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The order 2× 3 recurrence relation
Robin Marks
Consider the simultaneous order 3 recurrence relations

U(m,n) = pU(m− 1, n) + qU(m− 2, n) + sU(m− 3, n), (1)

U(m,n) = tU(m,n− 1) + vU(m,n− 2) + wU(m,n− 3). (2)

Try U(m,n) = xmyn as a solution. From (1),

xmyn = pxm−1yn + qxm−2yn + sxm−3yn.

Dividing by xm−3yn gives x3 = px2 + qx+ s. That is,

R = x3 − px2 − qx− s = 0. (3)

Similarly, from (2),

R = y3 − ty2 − vy − w = 0. (4)

Let the roots of (3) be x1, x2, x3, and let the roots of (4) be y1, y2, y3. We
assume p, q are real and we now choose x1 to be real. Thus s = x31−px21−qx1.
Separating out the factor x− x1 in the left-hand side of (3) gives

R = (x− x1)(x2 + (x1 − p)x+ (x21 − px1 − q)) = 0. (5)

Solving the quadratic in (5) we get

x2, x3 =
p− x1

2
± 1

2

√
(x1 − p)2 − 4(x21 − px1 − q).

Similarly, choosing y1 be real and assuming t and v are real we have, from
(4), w = y31 − ty21 − vy1 and

y2, y3 =
t− y1

2
± 1

2

√
(y1 − t)2 − 4(y21 − ty1 − v).

The solutions are U(m,n) = xmi y
n
j , i = 1, 2, 3, j = 1, 2, 3, which can be

combined in any linear combination. We therefore have the general solution:

U(m,n) =

3∑
i=1

3∑
j=1

ki,jx
m
i y

n
j ,

where the ki,j are complex constants.
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If x1 and y1 are real, then the other pairs of roots (x2, x3) and (y2, y3)
are either complex conjugate pairs or real pairs. We will choose to look at
the case where (x2, x3) and (y2, y3) are both complex conjugate pairs.

To simplify this, let us consider first the solution in the m direction with
two complex roots, then the solution in the n direction with two complex
roots. The general solution in the m direction is axm1 + bxm2 + cxm3 ; x1 real;
x2, x3 complex conjugates.

Consider bxm2 +cxm3 ; b,c conjugate complex constants; let corresponding
polar co-ordinates be x2 : (r1, θ1), x3 : (r1,−θ1). Then

bxm2 + cxm3 = brm1 (cos θ1 + i sin θ1)m + crm1 (cos−θ1 + i sin−θ1)m

= brm1 (cosmθ1 + i sinmθ1) + crm1 (cos−mθ1 + i sin−mθ1)

(by De Moivre’s theorem)

= drm1 cosmθ1 + erm1 sinmθ1,

where d = b + c, e = (b − c)i; d, e will both be real if and only if b, c
are conjugate complex constants. Hence the general real solution in the m
direction is

axm1 + drm1 cosmθ1 + erm1 sinmθ1,

where x1 is real and a, d, e are real constants. Similarly, the general solution
in the n direction is

fyn1 + grn2 cosnθ2 + hrn2 sinnθ2,

where y1 is real and f , g, h are real constants.

Now multiplying the above expressions for the recurrence relations in
the m and n directions gives

U(m,n) = (axm1 + drm1 cosmθ1 + erm1 sinmθ1)

· (fyn1 + grn2 cosnθ2 + hrn2 sinnθ2)

= Axm1 y
n
1 +Bxm1 r

n
2 cosnθ2 + Cxm1 r

n
2 sinnθ2

+Dyn1 r
m
1 cosmθ1 + Eyn1 r

m
1 sinmθ1

+ Frm1 (cosmθ1)rn2 (cosnθ2)

+Grm1 (cosmθ1)rn2 (sinnθ2)

+Hrm1 (sinmθ1)rn2 (cosnθ2)

