeks determine the year is 365+ days long.

−432. Meton (and Euctemon and Phaeinus) discover the 19-year cycle
of 235 months of 6940 days. His year is 3651/4 + 1/76 days = 365 days 6 hr
19 min = 365.26319 days. This has a regular intercalation of seven months
(of 29 or 30 days) in 19 years. Nineteen solar years are 6939.61 days and 235
lunar months are 6939.69 days. This is the basis of the Greek astronomical
calendar which started on 27 June −432 (supposed to be a summer solstice),
but doesn’t seem to have been used for any ordinary purposes. In the −4C.,
Callippus made a correction by going to a 76-year cycle, but Conway and
Guy show that one does not get a better approximation until a 334 year
cycle of 4131 months.
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−423. Aristophanes’ The Clouds has the moon complaining that the
days do not conform to her phases.

−383. Cidenas (= Kidinnu), in Babylon, finds or uses Meton’s cycle (see
−432) of 235 months in 19 years and reforms the calendar. This calendar is
adopted by the Jews and is still used by them—but cf. −587/−538. Cidenas
may have observed the precession of the equinoxes.

c.−390/c.−340. Eudoxus of Cnidos (perhaps c.−408/c.−355). Said
to be the first to apply mathematics to astronomy and the first Greek to
build an observatory, at Cnidos. Said to have brought knowledge of the
3651/4-day year from Egypt to Greece.

−4C. Callippus adjusts the Metonic cycle (see −432) by omitting the
last day of every fourth cycle, giving 27759 days in 76 years, making the
year equal to 3651/4 days.

c.−304. Cneius Flavius works out the Roman calendar rules and pub-
lishes them, breaking the secrecy of the College of Pontiffs in Rome.

c.−287/−212. Archimedes. He is said to have built a celestial model
showing movements of the planets, i.e. an orrery, and to have made a clock
driven by a weight rather than by water.

c.−275/−194. Eratosthenes: director of the library at Alexandria from
c.−245, measures the earth. He gets a circumference of 28,727 miles. He sug-
gests the calendar adopted by Julius Caesar in−46. He also initiates the first
classical calendar with years numbered, based on the four-yearly Olympiads
which began in −776, denoted the first year of the first Olympiad. This sys-
tem persisted well into Byzantine times.

−238. Ptolemy III Euergetes decrees leap years to be included in the
calendar. This was carved as the trilingual Decree of Canopus. This was
generally ignored.

c.−180/c.−125. Hipparchus. He modifies Callippus’ year by again
multiplying by 4 and dropping a day, getting 111035 days in 304 years,
giving a year of 365.24671 = 36575/304 days. (Other sources say 365.247222
days (or 365.246667 = 36574/300 days)). He introduces hours of equal length
in the day and the night, but these are only used in scientific work.

−159. First waterclock in Rome.

−153. From this time, Roman years start on 1 January, while Greek
years continue to start in midsummer. (This may have begun earlier, pos-
sibly −452, cf. −752.)

−104. Chinese calendar is reformed by Lo Hsia Hung.

c.−80. Antikythera mechanism, a Greek calendrical computer, with
many gear wheels.

−57. 23 February: Beginning of the Vikrama calendar or Samvat (or
Samwat) era, established by Vikramaditra, King of Ujjain—however, he
seems to be mythical. (−56?)
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−46. Julius Caesar, advised by Sosigenes of Alexandria, based on Er-
atosthenes’ suggestion or perhaps based on Ptolemy III Euergetes, reforms
the calendar to a year of 365.25 days (off by 11 min 14 sec per year). The
year −46 (= Roman year 708) has 445 days (another source says 460 days)
and is known as the ‘last year of confusion’. This was done by adding 23
days to February (i.e. intercalating ‘Mercedonius’) and two extra months
(Undecimber & Duodecimber, having 33 and 34 days) between November
and December. (The confusion was partly due to Caesar—he had been
Pontifex Maximus, and hence in charge of the calendar, since −52 and he
had only inserted one intercalary month, which should have been done ev-
ery two years.) The vernal equinox is intended to be on 25 March. The
beginning of the year is moved from 1 March to 1 January (or confirmed at
1 January). March, April, May, June are renamed to the Latin forms from
which the English words are derived (other sources say these names go back
to Romulus or Numa, −8C.?). Eight months are lengthened and one short-
ened to shift from the 355-day lunar calendar to the 365-day solar calendar.
Basically the odd months have 31 days and the even months have 30 days,
but February has 29 days in normal years and 30 days in leap years. Leap
year day is between 25 & 26 February—so there were two 25ths. Since the
25th was sexto calendas Martias (the sixth day before 1 March), a leap year
was known as a bissextile year. However, other sources say the repeated
day was 23 February or 24 February, which was the terminalia or end of the
Roman year. Some sources say Caesar lengthened Quintilius and named it
for himself, but Quintilius already had 31 days and was later named Julius
by the Senate in −45 (or −46), or after his death in −44.

The priests misinterpreted the rules for leap years—because they
counted to four inclusively and hence inserted leap years every third year!
This was sorted out by Augustus who found that −8 started three days late.
He cancelled the next three leap years, so the next leap year was in +8, so
the Julian system ran consistently from +5. (These dates are confused—I
think I forgot to allow for the absence of year 0 and −8 should be −9 or
+8 should be +9?) He may or may not have adjusted the lengths of some
months. Whoever did it, a day was removed from February to lengthen
August, so the bissextile day became the 24th of February.

The seven-day week was taken over from the Jews in the 4C., q.v. A
source says that an eight-day week, called a nundinum (which means nine
days, undoubtedly due to counting inclusively), was used before then, with
days called A, B, . . . , H. When the week was changed to 7 days, the letters A,
B, . . . , G were used and the letter of the first Sunday became the dominical
letter of the year as used in calculating the date of Easter. In order for this
calculation to work in a leap year after the shortening of February, 24 and 25
February had to be counted as one day. Another source says the weeks had
alternated between 7 and 8 days. This continued until the middle ages—cf.
1236. From about 1300 until 1752, the beginning of the year had shifted to
25 March—cf. 298, 552.
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−44. Death of Julius Caesar.

−8. Augustus observes that this year starts 3 days late and cancels
the next three leap years. See −46, +8. At some time Augustus changed
the name of Sextilius to Augustus—the motion of the Senate is preserved.
Further, a day is added to Augustus by changing the number of days in
later months and stealing a day from February.

0. This year does not exist! See 552.

+1. Date of the birth of Christ according to Dionysius Exiguus in 552.
Unfortunately this does not agree with the dates of the death of Herod in
−4 and the census of Quirinus in +6. General consensus is that Christ was
born about the year −6.

Duncan Steel [The Y2K bug in all our calendars; The Guardian Science
(23 September 1999) S2–S3] says Dionysius was more concerned with the
year of the Annunciation, which he took to be on the Spring Equinox in 1
BC (but most sources say 1 AD?), which he dated as 25 March (Lady Day
or the Feast of the Annunciation). Taking a round nine months pregnancy,
Christ would be born on 25 December, 1 BC. The apparent contradiction
is due to orthodox Jewish belief that a boy’s life does not begin at birth,
but from circumcision, which is traditionally on its 8th day of life. For
Christ, this would be on 1 January 1 AD, and 1 January is the Feast of
the Circumcision in the liturgical calendar. However, this led to two ways
of counting years—from 25 March, called stilo Annunciationis, and from 1
January, called stilo circumcisionis.

5. First correct Julian year; cf. −46, −8, +8.

8. Leap years restarted; cf. −46, −8, +5.

c.8? Lin Hsin (= Liu Hsin?), Imperial Librarian, writes on the calendar.
He does not know of the precession of the equinoxes and introduces a huge
period of 23,639,040 years.

14. Death of Augustus.

33. 3 April: Date of the Crucifixion; the Bible refers to the moon
turning blood-red, which is a sign of a full eclipse of the moon. This can be
dated.

78. 3 March: Beginning of the Saka calendar or Salivahana (or Shali-
waham) era, used for most later calendrical dates.

284. 24 August: beginning of the ‘Diocletian era’, the common era for
reckoning for the next few centuries.

284. 29 August: beginning of Coptic calendar, using the Egyptian 360
+ 5 day year.
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298. Diocletian orders a census to be taken every 15 years and a 15-
year ‘cycle of indiction’ becomes used for various fiscal and legal purposes,
usually starting on 1 January. The year of indiction is thus ≡ year + 3
(mod 15), with 0 being the last year of a cycle; cf. 1582.

312. Constantine embraces Christianity and wins the Emperorship.

313. Edict of Milan tolerates Christianity in the Empire.

Early 4C. Seven-day week introduced, officially under Theodosius.
Watkins, says this was adopted by the Council of Nicaea in 325. (This
is based on the first chapter of Genesis, which was rewritten after the Baby-
lonian Captivity in order to justify the Jewish seven-day week.) The Roman
eight-day week was used before this time.

