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Recurrence relations
Robin Marks
This article is about recurrence relations of the form

Un =
1

k
(Un−1 + Un−2 + · · ·+ Un−k) .

In particular, I shall look at the interesting question: ‘Is there a limit to Un
as n approaches infinity, and if so, what is it?’ I first tried to answer these
questions for the third order recurrence relation

Un =
1

3
(Un−1 + Un−2 + Un−3),

but the methods in M203 for finding the limits of series did not seem to
work. I have persevered and I believe I have shown in what follows that
there is a limit to Un as n approaches infinity, and that the limit depends
on the initial values.

It is still not entirely clear to me why the values 1/6, 2/6 and 3/6 appear
in the third order inverse matrix, 1/10, 2/10, 3/10, and 4/10 appear in the
fourth order inverse matrix, 1/15, 2/15, 3/15, 4/15 and 5/15 appear in the
fifth order inverse matrix, . . . , although I can think of a ‘hand-waving’ sort
of argument. Perhaps M500 readers will explain.

I have used consecutive initial values of Un to calculate the values of the
coefficients A,B,C, . . . . This was for convenience. Non-consecutive initial
values could have been used, although in some cases this would not work;
for example in the fifth order case we could not have used the five initial
values U−1 = 0, U0 = 0, U1 = 0, U2 = 0, U3 = 0 to generate the series
obtained. I was surprised to see how many times Un = 0 appears in each
series; six times in the fourth order series, ten times in the fifth order and
fifteen times in the sixth order series.

I did the calculations using Microsoft Excel spreadsheet functions as well
as Visual Basic for Excel subroutines. I translated a Fortran subroutine for
getting the roots of quartic and quintic equations, obtained from

http://www.uni-koeln.de/math-nat-fak/phchem/deiters/quartic/quartic.html,

into Visual Basic, and I wrote a Visual Basic routine for multiplying the
(complex) roots together in all the combinations necessary to obtain the
coefficients of powers of x for the fifth order and sixth order equations. I
will be happy to pass these routines on if anyone is interested.

Finally, as a motivation for trying to solve these recurrence relations, a
possibly realistic problem could be as follows.
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Suppose a laser sends out a light pulse.

The pulse hits a succession of k equally-spaced partially-reflecting mir-
rors. Each mirror reflects a fraction 1/k of the original pulse energy back
to the laser, and transmits any remaining energy. (The last mirror reflects
all of the light energy hitting it.)

If all the light energy returning to the laser is once more reflected back
to the mirrors with 100 per cent efficiency, how much of the pulse energy is
present at the laser (and at each mirror) at each successive clock time, and,
in particular, at the limit of infinite time?

Order-2 recurrence relation

First consider the order-2 recurrence relation

Un =
1

2
Un−1 +

1

2
Un−2.

Try Un = Axn as a solution. This gives Axn = Axn−1/2 + Axn−2/2.
Cancelling Axn−2 gives x2 = x/2+1/2. So the quadratic auxiliary equation
is x2 − x/2− 1/2 = 0. Let the roots be r1, r2. The general solution is Un =
Ar1

n +Br2
n, A,B constants. The equation factorizes as (x− 1)(x+ 1/2),

giving real roots 1, −1/2.

Thus Un = Ar1
n +Br2

n. So U0 = A+B, U1 = Ar1 +Br2 = A−B/2.
Written as a matrix equation, this is 1 1

1 −1

2

[ A
B

]
=

[
U0

U1

]
.

If we start with initial values, for example, U0 = 3, U1 = 0, then we can use
the inverse matrix to determine A and B: 1

3

2

3
2

3
−2

3

[ 3
0

]
=

[
1
2

]
;

thus A = 1, B = 2; Un = 1 + 2(−1/2)n. This function is plotted at the top
of the next page and the actual values are listed in the left-hand column of
page 4.
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I now want to extend the domain to all real values. The general solution
is U(x) = Ar1

x + Br2
x but because the root r2 is negative, real values do

not always exist for fractional x. An inspiration came to me one day at 3:30
am! If we convert the negative root to polar coordinates using −1 = eπi,

r2
x =

(
−1

2

)x
=

(
1

2

)x
eπix =

(
1

2

)x
(cosπx+ i sinπx).

Then take the real part, <U(x) = A+B/2x cosπx, which is graphed below.
There is a sample of actual values listed in the right-hand column of the
next page.
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n Un =
1

2
Un−1 +

1

2
Un−2 x U(x)

−13 −16383.00000 −10 2049.00000
−12 8193.00000 −9.9 1818.32783
−11 −4095.00000 −9.8 1443.38633
−10 049.00000 −9.7 978.77660
−9 −1023.00000 −9.6 480.62335
−8 513.00000 −9.5 1.00000
−7 −255.00000 −9.4 −416.53638
−6 129.00000 −9.3 −740.01609
−5 −63.00000 −9.2 −950.62009
−4 33.00000 −9.1 −1042.78075
−3 −15.00000 −9 −1023.00000
−2 9.00000 −8.9 −907.66392
−1 −3.00000 −8.8 −720.I9316

0 3.00000 ∗ −8.7 −487.88830
1 0.00000 ∗ −8.6 −238.81167
2 1.50000 −8.5 1.00000
3 0.75000 −8.4 209.76819
4 1.12500 −8.3 371.50805
5 0.93750 −8.2 476.81004
6 1.03125 −8.1 522.89037
7 0.98438 −8 513.00000
8 1.00781 −7.9 455.33196
9 0.99609 −7.8 361.59658

10 1.00195 −7.7 245.44415
11 0.99902 −7.6 120.90584
12 1.00049 −7.5 1.00000
13 0.99976 −7.4 −103.38409
14 1.00012 −7.3 −184.25402
15 0.99994 −7.2 −236.90502
16 1.00003 −7.1 −259.94519
17 0.99998 −7 −255.00000
18 1.00001 −6.9 −226.16598
19 1.00000 −6.8 −179.29529
20 1.00000 −6.7 −121.22207
21 1.00000 −6.6 −58.95292
22 1.00000 −6.5 1.00000

