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John Fauvel
Costel Harnasz
Participants at this year’s M500 Winter Week-end at Nottingham University
might have noticed that John Fauvel looked a little off colour, and that he
wasn’t present at the plenary session on the Sunday. John was in fact
seriously ill.

He died on May 12th, of a longstanding liver and kidney condition.

For those who didn’t know John, he worked for the OU co-authoring
the set book for MA290, Topics in the History of Mathematics. He was
President of the British Society for the History of Mathematics, and editor
of its newsletter, and there some of the qualities evident even during the
couple of days with us at the beginning of this year had their full fruition.
He helped make the BSHM into an internationally respected institution,
and anyone who has seen its newsletter will see why—beautifully produced,
with something for everyone.

He introduced HIMED—History in Maths Education conferences—to
the world of teaching and these were a joy to be part of. You see, John would
talk to everybody, and introduce everybody to everybody else with this
special knack such that schoolteacher would be quite at ease with emeritus
professor. John didn’t make distinctions.

He was a rare human being, generous in many ways, never complaining.
He stood in at short notice when the main speaker couldn’t make it at the
M500 Revision Week-end in 1991. Those of you who were there will re-
member the delightful lecture he gave on the mathematical work of Charles
Babbage. And when he asked me to apologize on his behalf for his early
departure on that Sunday afternoon in Nottingham, he disguised the true
severity of his illness by excusing himself in the note he’d written: ‘. . . on
account of my hip playing up’.

Those wishing to find out more about the BSHM, and to read
the extensive worldwide tributes to this remarkable man, can go to
www.dcs.warwick.ac.uk/bshm.

Sidney Silverstone
John was a supporter of M500 from its early days (in the 1970s). Not all of
the members of the maths faculty supported the organization then; indeed,
some of them were quite anti. He was one of our early tutors at the M500
Week-end in the History of Mathematics course, AM289.

He played a significant role in creating the high regard that the OU is
given internationally for its research into the history of our subject.
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Peter Baxandall
I am very sorry to have to share with you some of the sadness that I feel,
but on the other hand I am sure that you would want to know that John
Fauvel (Course Team Chair of MA 290 and joint author with Jeremy Gray
of the associated book The History of Mathematics – A Reader) died on
Saturday 12th May. He was only 53 years old.

Some of John’s characteristic kindness and enthusiasm and energy comes
through the Units and particularly the Reader. Everyone who knew him
(even slightly) cannot fail to have been influenced by all three. There
is ample evidence of that in the tributes that you will find from his
many colleagues and friends in this country and from all over the world
in the BSHM (British Society for the History of Mathematics) website
http://www.dcs.warwick.ac.uk/bshm.

You will find an account of how much John did (and get some feeling
of how much more there was in him had there been time) by looking at the
OU Pure Mathematics website at http://mcs.open.ac.uk/puremaths.

Forty-eight cubes
Tony Forbes
Forty-eight cubes have a pair of opposite faces marked with ‘X’ and ‘O’.
They are placed in a box in configuration A. Get them into configuration
B. The only legal move is to roll a cube into the vacant space (leaving a
hole behind it for the next move).

Having been successful with the 3 × 3, 4 × 4 and 5 × 5 versions of this
problem [M500 176 20–21], I thought I would try something a little more
difficult. We bypass the 6× 6 case and tackle the 7× 7 instead. It has the
pleasing ‘hole in the middle’ symmetry and, as we shall see, there are two
promising strategies.
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Split into two halves. Select the cubes in the lower half of the array;
specifically, the 21 cubes in rows 5, 6 and 7, and the last three cubes of
row 4. Search for a solution, S, that inverts just these 24 cubes, with the
hole starting and finishing in the centre of the array. Then rotate the whole
array through 180 degrees and apply S again to invert the other 24 cubes.
For example, this 74-move solution to the lower half,

LLUU LDRR ULUL DRDD LUUR DRUR ULLD RRRR ULDR
RULD DLLL DRUL DRUL DLUR URUR RDDR ULLD RULL DD,

yields a 148-move solution to the 7× 7 problem. (We use the letters L, R,
U, D to denote roll a cube left, right, up, down respectively.) On the other
hand, it can be shown (by testing all possible sequences) that the lower half
of the array cannot be solved in 62 moves or less. Hence this method will
require at least 128 moves for all 48 cubes. It turns out that we can do
better with our second strategy.

Expand a 5 × 5 solution. Take a known solution to the 5 × 5 problem
and ‘fatten it up’ so that it applies to the whole 7 × 7 array. This is done
by repeating a move iff either (i) L or R rolls a cube into column 3 or 5,
or (ii) U or D rolls a cube into row 3 or 5. Then use the new sequence as
a starting-point of a search for 7 × 7 solutions. For example, this 68-move
5× 5 solution,

LURR DDDL LULU RUUR RDRD LUUR DDDD LULL DLUU
UURD DRDL ULUR URRD DRDL DLLU UURR DDLU,

expands to

LLUU RRRR DDDD DLLL LULU URUU URRR RDRD DLUU
URDD DDDD LULL LLDL UUUU UURD DDRR DDLL UULU
URUR RRRD DDRD DLDL LLLU UUUU RRRR DDDD LLUU

(108 moves), which inverts all the cubes except for a 4 × 3 block in the
middle of the array. We truncate it to 63 moves and finish the process with

D RUUR DRRD DLDL LLUL UULU URUR RRRD DLDD
LUUL DLUU RRRR DDDD LLLD LUUR URUR DL

to obtain this 126-move solution to the 7× 7 problem:

LLUU RRRR DDDD DLLL LULU URUU URRR RDRD DLUU
URDD DDDD LULL LLDL UUUU UURD DDRD RUUR DRRD
DLDL LLUL UULU URUR RRRD DLDD LUUL DLUU RRRR
DDDD LLLD LUUR URUR DL.