324. Constantinople founded. Constantine makes Christianity the state
religion and decrees the Christian sabbath to be Sunday instead of the
former Saturday which had been used due to its earlier Jewish use.

325. Council of Nicaea decrees that the Vernal Equinox should fall on
21 March and that Easter should be the first Sunday after the full moon
following the Vernal Equinox (assumed to be 21 March). In the Book of
Common Prayer, we find: ‘Easter-Day is always the First Sunday after
the Full Moon which happens upon, or next after the Twenty-first Day of
March; and if the Full Moon happens upon a Sunday, Easter-Day is the
Sunday after.’ The second clause is to prevent Easter from actually falling
upon Passover. See 330/365. The Bishop of Alexandria was commissioned
to announce the date each year, but due to the slowness of communication,
it was essential to provide a formula or tables so each community could do
the calculation and get the same date. However the process started with
an 8-year cycle (based on Cleostratus (−6C)?), amended to an Alexandrine
cycle of 19 years (obviously based on Meton), then a Roman cycle of 84
years and finally a Victorian cycle of 532 years—cf. 457.

Watkins says the seven-day week was adopted by the Council.

336. A calendar of holy days first lists 25 December as birthday of
Christ.

c.342. Under the Jewish patriarch Hillel II (Patriarch 320–365), the
Jewish calendar is fixed on the 19-year Metonic cycle with 12 years of 354
days and seven ‘embolismic’ years with an extra month in years 3, 6, 8, 11,
14, 17 and 19 of the cycle.

330/365. The date of Easter is of great interest and the Sanhedrin are
forced to reveal the rules for intercalary months in the Jewish calendar—cf.
−587/−538. Being basically lunar, it has 5 months of 30 days, 5 months of
29 days and two months which can vary between 29 and 30 days, giving a
year of 353, 354 or 355 days. An intercalary month of 30 days was added
7 times in 19 years—in years 3, 6, 8, 11, 14, 17 and 19 of the cycle—but
these also have two variable months, so they can have 383, 384 or 385 days.
Passover was 14 Nisan and Christ was crucified on a Passover which was
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a Friday. This leads to a basic division—the Quarto-decimans held that
the Crucifixion must be commemorated on Passover, the 14th of the lunar
month at the full moon, while the majority wanted it to be on a Friday.
This was one of the major topics considered at the Council of Nicaea in
325.

440. A source says this was the first year that Christmas was celebrated
on 25 December.

457. Victorius develops his ‘Victorian’ cycle of 532 years for the date
of Easter and it is promulgated by the Pope. However, the Irish and British
Churches continue with the previous Roman cycle of 84 years—cf. 664, 710,
768.

552. (or 525 or 532 or c.531?) Dionysius Exiguus suggests the Chris-
tian Era, i.e. the division between BC & AD, but omits a year 0 and de-
termines or adopts the birth of Christ as 25 December 1 AD, with the
Annunciation and Incarnation on 25 March 1 AD, which would be the first
day of the Christian Era. (One source claims these were in 1 BC.) Gib-
bon says the usage does not become common until the 10C.—see also 748,
635/735. The terms BC and AD (see 1219) are much later. The Spanish
had a Christian era starting in +38—this was abolished by the Council of
Tarragona in 1180, but continued in Portugal until the early 15C. The Greek
world adopted the Christian Era in the 15C. Dionysius starts his years on
25 March, but, it wasn’t entirely clear which year started on this day and
there were two later styles. The Florentine Style had the year starting on
25 March of the year, but Pisan Style had the year starting on 25 March of
the previous year; cf. +1 and 675–735.

The lack of the year 0 often leads to confusion—in 1930, the 2000th
birthday of Virgil was celebrated a year early!

552. Tuesday, 9 July: beginning of the Armenian Era.

604. Japanese adopt Chinese calendar, called Genk-reki. A Buddhist
bronze, Kwanroka, had brought Chinese calendrical texts to Japan in 602
and Yakoshiso Tamafuru had studied them and drew up the new calendar.
It was modified in 673, 856 and 861, then continued until the Gregorian
calendar was adopted in 1873.

622. Prior to Mohammed (or Umar I?), the Arabic calendar has 12
months, alternately of 29 and 30 days with an intercalary month inserted
when necessary, approximately every third year; cf. 622 and 640, below.

622. 15 July: Mohammed’s Hegira from Medina. The Moslem calendar
dates from 16 July of this year, the first moon after the Hegira, which was
a Friday, hence the Moslem holy Day is on Friday. This calendar was
established by Umar I in 640, q.v. It is lunar with 12 months, alternately of
30 and 29 days, except that the last month has an extra ‘intercalary’ day in
11 years out of 30—cf. 622 above. So the year is 354.36666 days long and
this gives 10631 days in 360 lunar months, or 29.53055556 days to the lunar
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month, compared with 10631.012 (or 10631.015) days, corresponding to a
lunar month of 29.530589 (or 29.530597) days, which is an agreement to one
day per 2400 years or about one part in a million. The intercalary years
are years 2, 5, 7, 10, 13, 16, 18, 21, 24, 26, 29 of the 30 year cycle. The
Moslem months are: Muharram, Saphar, Rabia I, Rabia II, Jomada (or
Jamada) I, Jomada II, Rajab, Sha’ban (or Shaaban), Ramadan, Shawall
(or Shawwal), Dulka’da (or Dulkaada), Dulheggia. [Martin Stern, Dates
for Ramadan, Mathematics Review 1:2 (November 1990), 18–20. He gives
algorithms for finding the Gregorian date of a Moslem date, etc. See also
Watkins.] Leap year is called Kabishah. However, for agricultural purposes,
a solar calendar was often used, for example, as devised by Omar Khayyam
in 1079, q.v. Modern Moslems also use the Gregorian calendar, subtracting
622 from the year AD to produce the year AH solar. Thus 1976 AD was
1354 AH solar (but 1396 AH lunar). The solar months have different names.

632. 16 June: The last Sassanian king, Yazdigerd (or Yazdagird), starts
a new calendar using 365 days to the year. Although the Sassanians soon
collapsed, the ‘Persian years’ remained in some use in Islamic and Byzan-
tine astronomy. This is the beginning of the Parsee or Zoroastrian calendar.
This has twelve 30-day months with five extra days. The ancient Persians
intercalated a month every 120 years. The Parsees, who are the Zoroastri-
ans who fled Persia when it collapsed, omitted the intercalation, while the
Zoroastrians who remained in Persia (later called Iranis) remembered to do
it, but only once! When the two groups came together again, there was a
bitter controversy over whether the year started in September or August
which was only resolved when it was found that both were wrong and it
should start on the Vernal equinox.

640. Caliph Umar I (Caliph in 634–644) interprets Mohammed’s
phrase: ‘The number of months in the sight of God is 12’ as requiring a
year of 12 lunar months, so the intercalary month is suppressed—cf. 622.
He establishes the Moslem calendar, starting it from the first moon after
the Hegira. Also the Koran IV:37 says: ‘Postponement (of a sacred month)
[meaning intercalation] is only an excess of disbelief whereby those who dis-
believe are misled . . . .’ The Arabic month names are derived from ancient
Syriac names. Persia uses a Jalali calendar (cf. c.1048/1131?) with month
names from Mazdaean angelology. Afghanistan uses the Persian calendar
with Zodiacal month names.

664. Synod of Whitby adopts Victorian cycle for Easter, though Ireland
and Wales remain attached to the older Roman cycle; cf. 457, 710, 768.

675–735. Venerable Bede (now St Bede) points out the error in the
Julian Calendar and suggests adding three days per 400 years. He describes
dating using the Christian era of Dionysius, but Gibbon says it did not
become popular until the 10C. Steel (cf. +1) says he started his years in
September, leading to later confusion—cf. late 10C. Bede variously used 1,
24 and 29 September corresponding to a tax cycle, the autumnal equinox
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and Michaelmas. He expresses BC dates as ‘ante incarnationem Domini
Nostri’, apparently the first usage of the concept.

710. Naitan, King of the Picts, adopts the Victorian cycle for Easter.
Bede describes this and is believed to have written the letter to Naitan
which gave the instructions for the Victorian cycle; cf. 664.

748. Earliest extant document dated by the Christian Era of Dionysius.

768. Welsh church adopts Victorian cycle for Easter; cf. 457, 664.

9C. France, Germany and Netherlands begin using Easter as New Year’s
Day. This leads to the year having 11, 12 or 13 months, with some years
having repeated days and others having omitted days! I have seen an as-
sertion that the Anglo-Saxons started their year on 25 December.

Late 10C. Steel (cf. +1) says New Year shifted to 25 March due to
increasing veneration of the Virgin Mary, but that the New Year was moved
ahead from Bede’s September date, effectively losing a year! However, not
all places adopted this count—Florence did, but Pisa moved its New Year
back. Hence the date we would now consider to be 25 March 1001 would
be considered the beginning of 1000 in Florence, but the beginning of 1001
in Pisa. England used the (incorrect) Florentine style until 1752, when the
New Year was moved back to 1 January, but this still means we are one
year ahead, i.e. the year 2000 ought to be numbered 2001!