∗ Initial condition
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Order-3 recurrence relation

Consider the order-3 recurrence relation

Un =
1

3
Un−1 +

1

3
Un−2 +

1

3
Un−3.

Try Un = Axn as a solution. This gives

Axn =
1

3
Axn−1 +

1

3
Axn−2 +

1

3
Axn−3.

The cubic auxiliary equation is x3 = x2/3 + x/3 + 1/3. Let the roots
be r1, r2, r3. The general solution is U(n) = Ar1

n + br2
n + cr3

n, A, b, c
constants. As before, r1 = 1, and dividing by x − 1 gives a conjugate pair
of complex roots r2 = −1/3 +

√
2 i/3 and r3 = −1/3−

√
2 i/3.

Now express r2 and r3 in polar coordinates. Let

r =

√
(1/3)

2
+ (
√

2/3)
2

=

√
3

3
≈ 0.57735027

and

θ = arccos− 1

3r
= arccos−

√
3

3
≈ 2.18627604.

Thus

U(n) = A+ b(r cos θ + i sin θ)n + c(r cos θ − i sin θ)n

= A+ brn(cosnθ + i sinnθ) + crn(cosnθ − i sinnθ)

by De Moivre’s theorem. Now define B = b+ c, C = ib− ic. Then

U(n) = A+Brn cosnθ + Crn sinnθ

and in particular

U(−1) = A+Br−1 cos(−θ) + Cr−1 sin(−θ) = A−B −
√

2C,

U(0) = A+B,

U(1) = A+Br cos θ + Cr sin θ = A− 1

3
B +

√
2

3
C.

Written as a matrix equation, this is
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
1 −1

√
2

1 1 0

1 −1

3

√
2

3


 A
B
C

 =

 U(−1)
U(0)
U(1)

 .
For initial values, let U−1 = 6, U0 = 0, U1 = 0. Then we can use the inverse
matrix to determine A, B and C:

1

6

1

3

1

2

−1

6

2

3
−1

2

−
√

2

3
−
√

2

6

√
2

2


 6

0
0

 =

 1
−1

−2
√

2

 .

Thus A = 1, B = −1 and C = 2
√

2.

The function

U(x) = 1− rx cos θx− 2
√

2rx sin θx

= 1−

(√
3

3

)x
(cos θx+ 2

√
2 sin θx)

is real for all real values of x and it looks like this.
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Order-4 recurrence relation

Consider the order-4 recurrence relation

Un =
1

4
Un−1 +

1

4
Un−2 +

1

4
Un−3 +

1

4
Un−4.

The quartic auxiliary equation is

x4 =
1

4
(x3 + x2 + x+ 1).

Let the roots be r1, r2, r3 and r4. The general solution is

U(n) = Ar1
n +Br2

n + cr3
n + dr4

n,

A,B, c, d constants. Solving the quartic (J. E. Hacke, Amer. Math.
Monthly, Vol. 48 (1941), 327–328, or see http://www.uni-koeln.de/math-
nat-fak/phchem/deiters/quartic/quartic.html) gives real roots r1 = 1 and
r2 = −0.6058 and a pair of complex roots: r3 = −0.0721 + 0.6383i and
r4 = −0.0721− 0.6383i. The polar coordinates for r3 and r4 are given by

r = 1
√

(−0.0721)2 + (0.6383)2 = 0.6424

and

θ = arccos−0.0721

0.6424
= 1.6832.

Hence

cr3
n + dr4

n = crn(cos θ + i sin θ)n + drn(cos θ − i sin θ)n,

where c, d are complex constants. Now define C = c+d, D = ci−di. Then

U(n) = Ar1
n +Br2

n + Crn cosnθ +Drn sinnθ.

For example,

U(2) = Ar1
2 +Br2

2 + Cr2 cos 2θ +Dr2 sin 2θ

= A+ 0.3670B − 0.4023C − 0.0920D.

Written as a matrix equation,
1 −1.65062919 −0.1746854 −1.54686889
1 1 1 0
1 −0.60582959 −0.07208521 0.63832674
1 0.36702949 −0.40226474 −0.09202783



A
B
C
D

 =


U(−1)
U(0)
U(1)
U(2)

 .



Page 8 M500 179

For initial values, let U−1 = 10, U0 = 0, U1 = 0, U2 = 0. Then we can use
the inverse matrix to determine A, B, C and D:

1

10

1

5

3

10

2

5

−0.22486329 0.14630262 −0.46635467 0.54491535
0.12486329 0.65369738 0.166354675 −0.94491535
−0.3559745 −0.10064351 0.672790633 −0.21617233




10
0
0
0



=


1

−2.24863294
1.24863294

−3.559744994

 =


A
B
C
D

 .
With these values of A, B, C and D, the function

U(x) = Ar1
x +Br2

x + Crx cos θx+Drx sin θx

is complex for real x but if we plot <U(x) horizontally (into the paper) and
=U(x) vertically, we obtain this spiral-shaped graph.
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Order-5 recurrence relation

Consider the order-5 recurrence relation

Un =
1

5
Un−1 +

1

5
Un−2 +

1

5
Un−3 +

1

5
Un−4 +

1

5
Un−5.

The quintic auxiliary equation is

x5 =
1

5
(x4 + x3 + x2 + x+ 1).

Let the roots be r1, r2, . . . , r5. The general solution is

U(n) = Ar1
n +Br2

n + cr3
n + dr4

n + er5
n,

A,B, c, d, e constants. Solving the quintic equation gives a real root r1 = 1
and two pairs of complex roots: r2 = −0.5378 + 0.3583i, r3 = −0.5378 −
0.3583i, and r4 = 0.1378 + 0.6782i, r5 = 0.1378− 0.6782i.