+ Irm1 (sinmθ1)rn2 (sinnθ2),

where A, B, C, D, E, F , G, H, I are real constants. Hence, for example

U(0, 0) = A+B +D + F.
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Choosing nine different pairs of integers (mi, ni), i = 1, 2, . . . , 9, gives
nine equations which can be solved for A, B, . . . , I. Writing this as a matrix
equation, we have UA = V, where U is the 9× 9 matrix

xm1
1 yn1

1 xm1
1 rn1

2 cosn1θ2 . . . rm1
1 (sinm1θ1)rn1

2 (sinn1θ2)
xm2
1 yn2

1 xm2
1 rn2

2 cosn2θ2 . . . rm2
1 (sinm2θ1)rn2

2 (sinn2θ2)
. . . . . . . . . . . .
xm9
1 yn9

1 xm9
1 rn9

2 cosn9θ2 . . . rm9
1 (sinm9θ1)rn9

2 (sinn9θ2)

 ,
A is a column vector with elements (A, B, . . . , I) and V is a column vector
of nine real numbers, the chosen initial values for the recurrence relation for
each pair of integers (mi, ni).

Solving for A, A = U−1V, gives the values for A, B, . . . , I from which
we can calculate values of the continuous function U(m,n) for all real values
of m and n.
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Here are some examples.

(i) Previous page

x1 = y1 = 1, p = 0.4, q = 0.3, s = 0.3, t = 0.2, v = 0.25, w = 0.55,

U(4,−4) = 0, U(3,−3) = 0, U(2,−2) = 0, U(1,−1) = 0, U(0, 0) = 1,

U(−1, 1) = 0, U(−2, 2) = 0, U(−3, 3) = 0, U(−4, 4) = 0.

(ii) This page

x1 = y1 = 1, p = 0.3, q = 0.2, s = 0.5, t = 0.2, v = 0.25, w = 0.55,

U(4, 4) = 0, U(3, 3) = 0, U(2, 2) = 0, U(1,−1) = 0, U(0, 0) = 1,

U(−1,−1) = 0, U(−2,−2) = 0, U(−3,−3) = 0, U(−4, 4) = 0.

(iii) Cover

x1 = y1 = 1, p = 0.21, q = 0.63, s = 0.16, t = 0.2, v = 0.25, w = 0.55,

U(4,−4) = 0, U(3,−3) = 0, U(2,−2) = 0, U(1,−1) = 0, U(0, 0) = 1,

U(−1, 1) = 0, U(−2, 2) = 0, U(−3, 3) = 0, U(−4, 4) = 0.
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Solution 178.3 – Square-free integers
An integer is square-free if it is not divisible by the square of a
prime. Are there infinitely many positive integers n such that
both n and n+ 1 are square-free?

ADF
Yes. There is a proof based on a result that is well known to number
theorists. Let Q(N) denote the number of square-free positive integers
≤ N . Then

Q(N)

N
→ 6

π2
as N →∞. (1)

Or, to put it more intuitively: if you choose a positive integer at random
(whatever that might mean), the probability that it is not divisible by the
square of a prime is 6/π2. Related problem: Confirm this by experiment.

Anyway, it is Theorem 333 in G. H. Hardy & E. M. Wright, An Intro-
duction to the Theory of Numbers. The proof is roughly as follows. Denote
by [x] the largest integer ≤ x. Clearly, the number of positive integers ≤ N
which are divisible by a positive integer m is [N/m]. By the inclusion-
exclusion principle we therefore have

Q(N) = N −
∑

p prime

[
N

p2

]
+

∑
p, q prime

[
N

p2q2

]
−

∑
p, q, r prime

[
N

p2q2r2

]
+ . . .

= N −
∑

p prime

N

p2
+

∑
p, q prime

N

p2q2
−

∑
p, q, r prime

N

p2q2r2
+ · · ·+ E(N),

where E(N) is the error introduced by removing the square brackets from
each term. By combining the terms of the last expression into a product we
obtain

Q(N) = N
∏

p prime

(
1− 1

p2

)
+ E(N).

Moreover, ∏
p prime

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2
,

and (1) follows if we can show that E(N)/N → 0 as N →∞. As this proof
is supposed to be rough I shall omit the details.