It is the best that I have so far. I also know that it is impossible to invert all
48 cubes in 100 moves or less. A complete answer to the problem, i.e. finding
a solution of proven minimum length, therefore amounts to eliminating the
huge gap between 100 and 126.



Page 4 M500 181

Fractal shapes
Sebastian Hayes
Barbara Lee (M500 178 page 33) briefly mentions fractal geometry and
states that ‘most books tend to avoid actually defining fractal.’

The term was coined by Benoit Mandelbrot in his The Fractal Geometry
of Nature (Freeman, 1975). This remarkable book includes many beauti-
ful fractal designs along with philosophic discussion and much interesting
mathematics—so there is something in it for everybody. Mandelbrot says
(1977 edition, p. 4):

I coined fractal from the Latin adjective fractus. The Latin
verb frangere means ‘to break’: to create irregular fragments.
. . . How appropriate to our needs . . . that in addition to ‘frag-
mented’ (as in fraction or refraction) fractus should also mean
‘irregular’, both meanings being preserved in fragment.

A more mathematical definition is ‘a set in a metric space, for which the
Hausdorff–Besicovitch dimension D exceeds the topological dimension DT .’

The ‘topological dimension’ more or less corresponds to what we think
of as a dimension—a curve, for example, has dimension 1 and a rectangle
dimension 2. What the Hausdorff dimension is I have never managed to
work out but it is not necessary to know.

Most of the simpler Mandelbrot fractals are built up iteratively using an
initiator and a generator. An initiator is generally a well-known Euclidean
shape such as a rectangle or octagon: in the case of the Koch ‘curve’ it is
an equilateral triangle. We can forget it and concentrate on a single side.

A generator is ‘an oriented broken line made up of N equal sides of
length r.’ At each stage you replace ‘a straight line with a copy of the
generator, reduced and displaced so as to have the same end points as those
of the interval being displaced’ (1977, p. 39).

In the case of the Koch curve, N = 4, and r = 1/3. If we start with a
side of unit length we get an indefinitely extendable sequence

t0 = 1, t1 = 4 · 1
3

=
4

3
, t2 = 4 · 1

32
·4 =

42

32
=

16

9
, . . . , tr =

4r

3r
.

The total perimeter of the figure will be three times this since we are con-
sidering one side of a triangle only.

Note that the sequence above is increasing without bound and so the
perimeter can be made to exceed any stated value simply by taking r large
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enough even though the entire ‘curve’ remains inside a disc with radius 0.6
metres, or, for that matter, millimetres.

Is this a case of ‘Infinity in the palm of your hand and Eternity in an
hour’ (Blake) as I have heard someone say during a public lecture? As
far as I am concerned, most emphatically not. The majority of writers
on the subject—and this includes a distressingly large number of so-called
mathematicians—do not seem to realise that there is no ‘Koch curve’ as
such but only a family of ‘curves’, each of which is strictly finite and indeed
has derivatives at all points (except at the end points of each straight line
section). Indeed, the ‘Koch curve’ is thus a limit-function to an indefinitely
extendable set of self similar curves and like most limits it is not to be
encountered except in the ‘Platonic’ world, wherever that is. In real life we
rapidly attain the molecular and atomic levels beyond which measurement
in the macroscopic sense ceases to have any meaning. All this is repeatedly
stated by Mandelbrot himself, ‘To obtain a Koch curve, the cascade of
smaller and smaller promontories is pushed to infinity, but in Nature every
cascade must stop or change character’ (1983 edition, p. 39).

Mandelbrot defines the ‘dimension’ of such a self-similar ideal figure to
be (logN)/(logm), where m = 1/r, in this case (log 4)/(log 3), or 1.2618. . . .

Why is this? According to the principle of construction, each little
segment of a Koch ‘curve’ is a third of the previous one. Viewing the segment
length as x and setting the original side at unity, we can envisage the length
of each successive ‘curve’ as a function of x—but we must remember that x
is not a proper variable since it can only take the values

1,
1

3
,

1

32
,

1

33
, . . . .

The perimeter at any stage, p(x), is then a function which must satisfy the
requirements:

1. p(1) = 1, 2. p
(x

3

)
=

4

3
p(x).

Now
(x/3)

(x/3)D
=

4

3
· x
xD

implies that
3D

3
=

4

3

and so D = log3 4. This gives (log 4)/(log 3) using the basic formula of
logarithms:

logaN

logaM
= logM N.
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Now it transpires that this exponent D appears in the work of the
forgotten physicist L. F. Richardson, who actually worked out lengths of
frontiers and coastlines from known data using increasingly small scales.
According to Mandelbrot, he found that if we approximate to a coastline by
a broken line made up identical small segments of length s the total length
increases with decreasing s according to Fs1−D.

But Nature, most fortunately for most of us, does not seem to have
taken lessons either from Euclid, Weierstrass or even Mandelbrot himself.
Self-similar fractal shapes do seem in some cases to give a somewhat better
picture of what actually goes on in nature than Euclidean geometry but you
will look in vain around you for truly self-similar structures—can you see
anything organic out of the window that is independent of change of scale?
(The only case I know of is that of the nautilus, not found in our waters.)
It is much to the credit of Mandelbrot that he recognizes this limitation of
his own method and strives to remedy it by introducing chance—but not
too much chance—into his computer simulations. Then and only then do
we get fractal coastlines and cloud masses that really do look life-like.