Root r1 r2 r3 r4 r5

Real part 1 −0.53783227 −0.53783227 0.13783227 0.13783227
Imaginary 0 0.35828469 −0.35828469 0.67815439 −0.67815439
Polar ρ 1 0.64624413 0.64624413 0.69201959 0.69201959
Polar θ 0 2.55393789 2.55393789 1.37028142 1.37028142

Set ρ1 = 0.64624413, θ1 = 2.55393789, ρ2 = 0.69201959, θ2 = 1.37028142
and define B = b+ c, C = bi+ ci, D = d+ e, E = di+ ei. Then

U(n) = Ar1
n +Bρ1

n cosnθ1 + Cρ1
n sinnθ1

+Dρ2
n cosnθ2 + Eρ2

n sinnθ2.

For example,

U(2) = A+ 0.1609B − 0.3854C − 0.4409D + 0.1869E.

Written as a matrix equation this becomes
1 −1.28781548 −0.85789676 0.28781548 −1.41609308
1 1 0 1 0
1 −0.53783227 0.35828469 0.13783227 0.67815439
1 0.16089564 −0.38539414 −0.44089564 0.18694312
1 0.05154595 0.26492385 −0.18754595 −0.27322852



A
B
C
D
E

 =


U(−1)
U(0)
U(1)
U(2)
U(3)

 .



Page 10 M500 179

For initial values, let U−1 = 15, U0 = U1 = U2 = U3 = 0. Then we can use
the inverse matrix to determine A,B,C,D and E:

1

15

2

15

1

5

4

15

1

3

−0.26876479 0.31051264 −0.53794689 0.26031768 0.23588136
−0.27177859 −0.15235036 0.19080835 −0.97900742 1.21232802

0.20209812 0.55615403 0.33794689 −0.52698435 −0.56921470
−0.20894735 0.01710405 0.58354731 0.43756909 −0.82926711




15
0
0
0



=


1

−4.031471847
−4.076678797

3.031471847
−3.134210713

 =


A
B
C
D
E

 .
With these values of A, B, C, D and E, the function

U(x) = A+Bρ1
x cos θ1x+ Cρ1

x sin θ1x

+Dρ2
x cos θ2x+ Eρ2

x sin θ2x

is real for real x.
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Order-6 recurrence relation

Consider the order-6 recurrence relation

Un =
1

6
Un−1 +

1

6
Un−2 +

1

6
Un−3 +

1

6
Un−4 +

1

6
Un−5 +

1

6
Un−6.

The sextic auxiliary equation is

x6 =
1

6
(x5 + x4 + x3 + x2 + x+ 1),

with roots r1, r2, . . . , r6. The general solution is

U(n) = Ar1
n + br2

n + cr3
n + dr4

n + er5
n + Fr6

n,

A, b, c, d, e, F constants. The equation has two real and two pairs of complex
roots:

Root r1 r2 r3 r4 r5 r6

Real part −0.670332 −0.375695 −0.375695 0.294194 0.294194 1
Imaginary 0 0.570175 −0.570175 0.668367 −0.668367 0
Polar ρ 0.670332 0.682822 0.682822 0.730249 0.730249 1
Polar θ 0 2.153411 2.153411 1.156147 1.156147 0

Set ρ1 = 0.68282252, θ1 = 2.15341101, ρ2 = 0.73024997, θ2 = 1.15614777
and define B = b+ c, C = bi+ ci, D = d+ e, E = di+ ei. Then

U(n) = Ar1
n +Bρ1

n cosnθ1 + Cρ1
n sinnθ1

+Dρ2
n cosnθ2 + Eρ2

n sinnθ2 + F.

For example,

U(2) = 0.4493A− 0.1840B − 0.4284C − 0.3602D + 0.3933E + F.

Written as a matrix equation,
−1.491797 −0.805786 −1.222904 0.551685 −1.253348 1

1 1 0 1 0 1
−0.670332 −0.375695 0.570175 0.294194 0.668367 1

0.449345 −0.183952 −0.428424 −0.360164 0.393259 1
−0.301210 0.313386 0.056071 −0.368800 −0.125026 1

0.201910 −0.149708 0.157619 −0.024935 −0.283276 1




A
B
C
D
E
F

 =


U(−1)
U(0)
U(1)
U(2)
U(3)
U(4)

.
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For initial values, let U−1 = 21, U0 = U1 = U2 = U3 = U4 = 0. Then we
can use the inverse matrix to determine A,B,C,D,E and F :

−0.175914 0.086514 −0.304975 0.279048 −0.592197 0.707525
−0.072673 0.368001 −0.186308 −0.238152 1.034274 −0.905140
−0.312465 −0.149558 0.258076 −0.748257 −0.000766 0.952970

0.200968 0.450246 0.348427 −0.231372 −0.680171 −0.088099
−0.110429 0.080532 0.498315 0.601185 −0.068753 −1.000851

1

21

2

21

1

7

4

21

5

21

2

7




21
0
0
0



=


−3.694197329
−1.526149405
−6.561770976

4.220346734
−2.319010141

1

 =


A
B
C
D
E
F

 .

With these values of A, B, C, D, E and F , we plot

<U(x) = Ar1
x +Bρ1

x cos θ1x+ Cρ1
x sin θ1x

+Dρ2
x cos θ2x+ Eρ2

x sin θ2x+ F.
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Dice
Chris Pile
Topics from the past occasionally resurface. I was reading Innumeracy by
John Allen Paulos and came across a reference to ‘Efron dice’ on p. 100. It
is stated that Bradley Efron discovered the four dice (as described by Bob
Curling in M500 32) but the spotting is the same as I suggested in M500
33. As M500 33 predates the first publication of the book by about 12
years, I wonder who spotted them first!