Given (1), the solution to the original problem is quite straightforward.
If there are at most a finite number of n such that n and n+1 are square-free
then Q(N)/N → something ≤ 1/2 as N →∞. But 6/π2 > 1/2.
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Return of the lazy fat lady
Martin Cooke
‘Lazy fat lady’ is a sillier name for the lemniscate, the eight-like symbol
that I have written about in 176 and 178. In case I haven’t explained my
term ‘incompletable’ very well, the difference between an incompletable N,
which I will shorten to inc N, and the standard one only actualizes within
its endlessness, and then only ontologically, not quantitatively. Indeed,
I shall assume an intrinsically well-founded, innate sense of both N and
(three-dimensional, Euclidean) space, since these seem to be prerequisites
for knowing almost anything else (and not just in maths).

The set inc N behaves like ω (and ℵ0) in the contexts of ordinal (and
cardinal) arithmetic, and I will show that we also use aspects of inc N that
are definitively incompletable, e.g. when we use the definition of an infinite
sum as the limit of the partial sums of the series (which I will hereafter
shorten to lim sum) or require the derivations of infinitesimals within a Set
Theory. Other evidence in defence of inc N includes these two references:
[1], a ‘popular science’ book, which claims that (p. 245) ‘. . . the empirical
data from neuropsychology seem to provide support for intuitionism . . . ’
and [2], a Ph.D. thesis in maths education, which indicates that hyperreals
(reals plus infinitesimals) and incompletable infinite sequences would be
ideal for many children; and my ontology for hyperreals (geometric, rather
than purely set-theoretic, see [3], or purely algebraic, derivations) and inc
N (similarly derived, rather than requiring intuitionistic assumptions) could
be useful in this context.

However, inc N may seem much like the usual N, so perhaps (from that
perspective) what I am challenging is the most common conception of the
reduction of geometry to analysis (the replacement of the pre-twentieth-
century geometric line with the real number line R). A few thousand years

ago,
√

2 was regarded as only a geometrical quantity, not a proper number,
so in this context my∞ = 0−1 and my other geometric infinities (reciprocals
of the geometric infinitesimals, corresponding to points falling between inc
N and the ∞ parts of the line, or to Robinson’s ones in [3]) are like ‘new
irrationals’ (to borrow Cantor’s phrase). The vectorial argument below
only uses Q (the rationals) but the geometrical aspect is whether or not Q
exists in the manner of a spatial object, all at once, so to speak, or like the
sequentially defined inc N (which is often modelled temporally).

The ‘space’ of which I write is not R3 but an innate template which we
use to organize our earliest sensory experiences (probably because that is
how the world is itself organized), and which consequently corresponds to
our experience of objective reality (but may not be exactly how physical
space is). Lines can be thought of as the conceptual edges to surfaces of
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this space, and it is probably a line like this (with labelled points such as 1
and 0 on it) which we first think of when we are introduced to R (it being
conceptually prior to thinking about the rather less precise edges of physical
objects).

We may consider an infinite line in this geometric space, and label two
arbitrary points 0 and 1, connected by a line [0, 1]. I will write this line
minus the point 0 as (0, 1], although usually, in what follows, this notation
will refer to a specific set of points on this line. The connection between
geometry and our number systems is through infinite divisibility (to get
Q) and the limit process (to get R), so that there is a big ‘spatial’ aspect
to R (corresponding to ‘Platonistic’ or ‘combinatorial’ foundations to R in
the literature) which becomes a (desirably) direct correlation if we then use
number systems like R to model actual spatial processes (e.g. in physics).