973/1048. Abu’l-Rayhan al-Biruni. He determines the year as
365.240278 days.

1079. Omar Khayyam and others produce the Jalalian or Malik-Shah
calendar, cf. c.1048–1131?.

c.1080. I have seen a claim that William the Conqueror changed the
beginning of the year to 1 January from the Anglo-Saxon 25 December.

c.1048/1131? Omar Khayyam. Astronomer Royal to Sultan Jalal ad
Din Malik Shah. In 1074, he was appointed with seven other astronomers to
produce a revised calendar. In 1079 they produce the Jalalian or Malik-Shah
calendar with eight leap years in a 33-year cycle, giving a year of 365.24242
days, commencing on 15 March 1079 (= 10 Ramadan 471 AH)—cf. 622 &
640. The error is one day in about 4363 years (using the current year length
of 365.242195 days). ‘Ah, but my calculations, people say, / Have squared
the year to human compass, eh? / If so by striking out / Unborn tomorrow
and dead yesterday.’ Watkins says the details are not definitely known and
various sources say the ratio of intercalary years to cycle length was 15/62,
17/70, 31/128. These have errors of one day in about 3853, 1510 and 133333
years respectively. This calendar was in use for a short time, then Persia
reverted to the Moslem calendar. However, one modern source claims the
Persians are still using the 8/33 calendar—?

1219. Earliest known document to use the phrase ‘Anno Domini’.

1236. Henry III’s statute De Anno Bissextili states that ‘the day of the
leap year and the day before should be holden for one day’, so 24 and 25
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February should be one day. This still affects the liturgical calendar—in a
leap year, all the saints’ days from 24 February on are shifted ahead one
day.

1263. Roger Bacon. In a letter to Pope Clement IV in 1263 (or c.1267),
he points out the error in the Julian calendar and suggests calendar reform,
as carried out in 1582.

1292. Alfonsine Tables—astronomical tables computed in Toledo for
King Alfonso. (Or 1272 or 1277–?) Gives year as 365.242546 days.

Mid 14C. Civil adoption of 24 equal hours for the day, beginning in
Italy.

1436. Council of Basle. Nicholas of Cusa proposes reform of the Julian
calendar.

1474. Regiomontanus publishes the first almanac. He is called to Rome
to assist Sixtus IV with calendar reform, but dies of the plague in 1476.

c.1555. Earliest known English version of the months rhyme: Thirty
days hath September, . . . .

1564. Charles IX of France decrees the year begins on 1 January. Prior
to this, the year started on 1 April. (I have seen this only in a letter from
Gerald Warren to The Guardian Notes & Queries column (11 June 1997) 17,
which cites: Margo Westrheim, Calendars of the World, Oneworld 1993.)

1577. Pope Gregory initiates study of calendar reform and circulates a
draft proposal.

1582. Clavius completes Aloysius Lilius’s (Luigi Lilio’s (or Giglio’s))
proposal to reform to the Gregorian Calendar. The year is taken as
36597/400 = 365.2425 days (= 365 days 5 hr 49 min 12 sec) (off by 12
days (= 2.88 hr) per 400 years). One author claims that Copernicus’s data
were the basis for the reform and other authors claim that John Dee con-
tributed. Gregory issues his Papal Bull in 1581 ordering that in 1582, the 10
days (5–14 October) will be omitted. This corrects back to 325, the date of
the Council of Nicaea, rather than to the time of Caesar, because the Coun-
cil of Nicaea fixed the date of Easter. The date of the Easter full moon
was also corrected. The vernal equinox should now average as 20 March.
The beginning of the year is moved from 25 March to 1 January. Switzer-
land, Flanders and the Catholic Netherlands adopted it in 1583, with the
Catholic German states adopting in 1584. (Apparently Switzerland adopted
it gradually, beginning in 1582, but not finishing until 1812—presumably
this was due to religious differences among the various cantons.) Poland
adopts in 1586; Hungary in 1587. Tuscany does not change until c.1751.
Various Protestant countries refuse to accept the reform. Denmark, (pre-
sumably Protestant) Netherlands and Protestant German states change in
1700. (Watkins says the Protestant German states adopted it in 1699, at
the urging of Leibniz.) Scotland changes (or at least changes the begin-
ning of the year to 1 January) in 1600, but England does not adopt it until
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1752, when 11 days have to be omitted. The orthodox countries, including
Russia, do not change until the early 20C. and Vietnam changed in 1967,
having to skip 13 days. Some Orthodox countries may still be using the
Julian calendar—certainly some Orthodox churches are. Clavius exposits
the ideas in a book in 1603. I had the belief that the Gregorian scheme
went further and specified behaviour for years like 4000, but this does not
appear to be the case.

1582. Joseph Justus Scaliger devises the Julian Day calendar—named
after his father Julius Caesar Scaliger. This is simply the number of days
elapsed since noon on 1 January −4713. He notes that the three calendrical
cycles—28 year solar cycle; 19 year lunar cycle; 15 year cycle of indiction
(see 298)—together give a cycle of 7980 years and bases his calendar on this
compound cycle with an arbitrary starting point intended to be before any
significant historical event. This system is used by modern astronomers,
with the convention that the day begins at noon so the whole night falls on
one date. (Where is noon taken? Greenwich?)

1585. Queen Elizabeth I and John Dee suggest a calendar reform, but
the Bill was not adopted.

1587. Hungary adopts Gregorian calendar.

1600. Scotland adopts Gregorian calendar.

1649–1660. The Puritans adopt a new calendar after the execution of
Charles I, with years called ‘the first year of freedom’, . . . .

1650. James Ussher, Archbishop of Armagh, publishes his famous as-
sertion that Creation had taken place ‘upon the entrance of the night pre-
ceding’ Sunday 23 October −4004.

1700. Protestant German states, the Netherlands (but another source
says they changed in 1583), Denmark adopt Gregorian calendar.

1701. Bishop Lloyd uses Ussher’s 1650 chronology to produce dates for
Biblical events, which are added to the Authorized or King James Version
in 1701.

1700/1753. Sweden converts to Gregorian calendar by dropping the
leap year in 1700, but returned to the Julian calendar in 1712 by adding a 30
February, then converting to Gregorian in 1753. I recall that they omitted
29 February for either 44 or 40 years? The idea of converting in this way
had been proposed by John Greaves, a professor of astronomy at Oxford,
in 1645.

1745. A letter from Hirassa ap-Iccim (presumably a pseudonym, but
unidentified) of Maryland, in the Gentlemen’s Magazine, is the first known
proposal of a perpetual calendar of 13 28-day months with an odd day. The
odd days are not weekdays, so each year (and hence each month) would
start on the same day of the week. It also advocates a fixed date for Easter.

1752. Britain adopts Gregorian calendar—see 1582. Eleven days
dropped: 3–13 September, so Wednesday 2 September is followed by Thurs-



M500 178 Page 17

day 14 September. The additional day in a leap year is defined to be 29
February. Beginning of year changes from 25 March to 1 January, but the
fiscal year end moves by 11 days to 5 April. (I have long been confused
by this—5 April is actually the end of the fiscal year, so this would seem
to count 25 March as the end of the year. I have seen a claim that only
10 days were dropped: 4–13 September, which would account for the dis-
crepancy. However, I have seen another claim that the financial year used
to end on 31 March to allow a week for making up the Treasury accounts
and that the financial year still ends on 31 March. See below for a fuller
explanation.) There was considerable popular resistance and even some ri-
oting! However, Watkins was unable to find any record of such riots and
contemporary records simply refer to irritation with the change. Hogarth’s
painting The Election Entertainment has a placard on the floor saying ‘Give
us our Eleven Days’—this is clearer in the engraved version. The Glaston-
bury Thorn actually bloomed its fullest about or slightly before the new
Christmas Day!

The change was primarily due to the efforts of the Earl of Chesterfield,
assisted by the Earl of Macclesfield (astronomer, elected PRS later in the
year, who largely wrote the ‘Bill for Regulating the Commencement of the
Year and for Correcting the Calendar Now in Use’ which Chesterfield intro-
duced and Macclesfield seconded in the Lords on 25 February 1751 (OS))
and the Astronomer Royal, James Bradley. (Watkins says most of the bill
was drawn up by one Davall, a barrister of the Middle Temple, who was
an eminent amateur astronomer, assisted by Bradley and Martin ffolkes,
the current PRS.) The oratorical powers of Chesterfield and the scientific
powers of Macclesfield were so convincing that the bill passed through both
houses without opposition! The Royal Assent was given on 25 May, refer-
ring to the Bill ‘for correcting the Style, and regulating the Calendar now
in use’—Watkins says this was the first use of the word ‘style’ with this
spelling. When Bradley was dying in 1762, ‘many people ascribed his suf-
ferings to a judgement from heaven for having taken part in the “impious
undertaking”’.