The path to the fractal and beyond is a strange one. It commences
in the twilight transfinite world of Georg Cantor (to which he eventually
succumbed entirely), but ends up in river lengths and computer simulations
of mountains that are so convincing they are extensively used today in films.
At first the mathematical establishment did not take kindly to the monsters
unleashed by analysis—‘I recoil with fear and loathing’, wrote Hermite,
‘from that creature, a continuous curve without a derivative’—but when
Mandelbrot showed the relevance of Cantor dusts, snowflake curves and all
the rest of it to natural processes he was ostracized for taking too much of
an interest in the real world.
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Solution 179.5 – Subtract square root
Start with a large number, n. Replace n by n −

√
n. Repeat

until you reach something less than 1. Approximately how many
iterations are required? What about n → n −

√
kn, where k is

a given constant?

Jim James
Figure 1 is a plot of ni, the value of n following iteration i, for n0 = 100. It
is immediately apparent that the points lie on a fairly smooth curve and, as
a first approximation, could be represented by a continuous real function.
This would require treating i, temporarily, as a real number (and only for
the purposes of deriving the approximating function.)

At any iteration point, i, the slope of the straight line connecting that
point to the next, i+ 1, is

ni − ni+1

i+ 1− i
= ni − ni+1 = −

√
ni

(see Figure 2). This suggests considering the differentiable function mapping
real i onto n having this slope over its whole domain of interest. The
corresponding differential equation, dni/di = −√ni, for i ranging from 0 to
arbitrary real t, is easily solved, to give t = 2(

√
n0 −

√
nt).

Figure 1
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So for nt < 1, as specified in
the problem, we have

t > 2(
√
n0 − 1),

which implies that the number
of iterations required for n to
reach ‘something less than 1’ is
the least integer greater than
2(
√
n0 − 1), approximately.

As in all such cases, we must
check the approximation func-
tion against experimental data.
This is done in Table 1, be-
low, for n0 in the range 10 to
1016. Here, the ‘actual’ data
have been computed using two
different programs, both yielding
the same result in all cases (tend-
ing to rule out possible errors in-
troduced by their intrinsic square
root functions).

t

t

@
@

@
@

@
@
@

@
@
@

@@ni + 1→

ni →

↑
i

↑
i+ 1

Figure 2

The absolute error in using the estimation formula is seen to be quite
small, slowly increasing as n0 increases. This error could be further reduced.
One way would be to add another term to the approximation function,
giving

t = 2(
√
n0 − 1)− log10

√
n0,

say, to cover the range explored here. The relative error, however, declines
rapidly as n0 increases (and as the number of required iterations increases)
so for many practical applications, and particularly as n0 gets larger, the
formula should be quite acceptable as originally derived.

A similar approximation may derived for n→ n−
√
kn. The minimum

number of iterations required for n to reach less than 1 in this case is the
least integer greater than 2(

√
n0−1)/

√
k, so long as 0 < k < n0 (for k ≥ n0

one iteration will obviously suffice). Table 2 lists some results for k in the
range 10−6 to 1010 (n0 = 1010 in all cases). Here the absolute error in
using the approximation formula is similar to that of the base case, but the
closeness of k to n0 becomes a critical factor in the relative error (because
the number of iterations required reduces as k increases).
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Table 1 – Actual and estimated number of iterations for base case

Actual Estimated Absolute Relative
n0 iterations iterations error error

10 4 5 1 0.25
102 17 18 1 0.058
103 60 62 2 0.033
104 196 198 2 0.010
105 628 631 3 0.0048
106 1995 1998 3 0.0015
107 6319 6323 4 0.00063
108 19994 19998 4 0.00020
109 63239 63244 5 0.000079
1010 199993 199998 5 0.000025
1011 632448 632454 6 0.0000095
1012 1999992 1999998 6 0.0000030
1013 6324546 6324554 8 0.0000013
1014 19999990 19999998 8 0.00000040
1015 63245543 63245551 8 0.00000013
1016 199999990 199999998 8 0.000000040

Table 2 – Actual and estimated number of iterations for
n0 = 1010 and variable k

Actual Estimated Absolute Relative
n0 iterations iterations error error

10−6 199997995 199998000 5 0.000000025
10−4 19999795 19999800 5 0.0000025
10−2 1999975 1999980 5 0.0000025
1 199993 199998 5 0.000025
102 19995 20000 5 0.00025
104 1996 2000 4 0.0020
106 197 200 3 0.015
108 18 20 2 0.11
1010 1 2 1 1.00
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Solution 177.6 – Factorial derivative
Prove that if n is a positive integer,

[
dn

dxn
(1− xn)

1
n

]
x=0

= −(n− 1)!.

John Bull
Put y = (1− xn)1/n and expand by the binomial theorem. This is permis-
sible if |xn| < 1, but this is no problem as we know that eventually we will
be setting x = 0:

y = 1 +
1

n

(−xn)

1!
+

1

n

(
1

n
− 1

)
(−xn)2

2!
+

1

n

(
1

n
− 1

)(
1

n
− 2

)
(−xn)3

3!
+ . . .

= 1− xn

n
− (n− 1)x2n

n2 · 2!
− (2n− 1)(n− 1)x3n

n3 · 3!
− . . . .