The four dice and their characteristics are as follows.

A 4 4 4 4 0 0 16 spots, EV = 2 2
3 A beats B 24:12

B 3 3 3 3 3 3 18 spots, EV = 3 B beats C 24:12
C 6 6 2 2 2 2 20 spots, EV = 3 1

3 C beats D 24:12
D 5 5 5 1 1 1 18 spots, EV = 3 D beats A 24:12

I have now discovered that, with a minor modification, a similar non-
transitive result can be obtained with three dice all having the same number
of spots as a standard die (21), so each has the same expected value (EV)
of 7/2. All the faces are same as a face on a standard die (no blanks).

A 6 3 3 3 3 3 A beats B 21:15
B 5 5 5 2 2 2 B beats C 21:15
C 4 4 4 4 4 1 C beats A 25:11

The three dice all perform the same when rolled against a standard die,
being evenly matched (win 15, lose 15, equal score 6). However, against a
theoretical ‘normalized’ die with 7/2 spots on each face A loses 6:30, C wins
30:6 and B is evenly matched (18:18). If the three dice are rolled together
(216 outcomes), then B beats C beats A by 90:75:51.

There are 32 ways in which a die can be spotted with standard faces
(i.e. 1, 2, . . . , 6) so that the total number of spots is 21 (EV = 7/2) but
only A and C, above, record the extreme results of 30:6 or 6:30 against a
‘normalized’ die.

Other non-transitive spottings are possible. For example,

X 6 5 4 4 1 1 X beats Y 18:12 (6 equal)
Y 4 4 4 3 3 3 Y beats Z 21:12 (3 equal)
Z 6 6 3 2 2 2 Z beats X 18:16 (2 equal)

If every possible pair of dice from the 32 arrangements were played against
each other (496 contests) I do not know how they would appear in the
resulting league table—perhaps someone could investigate!
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Number of ways of spotting a die (EV = 7/2)

Spots Performance

6 6 6 1 1 1 E
6 6 5 2 1 1 E
6 6 4 3 1 1 E
6 6 4 2 2 1 E
6 6 3 3 2 1 12:24
6 6 3 2 2 2 12:24
6 5 5 3 1 1 E
6 5 5 2 2 1 E
6 5 4 4 1 1 24:12

Std. 6 5 4 3 2 1 E
6 5 4 2 2 2 E
6 5 3 3 3 1 12:24
6 5 3 3 2 2 12:24
6 4 4 4 2 1 24:12
6 4 4 3 3 1 E
6 4 4 3 2 2 E
6 4 3 3 3 2 12:24

A 6 3 3 3 3 3 6:30
5 5 5 4 1 1 24:12
5 5 5 3 2 1 E

B 5 5 5 2 2 2 E
5 5 4 4 2 1 24:12
5 5 4 3 3 1 E
5 5 4 3 2 2 E
5 5 3 3 3 2 12:24
5 4 4 4 3 1 24:12
5 4 4 4 2 2 24:12
5 4 4 3 3 2 E
5 4 3 3 3 3 12:24

C 4 4 4 4 4 1 30:6
4 4 4 4 3 2 24:12
4 4 4 3 3 3 E



M500 179 Page 15

In an attempt to analyse the non-transitive effect and identify a statistic
that could predict this behaviour, it seems that Pearson’s first coefficient of
skew may be useful.

Die Mean EV Median Mode Std. dev. skew

A 3.5 3 3 1.118 0.447
B 3.5 3.5 2,5 1.5 1, −1
C 3.5 4 4 1.118 −0.447

From the distribution, the higher values of negative skew beat lower
values and these beat positive skew. Thus 0.447 beats 1, −1 beats −0.447,
−0.447 beats +0.447. This seems only partly plausible because the distri-
bution for B is symmetrical (skew = 0). However, it seems that a set of
three dice must have different skew values.

mean

mode

mode

mode 1 mode 2

A beats B

1 2 3 4 5 6

C

B

A
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On ranks and cranks
Tony Forbes
A partition of a number n is a set of positive integers that add up to n. For
example, {1, 1, 3, 6} is a partition of 11 into four parts: 1, 1, 3 and 6.

The number of partitions of n is usually denoted by p(n). Order is
immaterial and we also count the number by itself as a partition, {n}. So
p(1) = 1 and 1 has just one partition, namely {1}; p(2) = 2, the partitions
being {1, 1} and {2}; p(3) = 3: {1,1,1}, {1,2}, {3}; p(4) = 5: {1,1,1,1},
{1,1,2}, {1,3}, {2,2}, {4}; and so on.

The rank, r(P ), of a partition P is defined as the largest part minus the
number of parts. Thus r({1, 1, 3, 6}) = 6− 4 = 2. Notice that the rank may
be negative; for instance, a partition consisting of n ones, has rank 1− n.

In 1919, Srinivasa Ramanujan proved that the number p(n) satisfies the
two congruences p(5k+4) ≡ 0 (mod 5) and p(7k+5) ≡ 0 (mod 7), for k = 0,
1, 2, . . . . But what was lacking from his proofs was a simple property of
the partitions of 5k + 4 and 7k + 5 that distributes them equally over the
residue classes modulo 5 and 7, respectively.

Writing in the 1944 edition of Eureka (the journal of the Archimedeans,
a mathematical society for Cambridge University undergraduates), Freeman
Dyson defined the rank and conjectured that it does just that—for x = 0,
1, 2, 3, 4, exactly p(5k + 4)/5 partitions of 5k + 4 have rank ≡ x (mod 5),
and for x = 0, 1, . . . , 6, exactly p(7k + 5)/7 partitions of 7k + 5 have rank
≡ x (mod 7). Oliver Atkin and Peter Swinnerton-Dyer proved Dyson’s
conjecture in 1953.