One source says both 1 January and 25 March were used as the be-
ginning of the year up to this time; 1 January was the beginning of the
‘historical year’ while 25 March was the beginning of the civil year.

In c.1993, the question of the end of the UK tax year was raised in the
Answers column of The Sunday Times. This is collected in: The Sunday
Times Book of Answers, ed. Christopher Lloyd, Times Books, London 1993,
pp 126–127. (The column started in January 1993, but 70% of the book
material did not appear in the paper.) Jo-Ann Buck sent in a letter she had
received from Inland Revenue and I quote it as it appears to be definitive.
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The government’s financial year originally ended on Michaelmas
Day, September 29th. In 1752, on the change from the Julian
to the Gregorian calendar, the calendar year ‘lost’ a total of
11 days. However, the financial year was not shortened and
thereafter ended on October 10th, the equivalent of the former
September 29th after adding back the lost 11 days. The Quarter
days for public accounting were also changed by 11 days so that
the Christmas Quarter day moved forward to January 5th, Lady
Day from March 25th to April 5th and Midsummer from June
24th to July 5th.

In 1799, the government’s accounting period was altered to end
on January 5th to bring it into line with the Trade and Navi-
gation accounts and the then current commercial practice. This
was the position up to 1832. Estimates of future expenditure
and the Budget proposals were always presented to parliament
at much the same time of year as they are today which meant
that parliament could not consider the main financial proposals
for the year until some time after the year had begun. In order
to correct this position, Lord Althorp introduced his budget for
the year 1832 to run for the 15 months from 6th January 1832
to April 5th 1833 and thereafter the budget financial year ended
on April 5th. Income tax, which had been abolished since 1817,
was re-introduced by Sir Robert Peel in 1842 and the income
tax year was based on the Budget year ending on April 5th.

This implies that the previous financial periods ended on the quarter days,
rather than began on them as I had assumed because the year began on
one.

A rather dubious source says that the Julian year ended on 25 March,
but there was general festival from then through 1 April and the April
Fool’s Day is a relic of the old system. (This would make April Fool’s Day
a uniquely English custom.)

18C (1752?). The date of Easter, given in the Book of Common
Prayer, as quoted at 325, is set by an Act during the reign of George II.
Easter can fall on any of 35 days. The date of Easter was deliberately con-
fused due to anti-Catholic and anti-Semitic feeling and the dates are now
taken from the Catholic calculation.

18C? The Society of Friends (Quakers) use numerical names for the
days and months—First Day, Second Month, etc.—to avoid the pagan ref-
erences.

1793. As part of the Revolution and the adoption of the metric system,
France adopts a year of twelve 30-day months with 5 or 6 holidays at the end.
This was devised by a committee headed by Charles Gilbert Romme, pres-
ident of the Committee of Public Instruction. Laplace, Monge, Lagrange
were the scientific members of the committee and Fabre d’Eglantine, the
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dramatic poet, represented the social implications. The calendar started
on 22 September, the day after the date when the Republic was pro-
claimed, which was conveniently adjacent to the Autumnal Equinox. The
months were named by d’Eglantine: Vendémiaire (grape harvest or vintage),
Brumaire (fog), Frimaire (sleet of frost), Nivôse (snow), Pluviôse (rain),
Ventôse (wind), Germinal (seed), Floréal (blossom of flower), Prairial (pas-
ture), Messidor (harvest), Thermidor (or Fervidor) (heat), Fructidor (fruit).
The five extra days were at the end of Fructidor and were also named by
d’Eglantine: Virtue, Genius, Labour, Reason (or Opinion) and Reward (or
Recompense), with leap-year day being Revolution Day. Though introduced
on 5 October 1795, the calendar was antedated to 22 September 1792 (an-
other source says it was introduced on 24 November 1793). There was a
10-day week, called a decade, with day names: Primidi, Duodi, Tridi, Quar-
tidi, Quintidi, Sextidi, Septidi, Octidi, Nonidi, Décadi. A four-year period
was called a Franciade. The day was to be divided into 10 hours of 100
minutes, each of 100 seconds, but this idea was postponed and then aban-
doned in 1795. (They also introduced angles with 100 centigrades in a right
angle.)

The system was very unpopular because there were only 36 (+ 5) hol-
idays in the year and it led to conflict between the Decadists and the Do-
minicans. Robespierre avoided making a decision and permitted both sets
of holidays to be observed, leading to about 84 holidays per year! The 10-
day week was abolished by Napoleon in 1802 and the Gregorian calendar
was re-adopted on 1 January 1806 (another source says 19 January 1805).
Watkins says Napoleon used this as a bargaining point in getting the Pope to
recognize him. The Paris Commune reinstated the Revolutionary calendar
briefly in 1871.

1849. Auguste Comte produces his Positivist Calendar of 13 28-day
months with a Year-End Day and a Leap Year Day when needed.

1867. Alaska bought by the US. It has to drop 12 days to convert to
the Gregorian calendar. But because it had been colonized by Russia, it
also had to have one eight-day week to conform with the rest of the New
World. Effectively, it had crossed the Date Line.

1883/1884. The Rome and Washington Conferences for the Purpose
of Fixing a Prime Meridian and a Universal Day propose and adopt the
Greenwich Meridian and the basic idea of time zones, which implies the
acceptance of the International Date Line. The vote was 22 to 1 with 2
abstentions. It was estimated that 90 per cent of sea charts in use were
already based on Greenwich. The Philippines, having been colonized from
the New World, had to skip a day to conform with its Asian neighbours,
but I don’t know when this happened. Alaska had already made changes
in 1867, q.v. 1884. Astronomical Society of France offers prizes for best
improved calendar. First prize is awarded to Gustav Armelin, a French
astronomer and his plan is promulgated by the Society. It has 12 months in
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four groups of three having 31, 30, 30 days with a Year End Day and a Leap
Year Day when needed. This gives equal quarter-years. Armelin proposes
a fixed Easter on 7 April.

1902. 29 April, 10:40. One billion minutes have elapsed since the
beginning of year 1.

19/20C. Gregorian calendar adopted by Japan (1873 or 1872), St Kilda
(in the Outer Hebrides, 1912), China (1912 or 1911 or 1949?), Bulgaria
(1916), Turkey (1916 or 1917 or 1927), Russia (1918), Yugoslavia and Rou-
mania (1919 or 1923), Greece (1923), Greek Orthodox Church (1923). The
Russian Orthodox Church has still not adopted it and is now 13 days behind.
Ethiopia may still be using their calendar based on the ancient Egyptian
calendar—cf. −3000 and was seven days off from the Gregorian calendar in
1937. Perhaps some other countries have not yet adopted it. Since Russia
adopted it after the Revolution, it turns out that the October Revolution
was actually in November and its anniversary was celebrated in November!

In Greece, the change was approved by the Bishops in 1923, but three
Bishops later abjured the new calendar and returned to Old Style. They
were tried by an ecclesiastical court in 1935 and demoted to monks and sen-
tenced to spend five years in confinement. During the trial, demonstrators
had to be dispersed with fire hoses.

1920s. Rizi Shah Pahlevi introduces a new calendar called Sale Hejra
Shamsi in Persia which combines features of the Moslem and Gregorian
calendars. It has 365 days, with the first six months having 31 days, the
next five months having 30 days and the 12th month having 29 days (or 30
days in leap years). The year begins at the vernal equinox.

1923. Eastern Orthodox adopt Gregorian calendar. They propose a
slight modification to omit seven leap years in a 900 year cycle, giving a
year length of 365.24222 . . . days, though they seem not to have adopted
this.

1925. 28 April: The Convocation of Canterbury agrees that the Angli-
can Church has no dogmatic objection to Easter being on a fixed date, but
they would not adopt it unless it was adopted by other Christians.

1928. The Easter Act in Britain sets Easter as the first Sunday after
the second Saturday in April. This will come into effect by Order of His
Majesty in Council ‘Provided . . . that . . . regard shall be had to any opinion
officially expressed by any Church or other Christian body.’ On 14 February
1929, the Convocation of Canterbury said they would prefer the first Sunday
in April.

1929. The Soviet Union adopted a five-day week in 1929, with four
days work and one day of rest. The days were coloured: yellow, orange,
red, purple, green. Rest days were to be staggered so that factories would
run continuously. The week sequence restarted each month and the 31sts
were treated as extra days. The months were then all made 30 days long. In
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1932, they changed to a six-day week, with 30-day months. All of this was
accompanied by confusions, since some people retained the seven-day week
and some special industries continued on a five-day week. They returned to
the seven-day week on 27 June 1940.

1930. Old Lunar Calendar made illegal in China.

1935. August: riot in Roumania when police attempt to enforce the
Gregorian calendar on an Orthodox priest—several persons killed.

1937. P. W. Wilson [The Romance of the Calendar, George Allen &
Unwin, London 1937, p. 250] says: ‘If the five-day week in Russia has
proved a failure, as many people declare, . . . ’.