As this power series converges, we can differentiate term by term:

dy

dx
= − xn−1 − (n− 1)x2n−1

n · 1!
− (2n− 1)(n− 1)x3n−1

n2 · 2!
− . . . . (1)

Now differentiate (1) a further n − 1 times. Since kn − 1 − (n − 1) ≥ 1
for k ≥ 2, all terms in the resulting series other than the first will have a
positive power of x as a factor; hence they vanish when we set x = 0. Thus[

dny

dxn

]
x=0

=

[
dn−1

dxn−1

(
−xn−1

)]
x=0

= − (n− 1)!.

Problem 181.1 – Find the centre
Tony Forbes
This was inspired by the discussion at the end of ‘Solution 178.2 – Construct
another square’ by Dick Boardman (M500 180 15).

You have a ruler and a sheet of paper on which a circle has been drawn.
The location of the centre is not known. Either

(i) devise a ruler-only construction to find the centre of the circle, or

(ii) prove that (i) is impossible.

If you opt for (i), your construction should use the ruler only for draw-
ing straight lines in a manner that would have had Euclid’s approval. In
particular, no using the ruler as a measuring device.
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Solution 179.2 – Four tans
Show that tan 11◦ = (tan 19◦)(tan 33◦)(tan 41◦).

Miland Joshi
Put tan 11◦ = a, tan 19◦ = b, tan 33◦ = c, tan 41◦ = d. We will show that
a = bcd by expressing b, c, and d in terms of a and taking the product. We
need to use the facts that

tan 30◦ =
1√
3

and tan 3x =
3 tanx− tan3 x

1− 3 tan2 x

(not too hard to prove!). Thus

tan 30◦ = tan(11◦ + 19◦) ⇒ 1√
3

=
a+ b

1− ab
⇒ b =

1−
√

3a√
3 + a

.

Also

tan 30◦ = tan(41◦ − 11◦) ⇒ 1√
3

=
d− a
1 + da

⇒ d =
1 +
√

3a√
3− a

,

tan 33◦ = tan(3 · 11◦) ⇒ c =
3a− a3

1− 3a2
.

Hence

bcd = bd · c =
1− 3a2

3− a2
· a(3− a2)

1− 3a2
= a.

Q.E.D.

John Bull
As we are highly numerate we instantly spot that 33−11 = 41−19 = 2 ·11,
that 19 + 41 = 60, and that 11 + 33 = 2 · (2 · 11). Following these clues we
rewrite the equation as:

tan 11◦

tan 33◦
= tan 19◦ · tan 41◦.

LHS =
sin 11◦

cos 11◦
· cos 33◦

sin 33◦
=

1/2(sin 44◦ − sin 22◦)

1/2(sin 44◦ + sin 22◦)

=
2 sin 22◦ · cos 22◦ − sin 22◦

2 sin 22◦ · cos 22◦ + sin 22◦
=

2 cos 22◦ − 1

2 cos 22◦ + 1
,
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RHS =
sin 19◦

cos 19◦
· sin 41◦

cos 41◦
=

1/2(cos 22◦ − cos 60◦)

1/2(cos 22◦ + cos 60◦)

=
2 cos 22◦ − 1

2 cos 22◦ + 1
= LHS.

Q.E.D.

This suggests a generalization. Suppose tan a = tan b ·tan c ·tan d. Then
we require that b + d = 60◦ and c − a = d − b = 2a. A little algebra gives
b = 30◦ − a, c = 3a, d = 30◦ + a. So

tan a = tan(30◦ − a) · tan 3a · tan(30◦ + a).

Thus by substituting a from 1◦ to 89◦, we can find a whole set of example
equations.

A similar analysis was given by Sue Bromley.

Keith Drever
Problem 179.2 (Four tans) must be one of the easiest problems ever pub-
lished in M500. We have tan 19◦ = 0.344327613, tan 33◦ = 0.649407593,
and tan 41◦ = 0.869286737. Hence

(tan 19◦)(tan 33◦)(tan 41◦) = 0.194380309;

arctan 0.194380309 = 11◦, as expected.

ADF writes—We are of the opinion that this does not necessarily solve the
problem. We cannot immediately convince ourselves that something = 11
to nine decimal places implies something = 11 exactly.

However, it is an approach that is worth further discussion. Let

Θ = tan 11◦ − (tan 19◦)(tan 33◦)(tan 41◦). (1)

Performing the calculations to 10010 decimal places, say, we obtain

−10−10000 < Θ < 10−10000.

Noting that the formula for Θ contains only eight decimal digits we invoke
Einstein’s principle, God is subtle but He is not malicious, to argue that
there cannot be enough ‘information’ in (1) for Θ to have any value between
−10−10000 and 10−10000 other than exactly zero.

The editor of this magazine would be very interested if it is possible to
make this idea rigorous.
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Solution 179.3 – Nine switches
You are outside a room. You have nine switches. Inside are nine
light-bulbs. How many trips must you make into the room to
allocate bulbs to switches?

Barbara Lee
Four trips are needed. Start with all switches OFF. Label them 1, 2, . . . ,
9. Switch 1, 2 and 3 ON. Enter room. Label the three relevant bulbs A, B
and C in any order. Exit room.

Switch 1 OFF. Switch 4, 5 and 6 ON. Enter room. Label next three
relevant bulbs D, E and F in any order. Identify bulb for switch 1. Exit
room.