Ramanujan proved a third congruence, p(11k + 6) ≡ 0 (mod 11) for k
= 0, 1, 2, . . . . However it turns out that in this case the rank function as
defined above fails to work. It is not always true that for given x (mod 11),
p(11k + 6)/11 partitions of 11k + 6 have rank ≡ x (mod 11). In the same
Eureka article, Dyson predicted the existence of another function c such
that the c(P ) of the partitions P of 11k + 6 are distributed uniformly over
the residue classes modulo 11. Dyson named this property the crank of
a partition but at the time he was unable to define it. He expressed the
hope that the crank would not have to suffer the same fate as the planet
Vulcan and that one day somebody would discover the correct definition
and thereby prove it does exist.

That had to wait until 1987, when George Andrews and Frank Garvan
discovered the true definition of the crank—on the last day of the Ramanu-
jan Centenary Conference at the University of Illinois.
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Given a partition P , let L(P ) denote the largest part of P , let M(P )
denote the number of ones in P and let N(P ) denote the number of parts
of P larger that M(P ). The crank, c(P ), is defined as follows: if M(P ) = 0,
then c(P ) = L(P ), otherwise c(P ) = N(P )−M(P ).

The tables on this page list the partitions of 4, 5 and 6. Observe that
rank (mod m) is equally distributed over the partitions of 4 and 5, but not
6. In the table for n = 4 and n = 5, the ‘rank mod m’ column contains the
full complement of residues, {0, 1, 2, 3, 4} (mod 5) and {0, 1, 2, 3, 4, 5, 6}
(mod 7) respectively, whereas for n = 6 there are two 1s, two 10s, no 4 and
no 7.

On the other hand, crank (mod m) is equally distributed for 6 as well
as 4 and 5. You verify by checking that each of the numbers 0, 1, 2, . . . , 10
appears exactly once as a crank (mod 11) when n = 6.

partition rank crank
n m P rank mod m L(P ) M(P ) N(P ) crank mod m

4 5 1 1 1 1 −3 2 1 4 0 −4 1
1 1 2 −1 4 2 2 0 −2 3
1 3 1 1 3 1 1 0 0
2 2 0 0 2 0 2 2 2
4 3 3 4 0 1 4 4

5 7 1 1 1 1 1 −4 3 1 5 0 −5 2
1 1 1 2 −2 5 2 3 0 −3 4
1 1 3 0 0 3 2 1 −1 6
1 2 2 −1 6 2 1 2 1 1
1 4 2 2 4 1 1 0 0
2 3 1 1 3 0 2 3 3
5 4 4 5 0 1 5 5

6 11 1 1 1 1 1 1 −5 6 1 6 0 −6 5
1 1 1 1 2 −3 8 2 4 0 −4 7
1 1 1 3 −1 10 3 3 0 −3 8
1 1 2 2 −2 9 2 2 0 −2 9
1 1 4 1 1 4 2 1 −1 10
1 2 3 0 0 3 1 2 1 1
1 5 3 3 5 1 1 0 0
2 2 2 −1 10 2 0 3 2 2
2 4 2 2 4 0 2 4 4
3 3 1 1 3 0 2 3 3
6 5 5 6 0 1 6 6
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On the next page there is a more substantial example: the thirty par-
titions of 9, split into five classes of six by rank (mod 5) and also by crank
(mod 5). Each of the numbers 0, 1, 2, 3 and 4 appears six times in both
columns.

From this limited amount of evidence you may have noticed, as I did,
the interesting fact that the ranks add up to zero. In other words∑

P

r(P ) = 0, (1)

where P runs through the partitions of n. This is in fact quite easy to prove.
Write a partition such as 9 = 1 + 1 + 1 + 2 + 4 as an array of dots, where
in this case the five parts are represented by columns.

•
•

• •
• • • • •

Rotate the diagram through 90 degrees clockwise and reflect it in a vertical
mirror. The pattern of dots now represents the conjugate partition 1 + 1
+ 2 + 5.

•
•
•

• •
• • • •

The largest part (4) and number of parts (5) of the original partition have
become interchanged. The new partition has 4 parts; the largest part is 5.

More generally, start with a partition P of n into s parts, the largest of
which is t. The rank of P is t − s. Now apply the rotation-and-reflection
procedure to obtain a partition P ′ into t parts, the largest of which is s, and
hence the rank of P ′ is s− t. Therefore r(P ) + r(P ′) = 0 and, furthermore,
P and P ′ will be different partitions of n, except possibly when s = t in
which case the rank is zero anyway. Thus (1) holds true.

Having shown that the ranks of the partitions of n sum to zero it oc-
curred to me that the same result might be true of the crank, but stupidity
and laziness have so far prevented me from finding a proof or a counter-
example. I offer it to interested readers as a challenge. It is possible that a
more sophisticated version of the dots argument might work.
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The 30 partitions of 9

partition rank rank (mod 5) crank crank (mod 5)

1 1 1 1 1 1 1 1 1 −8 2 −9 1
1 1 1 1 1 1 1 2 −6 4 −7 3
1 1 1 1 1 1 3 −4 1 −6 4
1 1 1 1 1 2 2 −5 0 −5 0
1 1 1 1 1 4 −2 3 −5 0
1 1 1 1 2 3 −3 2 −4 1
1 1 1 1 5 0 0 −3 2
1 1 1 2 2 2 −4 1 −3 2
1 1 1 2 4 −1 4 −2 3
1 1 1 3 3 −2 3 −3 2
1 1 1 6 2 2 −2 3
1 1 2 2 3 −2 3 −1 4
1 1 2 5 1 1 −1 4
1 1 3 4 0 0 0 0
1 1 7 4 4 −1 4
1 2 2 2 2 −3 2 3 3
1 2 2 4 0 0 2 2
1 2 3 3 −1 4 2 2
1 2 6 3 3 1 1
1 3 5 2 2 1 1
1 4 4 1 1 1 1
1 8 6 1 0 0
2 2 2 3 −1 4 3 3
2 2 5 2 2 5 0
2 3 4 1 1 4 4
2 7 5 0 7 2
3 3 3 0 0 3 3
3 6 4 4 6 1
4 5 3 3 5 0
9 8 3 9 4