1972. 1 January: Atomic clocks replace astronomical observations as
the basis of time keeping, producing UTC (Universal Coordinated Time).
As of early 1998, 240 atomic clocks were involved, in 35 laboratories in
24 countries, coordinated by the International Earth Rotation Service at
the Observatory in Paris. (There are seven clocks at the National Physical
Laboratory in outer London.) The clocks mostly use vibrations of caesium-
133 atoms. To standardize time, the average length of day in 1820 was
used. The earth has since slowed down a bit and this accumulates to a
second every 400 or 500 days, leading to the occasional introduction of
‘leap seconds’, which have been added at the end of December or June.
Twenty-one leap seconds were added during 1972–1997, but they were not
regularly spaced as the earth’s motion is not uniform. (Another source says
32 leap seconds were introduced in 1972–1998 (one being in 1998), but that
is surely a misprint for 22.) All observatories, radio stations, etc. adopt
UTC from c.1986, but I have read that GMT is still the legal time! In
late 1999, there was debate about whether leap seconds are really necessary
and whether it would be better to abolish them. This would have minimal
effects on us, but missiles and satellites which navigate by the stars might
be disrupted.

1967. Vietnam adopts Gregorian calendar.

1998. 31 December: A leap second is added to 1998.

2000. 1 January: The ‘Year 2000’ Timebomb! Many computers will
crash! The End of the World as We Know It! Fortunately, very little of this
happened.

2000. 29 February: This day exists, but some computers may fail to
recognize it. No problems were reported.

Errata In ‘Two theorems with some applications’ by David L. Brown, M500
177, p. 6, Theorem 1 should read ‘The radius of the circumcircle of an
equilateral triangle is twice the radius of its incircle.’ In ‘Problem 177.3 –
Mahatma’s triangle’ by John Bull, M500 177, p. 16, the acute angle BAC
in Figure 2 should be 2x, not 20.
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Hats
Nick Pollock
A number of people go to a party all wearing hats. The party is very
good—so good that when it’s over each one reels home wearing the wrong
hat. What is the probability of this happening?

The problem

If there are n people at the party and none is too drunk to put on a hat
when they leave, there are n! ways in which the n hats can be worn by the
n people. If the permutations are expressed in cycle notation, then N0(n),
the number of permutations in which no one is wearing the right hat, is
the number of permutations in which there are no singleton orbits. The
problem seems to be rather difficult to deal with directly in this form.

Recursive solution

Let Nk(n) be the number of permutations in which exactly k of the n people
wear their own hats. Introduce another person, Tn+1, wearing his own hat.
Thus Tn+1 can create a situation in which none of the n+ 1 is wearing the
right hat in two ways.

1. If none of the n others is wearing the right hat, Tn+1 can swap hats
with any of them. This gives nN0(n) possibilities.

2. If just one of the others is wearing the right hat, Tn+1 must swap
with that person. This gives N1(n) possibilities.

So
N0(n+ 1) = nN0(n) +N1(n). (1)

But what is N1(n)? Imagine Tn+1 joining n people all of whom are wearing
the wrong hat. Tn+1 can create a situation in which exactly one of the n+1
is wearing the right hat in two ways:

1. Tn+1 can do nothing. This gives N0(n) possibilities.

2. Tn+1 can swap hats with any i who is wearing js hat, and then swap
hats again with j who is now the only person wearing the right hat. This
gives nN0(n) possibilities.

So
N1(n+ 1) = N0(n) + nN0(n) = (n+ 1)N0(n). (2)

Combining (1) and (2) gives

N0(n+ 1) = n(N0(n) +N0(n− 1)), (3)
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for n > 1. Rearranging slightly,

N0(n) = (n− 1)(N0(n− 1) +N0(n− 2))

N0(n)− nN0(n− 1) = −N0(n− 1) + (n− 1)N0(n− 2)

= (−1)(N0(n− 1)− (n− 1)N0(n− 2)).

Using this last result repeatedly gives

N0(n)− nN0(n− 1) = (−1)2(N0(n− 2)− (n− 2)N0(n− 3))

= . . .

= (−1)n−2(N0(2)− 2N0(1)).

Now N0(1) = 0 and N0(2) = 1, so for n > 1

N0(n)− nN0(n− 1) = (−1)n. (4)

We’re interested in the probability N0(n)/n!; so using

N0(n)

n!
− N0(n− 1)

(n− 1)!
=

(−1)n

n!

we get

N0(2)

2!
− N0(1)

1!
=

(−1)2

2!
N0(3)

3!
− N0(2)

2!
=

(−1)3

3!
. . .

N0(n− 1)

(n− 1)!
− N0(n− 2)

(n− 2)!
=

(−1)n−1

(n− 1)!

N0(n)

n!
− N0(n− 1)

(n− 1)!
=

(−1)n

n!
.

Adding all these equations together gives

N0(n)

n!
− N0(1)

1!
=

(−1)2

2!
+

(−1)3

3!
+ · · ·+ (−1)n

n!

N0(n)

n!
=

n∑
i=2

(−1)i

i!
.
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So the probability, P (n), that everyone is wearing the wrong hat is given
by

P (n) =

n∑
i=2

(−1)i

i!

and P (n)→ 1/e as n→∞.

Computer investigation

BASIC, C, etc. are not very good at big integers, but Scheme works very
nicely. You can get a free version for Win9x that runs these programs from
www.bushcomp.cwc.net.

We need a factorial function

(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))

and the formula for N0(n)

(define (N_0 n)
(cond
((= n 1) 0)
((= n 2) 1)
(else (* (- n 1)(+ (N_0 (- n 1))(N_0 (- n 2)))))))

then the required probability is given by

(define (prob n)
(/ (N_0 n) (fact n)))

This is what my computer does:

> (prob 4)
0.375
> (prob 20)
0.367879441171442
>

This is accurate to 15 places of decimals. If you want to try larger values of
n you will need a slightly more sophisticated version of N0 with memoizing,
which you can find in hats.scm on my website.
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Solution 176.1 – Two cyclists
ADF

Two cyclists travelled towards each other, one at 10 m.p.h., the
other at 20 m.p.h. When the riders were 180 miles apart, a
fly left the handlebar of one cycle and travelled towards the
other cyclist. When it reached the latter, it instantly reversed
direction and flew back to the first cyclist, and continued winging
back and forth until the two cyclists met. If the fly’s speed was
100 m.p.h., what was the total distance that the fly had covered?

As many readers pointed out, one way to solve the problem is to observe
that total time the fly spends travelling between the two cyclists is the same
as the time it takes for the cyclists to meet. That’s 6 hours.

Alternatively, one can consider each leg of the fly’s journey separately.

First leg: The fly meets the second cyclist after t1 hours, where 100t1 +
20t1 = 180; t1 = 3/2. After this time the distance between the cyclists has
shrunk to d1 miles, where d1 = 180− 30t1 = 135.

Second leg: The fly meets the first cyclist after a further t2 hours, where
100t2 + 10t2 = d1; t2 = 27/22. After this time the distance between the
cyclists has shrunk to d2 miles, where d2 = d1 − 30t2 = 180 · 6/11.

The third leg is like the first except that the starting distance has shrunk
by a factor of 6/11. So t3 = 6/11t1 = 6/11 · 3/2. Similarly t4 = 6/11t2 =
6/11 · 27/22. And so on.

Therefore the total time of the fly’s journey is given by

t1 + t3 + · · ·+ t2 + t4 + · · · =

∞∑
n=0

(
3

2

(
6

11

)n
+

27

22

(
6

11

)n)
= 6.

We like the second solution. Although it hasn’t the elegant simplicity
of the first, we think it is instructive. Combining the two together could
give us a novel method of evaluating a geometric series.

Of course, both solutions make assumptions. Indeed, Brian O’Donnell
wonders what species of fly can remain intact while attempting to change its
velocity by 200 m.p.h. infinitely often in a time that is negligible compared
with 6 hours.
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Solution 176.3 – Tricubic
Find the positive real root of x9 + 768x6 = 768156.

Tony Forbes
The answer is π. Well, no. A root of a polynomial with integer coefficients
must be algebraic, but, as Elsie Page points out,

It’s really fundamental
That π is transcendental.

However, the difference is small enough to excite the attention of the circle-
squaring community. In fact

x = 3.141592653590 . . . ,
π = 3.141592653589 . . . .

Paul Terry agrees.

A root of this thing equals π
But, as the question doesn’t ask why,

I won’t bother showing
Just how I was knowing

That this is the answer . . . Goodbye!

Martyn Lawrence, Keith Drever and Jim McIlroy used the ‘Poly-
roots’ function of Mathcad to obtain the same answer. Martyn’s solution
included this symmetric pattern showing all nine roots in the complex plane.

-10 -5 5

-10i

-5i

5i

10i
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Peter Fletcher started with x1 = 3.5 and iterated the formula

xn+1 = xn −
x9n + 768x6n − 768156

9x8n + 4608x5n
.