Switch 2 and 4 OFF. Switch 7 and 8 ON. Enter room. Label next two
relevant bulbs G and H in any order. Identify bulbs for switches 2, 3 and
4. Exit room.

Switch 5 and 7 OFF. Enter room. Identify bulbs for switches 5, 6, 7
and 8.

Switch 9 connects to remaining unlabelled bulb. Exit room. Make tea.

Also solved (in a similar manner) by Miland Joshi and John Hudson.

The Editors
Frankly, we were suspicious from the start about the appearance of a power
of three in the statement of the problem. So we reasoned that it was neces-
sary to contrive a three-way split which allows us to map bulbs to switches
with only two trips into the room.

Start with all switches OFF. Switch 1, 2, 3, 4, 5, 6 ON. Wait 30 seconds.
Switch 4, 5, 6 OFF. Enter room. Map lit bulbs→ {1, 2, 3}, unlit and warm
→ {4, 5, 6}, unlit and cold → {7, 8, 9}.

Switch 1, 2, 3 OFF. Wait 24 hours, say, for the bulbs to cool down.
Switch 1, 2, 4, 5, 7, 8 ON. Wait 30 seconds. Switch 2, 5, 8 OFF. Enter
room. You now have enough information to complete the task.

Problem 181.2 – Six secs
Show that

sec
π

7
sec

2π

7
sec

3π

7
sec

4π

7
sec

5π

7
sec

6π

7
= − 64

and

sec
π

7
+ sec

2π

7
+ sec

3π

7
+ sec

4π

7
+ sec

5π

7
+ sec

6π

7
= 0.
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Solution 178.5 – Reward a friend
In Chris Tarrant’s popular television programme, Who Wants
to be a Millionaire?, what is a fair reward for a person who helps
the contestant when the ‘phone a friend’ lifeline is used?

Chris Pile
Merely some observations. The friend should not receive more than the
contestant; i.e. if the friend gives the correct answer and the contestant
subsequently falls back to a lower prize level there should be no payment to
the friend.

If the friend correctly answers the question and the contestant accepts
and wins the prize, the friend should receive 75% of the increment. (E.g. for
a correct answer to the £8000 question, the contestant’s winnings increase
from £4000 to £8000, the ‘expected’ winnings being 25% of £4000 by pure
guess. The friend should receive £3000.) If the contestant subsequently
continues to a higher prize, the friend would receive a diminishing propor-
tion of the increments. This seems to be a moral problem rather than a
mathematical one!

ADF
Suggested answer for one typical scenario: Let 1 < a < b ≤ 15. Suppose
the contestant, C, assisted by the studio audience but not the 50–50 option,
can answer questions 1, . . . , a − 1, a + 1, . . . , b with 100% confidence and
that C’s optimum strategy after question b is to stop. Suppose also that
the friend is 100% certain of the correct answer to question a but all four
possibilities are equally likely as far as C is concerned. Then the friend’s
reward should be

1

2

(
R(b)−max

{
R(a− 1),

R(b) +W (a)

2

})
.

The friend’s help guarantees the correct answer to question a. Unaided,
C’s expected win is the greater of 1

2 (R(b) +W (a)) (using the 50–50 option)
and R(a − 1). By some vague principle of fair play we split the difference
between C and the friend.

For example, with a = 11 and b = 13 the reward works out at £54500
out of £250000. The functions R and W are defined by

R(n) =

£100 · n if 0 ≤ n ≤ 3
£500 · 2n−4 if 4 ≤ n ≤ 11
£125000 · 2n−12 if 12 ≤ n ≤ 15,

W (n) =

R(0) if 1 ≤ n ≤ 5
R(5) if 6 ≤ n ≤ 10
R(10) if 11 ≤ n ≤ 15.
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There has to be an easier way
A novel solution to the problem of launched objects and calcu-
lating the height reached and the time taken.

Martin Wright
Sometimes when one is studying a course it is necessary to read other books
and materials to help find methods to carry out calculations. Sometimes
different methods are presented to you. This article is the result of that form
of experimentation—‘mucking about’—and shows it is possible for novices
to mathematics to discover new methods of calculation. The reason why I
have decided to show the new technique at the end of the article is to give
the reader some idea of how this discovery came about. It is not ground-
breaking, it will not solve the mystery of life, the universe and everything,
but does show that sometimes, when a relationship between results is found,
it is possible to devise new equations which present a more straightforward
route to required results. Here is a typical ‘rocket’ problem:

A rocket is launched vertically with an acceleration of a =
8 ms−2 for a period of T = 10 seconds. After that it is un-
der the influence of gravity alone, an upward acceleration of
g = −10 ms−2. Assume all this takes place in a frictionless at-
mosphere.

One is then asked to find its velocity, the height the rocket attains when
the engines cut out, how long will the rocket take to attain its maximum
height, what that height will be, how long will it take to fall back to earth,
and how long from launch to landing.

The first two elements are its velocity, v = 8 · 10 as v = aT , and its

displacement at time T , x =
∫ T

0
at dt = 1

2aT
2 = 400.

When the engines stop the equation changes to one where it is necessary
to find the velocity under the influence of gravity (v = −gt + c), and from
there find out how long it will be before the rocket reaches its apogee, but
to do this we need to find the value of c. When v = 80 and t = 10,
80 = −10 · 10 + c, c = 180.

This gives the expression v = −10t + 180. The time when the object
reached apogee can then by found by putting v = 0:

0 = − 10t+ 180, t = 18.