No, it’s not the home of Star Trek’s Mr Spock. Dyson’s Vulcan was a hypo-
thetical member of the solar system invented by 19th century astronomers to
account for deviations from the theoretical orbit of Mercury that could not
be explained by gravitational effects of the other known planets. However,
Vulcan became unnecessary when (in 1915) a young employee of the Swiss
Patent Office developed a new theory of gravity which correctly predicted
Mercury’s erratic behaviour.
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When does 2∞ = 0?
Martin Cooke
As well as the trivial solution (‘when you’ve made a mistake, such as dividing
by zero’) I’d like to postulate the following:

Dividing by zero can be done consistently, as I did when constructing
my infinite times tables (M500, issue 176) so long as the usual problem is
overcome, i.e. you don’t derive 2 = 1 from 2 · 0 = 0 = 1 · 0. In 176 I used
the result 00 = X, where X is an extension of a field F . Then if ∞ ≡ 0−1,
∞0 = 0−0 = 00 = X too. This gives a mapping X → X, where x→ x0 for
x ∈ X since x0 = 1 for non-zero elements of F .

When exponentiation is extended from the integers, the property abac =
ab+c is taken as definitive. Since this would imply that X = 0 · X =
0100 = 01 = 0, the context of using this property definitively when extending
exponentiation may be one situation where 00 should be regarded as only 1,
rather than the whole of X, although it does hold in that part of X where
distributivity also holds (i.e. in F ) since 0 · F = 0. However, since 0/0 = X
can be regarded as 00 in a fairly obvious way, and so used as the notation
of the above mapping, it is also possible to take the inverse mapping (by
merely reversing the mapping x→ x0) X → X, x→ x∞ as a mathematical
object this way. Then 1∞ = X and x∞ = (0,∞) for non-unit x.

Note that this is a particular infinity with properties such as ∞ =
−∞, and an exponentiation notation which is appropriate but not the only
possibility. The equation of the title results from restricting this inverse
mapping to F → F and looking at the value of 2 under it. The particular
value of 2 was chosen because of the similarity of this equation to those of
cardinal arithmetic, if ∞ is replaced by Ω, the size of the proper class of
cardinals, whose power-set would be contradictory (if it were a set) and so
belong in the empty set, of size 0. (Both Ω and ∞ are known as ‘absolute’
infinities; because of their conceptual contexts, nothing is bigger than they
are.)

Problem 179.1 – Two cars
David Singmaster
Two cars are heading towards one another from 100 miles apart on a straight
road. The first is going 60 m.p.h. and the second is going 40 m.p.h. A fly
starts at the front bumper of the first car and flies to the second and then
back to the first, then back to the second, etc. Eventually there is a god-
awful crash and our fly is squashed. If the fly can fly 50 m.p.h., how far
does he fly before the smash?
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Solution 177.1 – Eight cubes
Eight cubes have a pair of opposite faces marked
with ‘X’ and ‘O’. They are placed in a box in con-
figuration A. Get them into configuration B. The
only legal move is to roll or slide a cube into the
vacant space. We asked you to show that 22 moves
are necessary.

Malcolm Maclenan
O O O

O O

O O O

X X X

X X

X X X

A

B

Not a rigorous proof, more a simpleton’s approach. For eight cubes to be
inverted, the configuration involving least ‘rolls’ would be a straight line,
and 16 rolls would be needed. To achieve this within the constraints of the
3×3 box, three of the centre cubes (cyan/light grey) must be slid out to the
edge and, finally, three must be slid back to the centre (green/dark grey).
The fourth centre cube can be rolled across the centre.

A slide and two rolls is the same number of manœuvres as a roll for-
ward, or a roll sideways and a roll backwards. This latter manœuvre does
transpose a corner cube to the centre cube and a centre cube to a corner
cube, but must always pass through the centre, which is usually occupied.

S R S R S R R

R R R R R R R R

R R S R S R S

Norman Clark
Martyn Hennessy
We offer our sympathy to the relatives and friends of two of our members,
Norman Clark and Martyn Hennessy, who died last year.
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Solution 175.4 – The first prime
The prime numbers are arranged alphabetically. Which is the
first?

Ralph Hancock
Greek: 2, duo, surely.

Latin: The best I can come up with is 100109 (centum milia novem).

Re: ‘centum bilia . . . ’, a suggestion of Tony Forbes. It means ‘a hundred
bilious women.’ The classical expression for a million is ‘decies centena
milia’; my Polish-Latin dictionary, besides the latter also gives ‘mil(l)io’,
with the assumed genitive in -onis, but such word is as valid for Latin as
‘instrumentum televisorium’, as you see, and perhaps was only given there to
justify another vocable, ‘milionarius’, which of course has a synonym ‘homo
divitissimus’. ‘Billion’ is a purely artificial word—see AHD or Collins for
etymology. To treat it as a neuter noun with Greek ending and the plural
in -a is inventive, but can hardly be taken as serious.

ADF
I found this in an item on the WWW:

American English: 8,808,808,889 (eight billion eight hun-
dred eight million eight hundred eight thousand eight hundred
eighty-nine)

British English: 8,808,808,808,851 (eight billion eight hun-
dred eight milliard eight hundred eight million eight hundred
eight thousand eight hundred fifty-one)

‘Milliard’? I have only ever seen it on German postage stamps. Anyway,
the American version seems to answer the question if we agree to suppress
the word ‘and’. Otherwise, Ralph Hancock’s 8,000,000,081 (eight billion
and eighty one, M500 177 26) still stands.