Since the equation is really a cubic in x3 it must have an algebraic solution.
As it happens, Mathematica has the formula for the roots of a general cubic
‘built in’, and after a certain amount of tidying up I was able to obtain this
interesting approximation:

π ≈
(

256

(
z +

1

z
− 1

))1/3

,

where

z =
1

256

(
−16393138 + 14 ·

√
65000016447 i

)1/3
.

You must choose whichever cube roots work. Note that |z| = 1, hence
z + 1/z is real.

Problem 178.1 – Lottery guarantee
Tony Forbes
What is the smallest number of National Lottery tickets you need to pur-
chase if you want to guarantee winning at least £10? In other words: What
is the size of the smallest set

T ⊂ {{a, b, c, d, e, f} : 1 ≤ a < b < c < d < e < f ≤ 49}

such that for any six numbers, u, v, w, x, y, z, 1 ≤ u < v < w < x < y <
z ≤ 49, at least three occur in at least one member of T?

Beware of this simple argument: ‘There are 18424 ways of choosing
three numbers from 49, and 20 ways of choosing three numbers from six.
Therefore at least 922 (18424/20 rounded upwards) tickets are required.’

We even printed something along these lines in M500 161. Alas, the
author must have caught me at a weak moment! Although the error is not
immediately obvious, the reasoning is flawed. It does not take into account
that six numbers are drawn in the National Lottery. (The ‘bonus ball’ is
irrelevant.) Although you might be unlucky enough to have them all on the
same ticket, the six numbers in the draw are actually capable of generating
many potential prizes, and a clever purchasing strategy can take advantage
of this. The correct answer is a lot smaller than 922.
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Solution 176.5 – Construct a square
Given a unit length line segment, construct a square of side one
unit, using only a pair of compasses.

R. M. Boardman
The solution is based on a 3 : 4 : 5 triangle and on repeated use of a simple
lemma.

Given a circle, its centre and a point P on the circumference,
construct a point diametrically opposite to P.

It is well known that if you strike six successive arcs around a circle,
with a radius equal to that of the circle, you get back to the initial point
and that the six points are the vertices of a regular hexagon. Hence three
such strikes give a point diametrically opposite.

A B C D E F

G

HI

J

Label the ends of the unit line segment A and B. See diagram, above.

Draw a circle with centre B, radius 1. Construct C opposite A.

Draw a circle with centre C, radius 1. Construct D opposite B.

Draw a circle with centre D, radius 1. Construct E opposite C.

Draw a circle with centre E, radius 1. Construct F opposite D.
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Draw a circle S with centre E, radius 5. Draw a circle with centre A,
radius 3, intersecting the previous circle at a point G above A. The points
{G, A, E} form a 3 : 4 : 5 triangle with its right-angle at A.

Draw a circle with centre B, radius 4, intersecting the circle S at H,
above B. The points {E, B, H} form a 3 : 4 : 5 triangle with the right-angle
at B.

The length GH is
√

2, the diagonal of a unit square. Set the compasses
to radius 1 to construct the other two corners, I, J , with intersecting arcs
from G and H.

ADF writes—Three other solutions were received. We disqualified two
immediately for the shameless use of a ruler. We really did mean it when
we specified ‘only a pair of compasses.’ The third was more subtle. Stuart
Cresswell required the mid-point of an arc for a part of his construction and
he thought he could get away with an infinite sequence of arcs converging
to the desired point. However, it is a rule of the game that the construction
should take only a finite amount of time.

There is an interesting dual to the problem, below.

Problem 178.2 – Construct another square
Given a unit circle and its centre, construct a square of side one unit, using
only a ruler.

Problem 178.3 – Square-free integers
An integer is square-free if it is the product of distinct primes. Are there
infinitely many positive integers n such that both n and n + 1 are square-
free?

‘Single men are about 1.8 times as likely to die as comparable married men;
single women are about 1.5 times as likely to die as comparable married
women.’—The Guardian. [Spotted by Peter Fletcher.]

‘Which nautical unit of speed is equal to 1.5 mph?’—The Weakest Link,
BBC2. [JRH—1.5 miles is 0.5 leagues, which we think is some kind of
natural unit. Tennyson: Half a league, half a league, / Half a league onward.]
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When is ∞+∞ not equal to 2∞?
Martin Cooke
In my ‘Do you know your infinity times tables?’ of issue 176, I claimed that
∞ +∞ = X (where X is an ‘extended set’ and so is not equal to ∞ but
contains it as an element) in order to create my algebraic tables, a claim
which I will now try to justify by looking at three underlying concepts:–
extended sets, the potential incompletability of N, and the concept of lines
not being made of points. Basically, however, subtraction is an implicit
question which is derived from addition (e.g. 2 − 4 is the question ‘what,
when added to 4, yields 2?’) so∞+∞ =∞−∞ could be thought of as the
extended set of all the (relevant) numbers which, when added to ∞, yield
∞, which is why ∞+∞ = X.

Extended sets are best introduced by an example. Consider a wardrobe
of clothes—these can be subdivided in many ways (e.g. by colour, by fabric
types for laundry purposes, by clothing types for storage) which are not nat-
urally in the form of nested subsets, but are context-dependent (what are
regarded as similarities in one context may be dissimilarities in another) and
hence conceptually independent (not unlike the famous rabbit/duck illu-
sion). The underlying set of garments is not a good place to start from, as it
presumes that they are known and are indeed fundamental, whereas the gen-
eral situation would start from noun-concepts which develop alongside our
number-concepts (e.g. red, delicates, socks); but a more pertinent example
of this may be the ‘internal’ structure of ∞: I have used ∞ as a symbol for
0−1 but others may wish to regard several ‘numbers’ as mapping to 0 under
reciprocation. If you like to think of infinite straight lines as ‘really’ straight
then you may want∞ = (+∞,−∞). Replacing∞ by this pair in my tables
gives the same pattern, because, for example, (+∞) + (+∞) = (+∞), but
(+∞) + (−∞) = X, as above, so (+∞,−∞) + (+∞,−∞) = X, combining
the four elements of the table. That is,∞ is not then a ‘set’ of two elements,
it is these two elements which are involved in the table, and no presumptions
are being made about other possible substructures for ∞, which may de-
pend on context (e.g. if you are doing projective geometry you will want the
infinite circle concept). The actual nature of the line is guessable, but it is
the nature of its labelled parts, of these labels, which is of interest in maths.
However, the circle idea indicates another way of looking at ∞ +∞ = ∞,
since the addition can be seen as taking one from the origin to ∞ and then
back to the region of the origin, carrying the vagueness of ∞ (which could
not correspond to only one point) back to this region, whence the answer is
X.

As regards the incompletability of a sequence, the question of whether
all the natural numbers exist (in whatever way the first few do) is already
thousands of years old, and is still an issue in the philosophy of maths, de-
spite their totality being assumed in maths itself (i.e. the set N is taken to
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exist, although the ontological identity of 1 with {0} is less popular, and can
confuse even professors!) so I shall only describe a ‘Platonistic’ version of
incompletability here (the standard philosophical position against the total-
ity of N being ‘Intuitionistic’). N is fundamentally a sequence (this being its
ordinal aspect) produced iteratively (from l, by the rule n ∈ N⇒ n+ 1 ∈ N
and hence is best modelled temporally, as a process, whereas the geometri-
cal (Euclidean, infinite) line is abstracted from a space which is already ‘all
there.’ If the points of this line which can be labelled by N only exist as
such when they are labelled by an incompletable N, then the collection of
all these points is also inherently incompletable, since this labelling is an in-
completably endless sequential process (points which are to be labelled are
already in the line and hence are already Platonistically labelled, since I am
not assuming any shortage of time for the labelling here). That is, the spa-
tial nature of the geometric line does not necessarily imply such a nature for
N, despite it being possible to regard N as a collection of points on this line.
Although such a Platonistic incompletability (i.eṫhis being regarded as an
inherent part of the nature of the numbers which we learn about in infancy)
does not imply less maths (unlike the Intuitionistic version, which does not
allow R’s structure, for example) and is the common belief in history and
amongst children, and may be quite common among practising mathemati-
cians, it is certainly not standard, and a rigorous defence of it would be
unmathematically lengthy and conceptually messy. It can be stated quite
simply though:– The numbers 1, 2, 3, . . . go on and on in a sequence and
cannot reach infinity, since if they did then infinity would be some finite
number plus 1. But if they stay finite then they remain increasable and so
never reach every finite number (if there are always more then they aren’t all
reached—this doesn’t imply that there is some finite which is not reached!)
so they are incompletable. Any assumption of them existing ‘all there,’ on a
line or axiomatically as a set, can’t bypass their sequential definition, their
inherent and implicit nature, what they individually are.