The displacement from the ground to the apogee can then by found by
integrating −10t+180, which results in −5t2 +180t+c. As the initial value
for x is known to be 400,

400 = − 5 · 102 + 180 · 10 + c, c = − 900,

x = −5t2+180t−900 and t = 18 from which the maximum height is derived:
x = 720.
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The time it will take to reach the ground after take-off can be found
by solving −5t2 + 180t− 900 = 0, using the standard method for quadratic
equations,

t =
180± 2

√
1802 − 4 · 5 · 900

2 · 5
= 30 or 6.

When one looks at the range and complexity of the equations that are
used to derive the required results one can see that there are several points
where error can easily creep in, and one also quickly loses sight of the original
variables as they are worked and re-worked. There has to be a quicker and
better way to find answers to these questions and reduce the possibility of
error.

I decided to see if a relationship existed between the height when the
engines stopped and the apogee. At the acceleration rate of 8 ms−2, I found
that the factor was 1.8. When I varied the acceleration to 7 ms−2, it indi-
cated the factor was 1.7.

I also varied the length of time that the acceleration rate was used.
Again I found the relationship remained the same. From this I deduced
that the relationship was dependent upon just two factors, the rate of ac-
celeration and the value for g. I found that the height attained was directly
related to the initial rate of acceleration divided by the value for gravity,
and the apogee was always a multiple of 1 + a/g. From these results I was
able to formulate the equation

Z =
1

2
aT 2

(
1 +

a

g

)
.

This method removes several stages of calculation and keeps all the
initial variables together. This also led to another method for finding the
total time between take-off and landing. We take the first value for t, then
add to it the time it would take for an object to fall from the height that
is the difference between the apogee and the height when the engines stop,
then add to that total the time it would take for an object to fall from the
apogee to the ground:

Ta = T +

√
2Z − aT 2

g
+

√
2Z

g
.

This means, instead of using a large number of equations to answer the
questions, it is now possible to use just three equations to find out most
of the required elements. A further advantage of the above techniques is
that it is also possible to carry out such calculations based on alternative
gravitational strengths, such as other planets or moons.

Although I have called this approach ‘novel’, I would be interested to
know if this connection has been made before—and if so where.
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Solution 179.6 – Root 11 again
Prove that if p is an odd prime, the integer part of (

√
11 + 3)p−

2 · 3p is divisible by 66p.

Sue Bromley
Since 2 · 3p is an integer, we know from the solution to the original

√
11

problem [M500 176 6] that the integer part of (
√

11 + 3)p − 2 · 3p must be

(
√

11 + 3)p − (
√

11− 3)p − 2 · 3p

= 2
(
pC1(

√
11)p−1 · 3 + pC3(

√
11)p−3 · 33

+ · · ·+ pCp−2(
√

11)2 · 3p−26
)

+ 2 · pCp · 3p − 2 · 3p

= 2 · 3 · 11
(
pC1(

√
11)p−3 + pC3(

√
11)p−5 · 32 + · · ·+ pCp−2 · 3p−36),

since pCp = 1 and p ≥ 3,

= 66

2n+1=p−2∑
n=0

pC2n+1(
√

11)p−3−2n · 32n

(note that p− 3− 2n is even). Generally, if p is prime then

pCr =
p!

(r!(p− r)!)
must be divisible by p, since both r and p − r are less than p and cannot
divide p. It follows that the integer part of (

√
11 + 3)p − 2 · 3p is divisible

by 66p.

Problem 181.3 – Six-sided pencil
Tony Forbes
What is the function associated with the familiar curtain-like graph that
appears at the border of the exposed wood when you sharpen a six-sided
pencil?

Problem 181.4 – Four points
Choose two points inside a given circle and draw the line segment joining
them. Then randomly select another two points inside the same circle and
draw the line segment joining these two points.

What is the probability that the two line segments intersect?
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Fusion
A new physics society for OU students

Paul Ruffle
Fusion—The Open University Physics Society—has been formed by five
students who met as a result of an appeal on the Open University FirstClass
on-line conferencing system, and with help from the Institute of Physics, to
which it is affiliated.

The Society is for all Open University students (including postgraduate
and research), academic staff and tutors, plus anyone else who is interested
in the world of physics and who would like to contribute to the aims of the
Society.

There will be a quarterly Newsletter covering a variety of topics in-
cluding feature articles, faculty news, course reviews and details of Fusion
events. Members will also be able to air their views on various courses they
have taken and any other aspects of physics that take their interest.

Members will also be able to get in touch with one another via a contact
list and participate in the various Fusion events that will be organized.

Fusion will not duplicate the activities of the Institute of Physics, which
runs a full programme of topical lectures, but will complement them, partic-
ularly in the summer months when other academic institutions are dormant.
This will include visits to such places as the Science Museum in London, the
Rutherford Appleton Laboratory in Oxfordshire, and CERN, the particle
physics research centre at Geneva.

Fusion also aims to promote communication between the student body
and the OU Physics Department at Milton Keynes. This will involve staff
profiles, visits to the campus, lectures and seminars on current research
programmes, and plans for the future. We hope this will allow students to
influence the Physics Department in future developments in the curriculum.

The Fusion web site can be found at www.oufusion.org.uk and features
information on how to join Fusion plus news, stories, reviews, events, feed-
back, constitution and committee member profiles, plus numerous physics
related links. You can also look out for the Fusion desk at the M500 Week-
end in Aston.