Problem 179.2 – Four tans
Dick Boardman
Show that

tan 11◦ = (tan 19◦)(tan 33◦)(tan 41◦).
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London Mathematical Society
Popular Lectures 2001

Strathclyde University – Thursday 14th June
Leeds University – Friday 22nd June

Institute of Education, London University – Tuesday 3rd July

Professor Peter Cameron

Codes

‘From catching out a liar, to se-
quencing the human genome, or
designing a quantum computer –
there’s a code that does the job.’

PICTURE
OF
A

BRONTOSAURUS
AND
A

RACING
CAR

PICTURE
OF
A

TERRIFIED
SUSPECT
UNDER

INTERROGATION

Professor Chris Budd

Simulating the world

‘How maths helps us to: drive
a supersonic racing car, make di-
nosaurs live again, or leave the so-
lar system, without moving from
our desks.’

STRATHCLYDE Commences at 2.00 pm, refreshments at 3.00 pm, ends at
4.30 pm. Admission is free. Enquiries to Professor A. McBride or Dr A.
Ramage, Department of Mathematics, Strathclyde University, Livingstone
Tower, 26 Richmond Street, Glasgow G1 1XH (tel: 0141 548 3647/3801,
e-mails: a.c.mcbride@strath.ac.uk, a.ramage@strath.ac.uk).

LEEDS Commences at 6.30 pm, refreshments at 7.30 pm, ends at 9.00
pm. Admission is free. Enquiries to Dr R.B.J.T Allenby, School of Math-
ematics, University of Leeds, Leeds LS2 9JT (tel: 0113 233 5122, e-mail:
pmt6ra@leeds. ac.uk).

LONDON Commences at 7.00 pm, refreshments at 8.00 pm, ends at 9.30
pm. Admission is free, with ticket. Apply by June 29th to Miss S. M.
Oakes, London Mathematical Society, 57–58 Russell Square, London WC1B
4HS (e-mail: taylor@lms.ac.uk). A stamped addressed envelope would be
appreciated.
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Letters to the Editors
Two cars
Re: Problem 179.1, page 20 of this M500. How many people got 50 miles?
Hands up! Good, I’m glad to see so many people know this problem. After
all, the cars are approaching from 100 miles apart at a total speed of 100
m.p.h., so they’ll collide in just one hour, during which time our fly has
flown 50 miles (no flies on him!).

Sadly, you’re all wrong! Since the first car is going at 60 m.p.h. and the
poor fly can only do 50 m.p.h., he remains stuck fast on the front bumper
of the first car, totally unable to do anything but stare at the oncoming
disaster.

Moral: don’t solve your problem until you’ve read it. (Some people
claim that the fly would be able to head away from the first car at a total
speed of 110 m.p.h., but air resistance would keep him from getting more
than a negligible distance.)

David Singmaster

Find the missing terms
Re: M500 177, page 28. The piglets were named Millie, Christa, Alexis,
Carrel and Dotcom. I found the rule of formation at

http://www.toronto.globaltv.com/ont/technology/stories/
technology-20000314-160918.html.

‘The names of the first cloned piglets each have their own significance.
Millie was named for the millennium. Christa, Alexis and Carrel were
named after Dr Christian Barnard, who performed the first human heart
transplant, and Dr Alexis Carrel, who won the Nobel prize in 1912 for his
work in the field of transplantation. And as for Dotcom . . . “Any associ-
ation with dotcoms right now seems to have a very positive influence on a
company’s valuation,” said James.’

Nigel Mercier

ADF writes—Ralph Hancock treated it as that game in which you are
given two words, W0, Wn, and you have to form a sequence, W0,W1, . . . ,Wn.
The rules are:

(i) all the words have the same number of letters;

(ii) word Wi differs from word Wi−1, i = 1, 2, . . . , n, in exactly one place;

(iii) there exists an authority which confirms that W0,W1, . . . ,Wn belong
to the English language.
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Ralph’s answer: Milly, Milty, Mitty, Ditty, Dotty. (Milty: like the
seed-filled reproductive gland of male fish—COD.)

Now that we have introduced the game, here a couple of interesting
examples from David Singmaster:

(1) Turn APE into MAN. Find a shorter sequence than APE, APT,
OPT, OUT, BUT, BUN, BAN, MAN.

(2) Change CIRCLE to SQUARE. David assures me that there is no
valid solution. His reason: it is impossible to square the circle!

Problem 179.3 – Nine switches
You are outside a room. You have nine switches. Inside are nine light-bulbs
(which you can’t see, of course). How many trips must you make into the
room to allocate bulbs to switches?

Problem 179.4 – Two cylinders
Peter Bell
There are two cylinders, one can be thought of as short and fat, the other
as long and thin. The short cylinder has radius R and length L, R > r > 0.
The long cylinder has radius r and length l, l > L > 0. The two cylinders
are touching such that their axes are co-linear. There exists a closed loop
of string of length x.

Question: What is the smallest x (i.e. the length of the shortest loop of
string) that can be passed over the fat cylinder onto the thin cylinder?
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Solution 177.3 – Mahatma’s triangle

Given x in the diagram,opposite, what is θ?

Chris Pile
I have not seen this before and it has caused me
some frustration because I cannot see a neat so-
lution.

Make TQ perpendicular to AC and make BN
perpendicular to TC, extending it to meet AC at
M . Then

TB

sin θ
=

TR

sin(30◦ − x)
.

Hence

sin θ =
TB

TR
sin(30◦ − x). (1)

Triangle TBC is isosceles (TB = BC) as is
∆TMC (TM = MC); so ∠CTM = 30◦ =
∠MTQ. Hence TQ = TN (= TM sin 60◦). Next,
∠BRQ = 30◦ + x, so

TQ

TR
= sin(θ + 30◦ + x).