Saying that lines are not made of points should not be read as meaning
that geometric points do not ‘exist’ everywhere on a geometric line, but that
no collection of labelled or specifiable points can entirely compose such a
line. For example, assuming incompletability can yield a version of R which
is uncountable and exhaustively subdivides any finite part of the line, but
which doesn’t discriminate between points which are only infinitesimally
distinct (and also implies the existence of such geometric infinitesimals),
and only extends incompletably along the actually infinite geometric line.
There is therefore ‘room’ on this geometric (but not on the real number)
line for a part actually at∞, and many points on it (I imagine +∞ of them,
quite a large cardinal!), most of them unlabellable. It is also implied that
line sections are always closed (although sets of points can be open in the
usual sense of excluding the end point), so that ∞ could be regarded as
closing the line quite consistently. Hence I envisage a line which is made
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entirely of geometric points, but as a line, not made of points which could
be usefully considered as distinct, specifiable points. In practice this would
not change much, as we deal mostly with labelled points, and may actually
only add to the maths, clarifying the ontology of (but not disallowing) the
maths we already have.

In passing, note that totalities are not obviously well-behaved (in a
set-theoretical way) for the noun concepts either. E.g. any line dividing
Red from not-Red must separate colours which are indistinctly tinged (and
similarly with Socks and Delicates) even though there’s clearly no problem
with using the word Red to refer to countable objects.

Solution 176.2 – Population
In a given population, 2/3 of the men are married and 3/5 of
the women are married. What fraction of the population are
married?

The answer is the harmonic mean of the men and the women. After all,
isn’t that what marriage is all about? Thus

1

1

2

(
1

m
+

1

w

) ,
where m = 2/3 and w = 3/5.

Ralph Hancock wrote a BASIC program to determine the smallest
number of people, 19, for which the given proportions can hold. However,
Martin Cooke observes that the population can be as small as eight in a
society where the marriage rules are sufficiently flexible.

Problem 178.4 – Palindromic birthdays
Tony Huntington
My birthdate is palindromic: 25/6/52. What is the probability of that?
How does the probability vary from year to year? Is there any pattern or
rule for the occurrence of palindromic dates?

A mathematician should have both a mistress and a wife. He can say to his
mistress, “I am going to stay with my wife for a short while.” He can then
tell his wife, “I am leaving you temporarily to go and live with my mistress.”
Now he is free to visit the university library and do some mathematics.
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Fractal geometry
Barbara Lee
The Faculty of Mathematics does not run a course on fractal geometry as
such. However, much of the underlying maths can be found in units D1 and
D3 of M337 and in algebra, groups and number theory.

Most books tend to avoid actually defining fractal so we may as well
say that fractal geometry consists of images plotted from mathematical
functions that have been subject to iteration, the final pattern being made
up of repetitions of the first iteration. Fractal geometry models physical
structures from the natural world in the Euclidean plane as well as sets
such as the Julia and Mandelbrot sets in the complex plane.

There has been a tendency to think of these fractal images as ‘pretty
pictures’ which is rather unfortunate because the maths is interesting and
often produces elaborate and unusual pictures, especially if some of the iter-
ations are plotted in different colours. Ferns, leaves, flowers and coastlines
are very attractive in several colours.

One of the most common and simple examples is the Sierpiński triangle,
which is best plotted as a right-angled isosceles triangle. (See diagram,
below.) Starting with a plain black triangle the first iteration removes the
centre triangle, leaving three black ones. The centre triangle is removed
from each of these three black ones and so on, the nth iteration resulting in
3n black triangles.

Function codes, algorithms and programs for plotting fractal images can
be found in books on fractal geometry.
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A reply to Arthur Quigley’s letter in 176
[Problem 174.4: You start with £32 and bet on the toss of a coin.
On each turn you stake half your capital, and your opponent
matches your stake. You play six times and win half of the
plays. What is your capital now?]

Martin Cooke
I feel qualified to explain the result (solution 174.4) , as my first thoughts
upon seeing the problem were similarly that ‘you’ would end up with your
original £32, and that therefore the maths had been misapplied. I see now
that this problem had something of the flavour of a paradox. To start
with, it became clear that the opponent must have more than £32, since
otherwise you couldn’t win more than once initially. Basically, you win
more from winning than you lose by losing, and balancing the wins and
losses over all possible outcomes means that the high potential gains from
mostly winning the tosses are balanced by a net loss for the given 50–50
outcome. For example, for two tosses the remaining capital could be £8
(two losses), £24 (twice) or £72, giving an average of £32, as desired.

This problem reminded me of the once-famous Petersburg paradox [l]
dating from the 1720s and concerning two people A and B betting on coin
tosses. If a head appears in a sequence of tosses for the first time on the
nth toss then A gives £2n−1 to B. The problem is to find out how much B
should pay A in order to entice A to play. The mathematical expectation
(obtained much as Tony Huntington obtained his solution to 174.4 in M500
176) is infinite whereas common sense would advise most people to play
for £10. At the time, some people explained the paradox away by pointing
out that A’s resources aren’t infinite, which is true but hardly relevant,
although it does illustrate a truth of paradoxes, that a ‘solution’ is often
just what you think of before deciding to think of something else! What
makes a problem a paradox is that all your assumptions are attractive to
you, but people often have different underlying assumptions.

Another maths paradox involving expectations concerns the setting of
a ‘surprise’ exam [2]. It is of continuing interest in the journals, like those
of Zeno (although that is a different story—see my article in 176), and goes
something like this: A teacher tells the class that an exam is to be set the
following week (Monday–Friday) but that they won’t know for sure which
day it will be until they get to the classroom. The problem is to find the
last day when she could set the exam, using induction. Friday, for example,
does not seem possible since on Thursday evening the exam would seem to
be certainly on Friday. The paradox arises when we apply this reasoning
(moving from Friday being the last available day to Thursday being the
last available) inductively, to rule out all the days—countering the common
sense idea that if the exam was set on Tuesday, say, then it would not be
expected with certainty (least of all by someone who had ruled out every
day!). My ‘solution’ to this is that since you prove that the test can’t be
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on a Friday to start with then it would indeed be a surprise if it was set on
Friday, so that the teacher could set it for the Friday and do so surprisingly.
That is, the reasoning that gets the starting point of the induction is itself
only half of a piece of reasoning which is viciously circular. There is no
standard solution to this paradox, it being deserving of the name, and this
is not the more mathematical solution you would find in [2], but what made
me happy to leave it there (and return to Zeno) is the thought that if the
teacher told the class that the exam would be the following week but not
that it would be a surprise, but wanted it to be a surprise anyway, then she
couldn’t have set it for the Friday.

1. A History of Mathematics, Carl B. Boyer, 2nd ed., Wiley, New York
1991.

2. How To Set A Surprise Exam, Ned Hall, Mind, Oct. 1999.

Solution 175.5 – abc
Suppose that a + b + c = ab + ac + bc = 0. Prove that if n is a
positive integer then

an + bn + cn =

{
3(abc)n/3 if n is a multiple of 3
0 otherwise

.

John Reade
Surely the way to do this problem is to construct a cubic equation with a,
b, c as roots. The conditions a + b + c = ab + ac + bc = 0 imply that the
coefficients of x2 and x are zero. Therefore the equation must take the form

x3 − α3 = 0

(if α is real). So a, b, c are α, αω, αω2, where ω = e2πi/3 is the primitive
complex cube root of unity. Thus

a0 + b0 + c0 = 1 + 1 + 1 = 3,

a+ b+ c = 0 (given),

a2 + b2 + c2 = α2 + α2ω2 + α2ω = α2(1 + ω2 + ω) = 0,

a3 + b3 + c3 = α3 + α3 + α3 = 3α3 = 3abc,

etc.

‘Many of our arithmetic senior citizens have been advised by their doc-
tors that swimming is the best exercise to keep them mobile.’—Stockport
Recorder. [Spotted by Peter Fletcher.]
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Letters to the Editors
Cylinder
Dear Jeremy,

There are several ways of looking at this [Problem 171.1: What is the
probability that a cylinder thrown in a random fashion will land on one of
its ends? See M500 171 9, 173 19, 174 16, 176 22].

Consider a normal six-sided cubic die. Mark two opposite faces as the
‘ends’. It has a 1 in 3 chance of landing on an ‘end’, and a 2 in 3 chance
of landing on a ‘side’. Now lathe off the edges bordering the ‘sides’, and
you have a cylinder with length equal to its diameter. I don’t see why this
should be much more likely to land on its end.

The area of each end is πr2 (so two ends: 2πr2), and the area of the
cylinder’s side is 2πr · 2r. So the side has twice the area of the ends put
together (just like the die, above). As the side and the ends are equidistant
from the centre of mass of the cylinder, the cylinder has the same energy
regardless of orientation (side or end). This implies that it’s more likely to
finish on its side.

If you put the cylinder on end and knock it over, it will fall on its side,
and may bounce further. Assuming the bouncing is random, it has a 50
per cent chance of finishing on end (as Gordon Alabaster [M500 174 16]
stated).