Problem 181.5 – Five digits
JRH
Find all solutions of

10000a+ 1000b+ 100c+ 10d+ e = f(10000e+ 1000d+ 100c+ 10b+ a)

in non-negative integers a, b, c, d, e, f subject to the usual constraints of
decimal arithmetic, 0 ≤ b, c, d ≤ 9 and 1 ≤ a, e ≤ 9.
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Letters to the Editors
Flies
Dear Jeremy,

I thought we had dealt with this question last time, but in fact it’s
different. If the first car is doing 60 m.p.h., but the fly can only do 50
m.p.h., surely the fly gets left behind. The smash will be after an hour, by
which time the fly will have gone 50 miles and the smash will be 10 miles
ahead of it. So why does the fly get squashed?

Or have I missed something somewhere?

Colin Davies

I am not a gifted mathematician, nor am I particularly intelligent, and I
subscribe to M500 in the hope that some of the mathematical expertise
might rub off on me.

As we’re told that the fly starts at the front bumper of the first car,
then it is impossible to move forward from that position in the air, since
the car moves 10 m.p.h. faster than the fly. In that case, the fly would be
permanently located against the bumper at of the first car, until the second
car is reached, and the crash takes place. The fly would not get airborne at
all. As David Singmaster points out, the answer in that instance is zero.

To take this a step further, if the fly started on the bumper of the
second car, then it would be able to fly ahead of the 40 m.p.h. vehicle. In
my estimation, when it met the vehicle coming from the other direction at
60 m.p.h., the oncoming car would have travelled 54.54 miles, and fly would
have travelled 45.45 miles. When it turned to fly back in the opposite
direction, it would be unable to do so for the reason that the oncoming
car, travelled 10 m.p.h. faster than the fly. In that situation, the fly would
have travelled a total distance of 45.45 miles as it would be resting on the
bumper of the 60 m.p.h. car until the crash took place.

Jack Gibson

Courses
Dear Tony,

I HAVE NO MOUTH, AND I MUST SCREAM.

The above title is from science fiction, but in any case it has no origins
in maths. However, from the content of this letter, I’m sure you will see the
connection.

With another issue of the M500 magazine, I have noticed in MOUTHS
that my list of courses studied is getting shorter. Surely I can’t be retroac-
tively unstudying courses? What happens when I have no more courses to
unstudy?

To find out I rang Sue Barrass, who tells me that it is policy not to
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include previous course codes because the newer students would not under-
stand them.

But wait a minute . . . . Students doing current study have a tutor, who
is geared to the needs of particular courses and gets paid for the privilege.
MOUTHS members act on a voluntary basis within their chosen speciality
for the benefit of everyone. The constitution of M500 is a forum of like-
minded people with a common interest in maths. Therefore, M500 is not
here solely to look after the needs of new students. In any case, the course
numbers provide a reasonable guide to the individual’s specialist area.

So, my opinion is ‘let the new students learn the meaning of the square
brackets around those funny course numbers’. What do other members
think?

Regards,

Ken Greatrix

Milliard
The terms ‘billion’, ‘trillion’, etc. have always been ambiguous (M500 179
22). The British idea of a million squared, cubed, to the fourth, etc., which
was presumably based on the sequence mono, bi, tri, quad, etc., always
seemed the most logical to me. However, the American system had the
advantage of making big numbers look even bigger, and Americans like
that sort of thing.

So years ago, one had a pretty good idea what a billion meant by decid-
ing whether one was reading a British text (The Times, say) or an American
text (Life, say). Unfortunately, this did not always work. The American
publisher of Time Life Books used to publish a series of popular science
books from a base in London for the UK market, and those books used the
word ‘billion’ to mean ten to the twelfth. That helped to confuse the issue,
but what would a publisher in a country where English was not normally
used, mean by the word ‘billion’ when writing in English for the UK market?

When I was in the timber trade during the 1950s and 60s, the office
regularly received a journal called Finnish Paper and Timber. This was
published in Helsinki, but written in English, and distributed in the UK.

The publishers used the word ‘billion’ without explanation, so I wrote
them a nice letter explaining that in the UK where their main readership
was, a billion was one followed by twelve noughts, and was that what they
really meant? They wrote back saying that by ‘billion’ they meant one
followed by nine noughts. They said that they used the word ‘billion’ in
preference to the word ‘milliard’ because, while ‘billion’ was familiar to all
English speakers, the word ‘milliard’ was not. They had decided that a
familiar word, although ambiguous, was preferable to a precise word that
was less well known.

Colin Davies
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Recurrence relations
Dear Tony,

Re: M500 179, ‘Recurrence relations’ by Robin Marks.

The trouble with computer programs is that they are good at processing
and displaying data but not very good at analysis. Here we have a case in
point. Robin actually solved the order-2 recurrence relation on page 2, but
I think he missed the point of his argument. If Un = Arn1 +Brn2 (for r1 = 1
and r2 < 1), then Un → A as n→∞ (M203, null sequences).

This theme carries through with the order-3, -4, -5 and -6 recurrence
relations in that one of the roots is 1 and all the others have a modulus
which is less than 1.

Hint: this could be demonstrated in graph form if you take the x-axis
from about −4 and reduce the y-axis to about ±5. You will then see the
tendency of long term conditions compared to the initial conditions (i.e. as
n approaches infinity).

So, if it can be shown that this follows for all such recurrence relations,
then the problem is solved. I will now attempt this:

In the auxiliary equation

kxk = xk−1 + xk−2 + · · ·+ x+ 1

an obvious solution is x = 1 (since there are k terms on the RHS). If we
divide by xk, we get

k =
1

x
+

1

x2
+ · · ·+ 1

xk

and thus if |x| ≥ 1 then we have no solution unless x = 1.