A

B C

T

R

Q

M

N

2x

30 °

Also
TQ

TB
=

TN

TB
= sin(60◦ − 2x), so

TB

TR
=

sin(θ + 30◦ + x)

sin(60◦ − 2x)
. Thus

from (1),

sin θ =
sin(θ + 30◦ + x) sin(30◦ − x)

sin(60◦ − 2x)
=

sin(30◦ + θ + x)

2 cos(30◦ − x)

=
(sin θ) cos(30◦ + x) + (cos θ) sin(30◦ + x)

2 cos(30◦ − x)
.

Hence tan θ =
(tan θ) cos(30◦ + x) + sin(30◦ + x)

2 cos(30◦ − x)
, which rearranges to give

tan θ =
sin(30◦ + x)

2 cos(30◦ − x)− cos(30◦ + x)
=

1

2
cosx+

√
3

2
sinx

√
3

2
cosx+

3

2
sinx

=
1√
3

;

θ = 30 degrees.
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Elsie Page
Construct BD so that angle RBD is 30◦ + x
(i.e. ∠TBD = 60◦) and D lies on AC. Join
DT .

First we prove that ∆TBD is equilateral.
Triangle BCD is isosceles with DB = CB
since ∠BDC = 2x + 60◦. Triangle BTC is
isosceles with TB = CB since ∠BTC = 2x+
30◦. So TB = DB and, since ∠TBD = 60◦,
∆TBD is equilateral.

Next, we prove that D is the centre of
the circumcircle of ∆BTR. Triangle RDB
is isosceles with DR = DB since ∠BRD =
30◦ + x. Also DT = DB (since ∆TBD is
equilateral). So DR = DB = DT and D is
the centre of the circle through R, B and T .
Hence

∠TRB =
1

2
∠TDB = 30◦.

A

B C

T

R

D
N

2x

30 °

Problem 179.5 – Subtract square root
ADF
Start with a large number, n. Replace n by n−

√
n. Repeat until you reach

something less than 1. Approximately how many iterations are required?

What about n→ n−
√
kn, where k is a given constant?

Problem 179.6 – Root 11 again
Barry Lewis
This problem concerns an old friend, the integer part of the number (

√
11+

3)n; cf. M500 174 26, 176 6.

Prove that if p is an odd prime, the integer part of (
√

11 + 3)p − 2 · 3p
is divisible by 66p.
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Solution 177.5 – 3 theta

Show that
sin 3θ

sin θ
− cos 3θ

cos θ
= 2.

Dick Boardman
Multiply both sides by (sin θ)(cos θ). Then the left hand side is the expan-
sion of sin(3θ − θ) and the right hand side is the standard expansion for
sin 2θ. QED.

There are many trig. identities containing integers; e.g. if we take any
of the standard expansion formulae and divide the LHS by the RHS we
get an expression equal to 1. This problem has simply taken two standard
formulae for sin 2θ and divided one by the other.

Squawks
Eddie Kent
Squawks are problem listings that pilots leave for maintenance crews to fix
before the next flight. Here’s a selection of complaints submitted by US Air
Force pilots and the replies from the crews.

Problem: Left inside main tyre almost needs replacement
Solution: Almost replaced left inside main tyre

Problem: Test flight OK, except autoland very rough
Solution: Autoland not installed on this aircraft

Problem: Something loose in cockpit
Solution: Something tightened in cockpit

Problem: Evidence of leak on right main landing gear
Solution: Evidence removed

Problem: DME volume unbelievably loud
Solution: Volume set to believable level

Problem: IFF inoperative
Solution: IFF always inoperative in OFF mode

Problem: Friction locks cause throttle levers to stick
Solution: That’s what they’re there for

Problem: Number three engine missing
Solution: Engine found on right wing after brief search
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Twenty-five years ago
From M500 31 and 32
Richard Ahrens—Mrs Read’s knitting machine. Graham Read’s wife
has a knitting machine that uses thread wound on special spools. Some
knitting patterns call for the simultaneous use of several threads (k, say),
which means having k spools with thread wound on them. Suppose we have
n spools (n ≥ k), s1, s2, . . . , sn, containing various quantities of thread, t1,
t2, . . . , tn respectively.

i. What condition must the numbers t1, t2, . . . , tn satisfy so that it
is possible to knit all the wool without ever having to wind wool from one
spool onto an empty spool? It is possible to change spools as often as you
like (i.e. before they are empty). The pattern uses all k threads at the same
rate. (Hint: try k = 2, n = 3 first.)

ii. Suppose we have the situation described above and the numbers t1,
t2, . . . , tn are such that it is possible to knit all the wool without rewinding
a spool. Show that it is possible to knit all the wool with no more than n−1
stops to change spools, but that in some cases n−1 stops will be necessary.

iii. (Unsolved and looks difficult) Find an algorithm for devising the
most efficient way of using all the wool (i.e. fewest stops to change spools)
in those cases where the job can be done in fewer than n− 1 stops.

Coral Bytheway—In one mindless moment my spouse declared, “Since
sec is just cos to the minus one, why don’t we forget about secs?”

Are people suffering from secs-phobia turned on by cos’s. (Cossie:
Northern dialect for bathing costume.)

Eurocheques
Following a change in their policy, UK banks have withdrawn from the
Eurocheque scheme as from the beginning of the year and will no longer
accept Eurocheques in sterling at their face value.

As a consequence of the decision, any Eurocheques paid in by the Society
to banks in the UK are now returned without presentation. The banks
will not negotiate the cheques because the negotiation charges exceed the
amount of the subscription.

We regret, therefore, that we are no longer able to accept Eurocheques
as payment of subscriptions and must ask that overseas members find alter-
native methods for forwarding the funds to us. We realise that this is likely
to incur extra expense for overseas members and do hope that they will not
be deterred from renewing their subscriptions.
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