If you put the cylinder on its side and knock it, it will either fall on its
end, or roll, depending on the direction you knock it. Assuming you knock
it hard enough, the above 50 per cent chance of its finishing up on its end is
probably multiplied by sinx where x is the angle between the rolling angle
and the angle of hit. Gordon Alabaster doesn’t seem to have considered
this option.

I don’t know what aspect ratio will give a 50 per cent chance of the
cylinder landing on end, but the length is less than the diameter. I’d guess
1/
√

2. I suspect it depends on the roughness of the surface.

Jim Davies

1 + 1 = 2
Dear Mr Forbes,

Now that the exams are over I have had the opportunity to look in detail
at issue 175 and was surprised to find on page 40 reference to the Russell
and Whitehead proof that 1 + 1 = 2. I was even more surprised to learn
that this was part of a wider purpose of establishing a rigorous foundation
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for mathematics. I was under the impression that Gödel’s Incompleteness
Theorem, published some eighteen years after Russell’s and Whitehead’s
efforts, showed that such a rigorous foundation could not be proved.

As a mathematical novice I should be grateful if anyone could explain
in terms simple enough for me to understand them how these apparently
contradictory theorems can be reconciled, or have I just got the wrong end
of the stick?

Yours sincerely,

Malcolm Fowler

Gerald Whitrow
Dear Tony

Eddie Kent’s short piece on Gerald Whitrow [M500 176 19] brought
back very special memories of my days as an undergraduate at Imperial
College in the late 50s. There were 32 of us in my year studying straight
mathematics and all our courses were compulsory. All were examined except
M30, History and Philosophy of the Mathematical Sciences, a two-hours-a-
week course in the second semester of the third year. It was taught by
Gerald Whitrow and was the only course with full attendance. His lectures
were inspirational and the syllabus included ‘the history of dynamics from
Aristotle to Einstein and the associated mathematical developments; the
significance of the subject in the history of scientific method.’ He had
no lecture notes and we took none, we just listened and were enthralled.
Whenever I read historical mathematics I recall the start he gave me.

Bryan Orman

32 pounds
Dear Tony,

I would like to reply to a point made by Arthur Quigley in his letter
about the 32 pounds problem [M500 176 26]. He says that the situation is
the same for the opponent; that he will also be left with £13.50, so where
is the missing money?

The crucial difference is that the opponent always matches your stake.
You are the one who stakes half your capital. The opponent matches that
stake regardless of how much he has, so the situation cannot be the same
for both players, and there is no missing money.

Regards,

Gail Volans
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Kiwi fruit
Continuing the mini-saga of the kiwi fruit, I note that the Sainsbury’s chit
in 176 uses decimal notation correctly, yet, amazingly, after over 30 years
of decimalization many of our contributors still use £13.50p, for example.

I think I am correct is saying that a number with a decimal point is all
in the same units. Please: £13.50 or 1350p.

Brian O’Donnell

Factorial squares
The ‘factorial squares’ appears to be an interesting problem, but seems to
me to fizzle out quickly. I’ve seen this before, and it was called ‘Brown
numbers’ on that occasion. Maybe someone can enlighten me as to why.

I couldn’t find any solutions to n! + 1 a square, searching up to integer
lengths of 256. There are only a few trivial solutions to n!− 1 a square (0,
1, 2).

A slightly more interesting version is n! ± 1 a prime. Here are the
solutions I found: 0! + 1 = 2 1! + 1 = 2, 2! + 1 = 3, 3! + 1 = 7, 11! + 1 =
39916801, . . . ; 3! − 1 = 5, 4! − 1 = 23, 6! − 1 = 719, 7! − 1 = 5039,
12!− 1 = 479001599, . . . .

Regards,

Dave Ellis

Dear Editor,

Greetings. My thoughts on Problem 176.4. To quote from A. H. Beiler’s
Recreations in the Theory of Numbers (Dover 1966), p. 161: ‘What, in
general, are the solutions of n!+1 = x2 besides the three values n = 4, 5, 7?
The equation has been investigated up to n = 1020 and no other solutions
have been found. If any such squares exist, they must be enormous numbers;
even 100! has 158 digits, and 1020! has over 2600.’

As for n! − 1, the only possible cases are 0, 1 and 2; n = 3 does not
work and, for higher values of n, n! − 1 ≡ 3 (mod 4) and hence cannot be
a square.

Michael Adamson

ADF—In a few idle moments I extended the search for squares all the way
up to 51000000! + 1. (Exercise for reader: How?) No more solutions.

The search for primes of the form n! ± 1 seems to be a favourite sport
amongst number theorists. See www.utm.edu/research/primes/largest.html
for the most recent achievements.
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Problem 178.5 – Reward a friend
Tony Forbes
In Chris Tarrant’s popular television programme Who Wants to be a Mil-
lionaire?, what is a fair reward for a person who helps the contestant when
the ‘phone a friend’ lifeline is used?

The game involves a single contestant, C, and proceeds in stages.

At each stage the host asks C a general-knowledge multiple-choice ques-
tion with four options. To help find the (unique) correct answer, C may
invoke one or more of three ‘lifelines’: (i) C may ask the host to identify
two wrong answers; (ii) C may request a frequency distribution showing
how the studio audience answered the question; (iii) C may phone a friend.
If a lifeline is used, it becomes unavailable for the remainder of the game.
After viewing the question and perhaps invoking one or more lifelines C
chooses whether or not to attempt an answer.

The game begins with question 1. If C does not answer question n, the
game ends and C receives R(n−1). If C gives a wrong answer to question n,
the game ends and C receives W (n). If C answers question n correctly, the
game continues with question n+ 1 unless n = 15 in which case C receives
R(15)—hence the name of the show—and the game ends. The functions R
and W are defined by

R(n) =

£100 · n if 0 ≤ n ≤ 3
£500 · 2n−4 if 4 ≤ n ≤ 11
£125000 · 2n−12 if 12 ≤ n ≤ 15,

W (n) =

R(0) if 1 ≤ n ≤ 5
R(5) if 6 ≤ n ≤ 10
R(10) if 11 ≤ n ≤ 15.

Just desserts
Eddie Kent
Having dealt in recent months with various prizes on offer for excellence, it
is probably no bad thing that I mention the most important one of all: the
Ig Nobel Prize. This is given each year to an individual whose achievements
‘cannot or should not be reproduced’. For instance the year 2000 Ig Nobel
Prize for Physics was awarded for an experiment that levitated a frog using
magnets. Have a look at www.improbable.com/ig/ig-2000-winners.html.

While you’re about it you might as well glance at the site’s poor relation:
www.nobel.no/indexen.html.

In common with the Nobel Prize, mathematics seems to be once again
ig-excluded. There must be some examples of mathematical reasoning that
would fit the criteria, so how about suggesting a candidate or two for an
OutField Medal (Brickfield? Cornfield?). I do not think a half-page proof
of FLT, RH or 4CT would ever have qualified.
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Problem 178.6 – Ten blocks
Colin Davies
This is like Sam Loyd’s well-known ‘15 Puzzle’. Ten blocks of various sizes
slide about in the obvious manner.

Move the large square from the middle-left of the array to the middle-
right.

Problem 178.7 – Series
Barry Lewis
Prove that

x

1− x
− x3

1− x3
+

x5

1− x5
− . . . =

x

1 + x2
+

x2

1 + x4
+

x3

1 + x6
+ . . . .
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Twenty-five years ago
From M500 29 and 30
John Reade—Error analysis of e− (1 + 1/n)n. [We think this helps with
Problem 177.4.] The error is roughly equal to e/2n for large n, which bears
out Peter Weir’s guess (M500 28 5) that the number of correct decimal
places in (1 + 1/n)n is the same as the number of digits of n. To see this,
consider the expansion

(1 + x)1/x = e1/x log(1+x)

= exp

(
1

x

(
x− x2

2
+
x3

3
− . . .

))
= exp

(
1− x

2
+
x2

3
− . . .

)
= e e−x/2e−x

2/3 . . .

= e

(
1− x

2
+

1

2!

(x
2

)2
− . . .

)(
1 +

x2

3
+

1

2!

(
x2

3

)2

+ . . .

)
. . .

= e

(
1− x

2
+

11

24
x2 − . . .

)
,

valid for |x| < 1. Writing x =
1

n
, we have

(
1 +

1

n

)n
= 1− 1

2n
+

11

24n2
− . . . ,

which shows that e−
(

1 +
1

n

)n
=

e

2n
+O

(
1

n2

)
for large n.

Jeremy Humphries—

Said a man to his offspring, “Indeed, Ron,
It is obvious that what you need, Ron,

Is a twelve-sided hat.”
(For the boy he begat

Had a head like a dodecahedron.)

Marion Stubbs—Last month I told a fair number of people that Peter
Weir had coped with 111 enquirers from Sesame in one week. It turned out
that he was using Roman numerals, merely clocking up each enquiry as it
arrived, and forgot to convert the total to 3 before posting.

Tom Dale and Max Bramer—What’s the next term: O, T, T, F, F, S,
S, E, N, ? [Is there a last term? Cf. M500 177 27.]
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