So now I show that the case where x = 1 is not a repeated root. Re-
arrange the auxiliary equation as a polynomial

kxk − xk−1 − xk−2 − · · · − x− 1 = 0

and then divide by x− 1:

kxk−1 + (k − 1)xk−2 + (k − 2)xk−3 + . . . 2x+ 1 = 0.

If we now set x = 1, we get the sum of the first k numbers on the LHS and
zero on the RHS—thus there are no repeated roots of x = 1.

The important point of this result is that if |r| < 1 then rn → 0 as
n→∞ and thus Un → A for all such recurrence relations.

Regards,

Ken Greatrix
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Ten blocks
Dear Tony,

This puzzle [Problem 178.6] is fully described in Martin Gardner’s Sixth
Book of Mathematical Games from Scientific American. From a slightly
different position a minimum 81-move solution is given. I made the puzzle
many years ago after seeing it described in this book, and I was able to
memorize the moves quite well after several attempts. I have seen it on sale
recently in various guises (e.g. football, golf, fishing, etc.) and I consider it
to be a classic among sliding block puzzles.

Chris Pile

Apes
Dear Editors,

Re: Changing APE to MAN (M500 179, p. 25). APE, APT, EPT,
EAT, MAT, MAN (Ept: Adroit, competent; appropriate, effective—OED).

John Hudson

[Alternatively: . . . , OPT, OAT, . . . . Now try CHIMP to WOMAN. Also
we would still like to see a proof of David Singmaster’s assertion: CIRCLE
to SQUARE is impossible.—ADF]

Problem 181.6 – Ellipse
An ellipse of eccentricity η is suspended by a
string of length β attached at one end to a fo-
cus and at the other to a fixed point above the
ellipse. The system is allowed to evolve under
gravity from an initial position where the string
is at angle θ to the horizontal and the major axis
of the ellipse is vertical with the unattached focus
uppermost.

Find the locus of the focus in terms of η, β
and θ.

Θ

Problem 181.7 – Five cots

Prove that cot
π

11
cot

2π

11
cot

3π

11
cot

4π

11
cot

5π

11
=

1√
11
.
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Hats
Eddie Kent
In The Times on 16 April there was a small piece on what is apparently the
latest mathematical problem to obsess chat rooms around the globe. The
puzzle is stated in what I would consider the worst-written prose I have seen
in a very long time.

Three people enter a room, and each tosses a coin. If it’s heads, the
person dons a blue hat; if tails, then a red hat. The coin tosses are
independent of each other [Honestly—they are independent]; each
person can see the other two players’ hats but not her own [Why
would she want to see her own?—she put it on].

The trio get to share an imaginary [Not much use, then] jackpot of
£2 million [How would they do that? Even if real it still won’t divide
into three] if, and only if, at least one player guesses the colour of
her hat and none guesses incorrectly (a player can pass). The three
must not communicate in the room, although they are allowed to
develop strategy before they play.

It is possible to sort a problem out of the above. In which case, what would
the best strategy be? You can look at

www.nytimes.com/2001/4/10/science/10MATH.html.

(I tried, but got nowhere. You are not allowed into the hallowed New York
Times without registering and swearing allegiance to Old Glory so I didn’t
bother. Life is too short.)

JRH—The NYT page no longer exists. They delete them after a week,
generally. I found these two below, which give a better statement of the
problem, and some analysis.

http://www.comm.toronto.edu/ yymao/hatColor.html

http://www.ics.uci.edu/ ebert/coloredHatsSolution.html

ADF—If you are unhappy about the independence of the coin tossing mech-
anism used to determine the initial conditions of the problem, there is a
simple alternative. Why not send the players to that party where each
guest leaves wearing the wrong hat? See ‘Hats’ by Nick Pollock, M500 178,
22–24.

What did the bra say to the hat? ‘You go on ahead while I give these two a lift.’
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Twenty-five years ago
From M500 36

Rosemary Bailey—If you really want to annoy a statistician with a ques-
tion about an unexplained often-used term, ask him/her what a ‘degree of
freedom’ is.

Peter Weir—M351ers, currently suffering from linear programming, may
be interested by some figures lifted from a 1970 Univac Users Association
conference report. The solution method used is basically the same as that
described in Unit 6 of M351, the product form of the simplex method, with
the addition of some unexplained method of introducing the two most prof-
itable variables into the basis at each iteration. The source of the problems
was not given but was probably operations research for Sheel France.

Problem time
number rows columns coefficients (minutes) cost

1 1854 3708 16010 59 £590
2 2210 5500 22609 38 £380
3 1277 2911 14628 42 £420
4 2315 4591 18887 58 £580
5 3135 2738 31727 118 £1180

Imagine having to rerun the last one because one of the 31727 coefficients
was wrong!

Marion Stubbs—The problem below is taken from Games and Puzzles,
May 1974—before our member David Wells became puzzle editor. The
solution is given quite simply and in one line as the most famous number
you are likely to think of, perhaps. Being totally thick the only way I can
devise to do it is by calculator. . . .

Problem: Calculate the value of the expression shown here, not using
pen, pencil or paper, and doing it within a minute.

196

√
1059 ·

(
1025

1024

)5

·
(

6560

6561

)3

·
(

9801

9800

)4

·
(

15624

15625

)8

·
(

1048576

1048575

)8
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