The following vectorial argument requires only Q∩[0, 1] (a finite rational
number line which I will write as [0, 1] below) which is based on the usual
Q as I shall aim for a conceptual contradiction. The vectors are the subsets
(1/(n + 1), 1/n], for n ∈ N, and can be regarded as being in a vector
space on a geometric line. The addition is defined to be (1/(n+ 1), 1/n] +
(1/n, 1/(n−1)] = (1/(n+1), 1/(n−1)]. And {1/n : n ∈ N} is a set of points
on the geometric line (0, 1] dividing it up into a set S of the vectors, each of
magnitude 1/n−1/(n+1), and they are therefore the points where pairwise
vector addition can be considered to take place. Also, r ∈ (0, 1] ⇔ r ∈ s,
for some s ∈ S, so the complete sum of the vectors of S is known to be
(0, 1], without having to apply the pairwise addition sequentially.

This is not the usual derivation of a vector sum, which is defined as
‘lim sum’, within a set-theoretical context which is devoid of geometry,
but my argument is that it follows by legitimate steps from the spatial
assumptions—e.g. all the pairwise additions can be considered to take place
simultaneously because the labelled points exist ‘all at once’, and they only
(individually) concern two vectors. Conversely, if we had started with inc N
then lim sum would have been the only possibility, since to sum the entirety
of S we would have to move through its endlessness without it being there
all at once (note that this is a temporal way of speaking, but it is just the
nature of any sequence which is involved, not time per se).

Originally lim sum was devised by mathematicians who held that N
was incompletable and lines were geometrical, and the following equations
(which produce the famous Grandi series, one of the series which led to the
introduction of lim sum in the first place) show that the geometry which is
to be reduced to an as yet unfinished set theory requires an inc N.
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1− 1

2

)
+

(
1

2
− 1

3

)
+ . . . = 1 from the vectors

⇒ 1 + 0 + 0 + . . . = 1 #
⇒ 1 + (1− 1) + (1− 1) + . . . = 1 since 0 = (1− 1) for each 0
⇒ 1 + 1 + (−1 + 1) + . . . = 1 ∗
⇒ 2 = 1 from #

It is the absence of nested brackets, centred on the left of the infinite
sums (which is what the lim sum definition would impose on these spatially
prearranged vectors), which allows the contradiction to be obtained by step
∗. If applicable maths requires inc N then it is the incompletable structure
of such collections which should underpin our conception of set.

When I use inc N to label points on this geometric line, this is the
marriage of spatial and temporal which makes my inc N a ‘Platonistic’
concept, and it is this line which I earlier stated may have +∞ points upon
(any length of) it. A point can be anywhere on a line because it merely has
reduced dimension, but it is part of a collection of points which is behaving
like a line. The line on either side of it extends up to (and including?)
zero distance from it, since it is next to it, which may be why only closed
line segments can exist (basically because they are ‘spatial’ objects whereas
open intervals of labelled points of it are ‘quasi-temporal’ objects) in any
imaginable way.

For example, a (mental idea of a) material body moving through space
contains a ‘physical point’ which moves through the space, as in fluid me-
chanics. If the space had an open edge within it, the point would move
(fixed within the body) until it reached a point which was not there (when
it would vanish, much as the point has vanished). Now, how could the
physical point reach that position (or point) if there was no point there?
Whereas if the space is closed, and a labelled point of this is then considered
to be non-existent (in the sense of objects occupying it being non-existent),
there is no such problem.

It could be possible for a line to be made of +∞ unlabelled (and hence
totally ‘spatial’) points whilst the only conceptually clear ways to consider
collections of those points are: (i) a complete, finite set of labelled points
on top of (points acting exactly as) a line, (ii) incompletable sets of labelled
points likewise, and (iii) lines going from one point to another (and higher-
dimensional analogues). It is the way that there are +∞ points on the
line which stops this being a mere contradiction (for example, the collection
of all the points of such a line which are zero distance from a given point
may not be well defined by the usual combinatorial conceptions, e.g. since
0 ∈ 0∞ and although they are ‘spatial’, they are exactly so many as to be
a line in the first place. Having the widest range of objects available has
usually won out within set theory at the axiomatic level—see [4] for the
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introduction of sets that are not unlike (points labelled as) +∞ into ZFC
(the usual set theory—obtained by appending the axiom of choice to the
basic Zermelo-Fraenkel system).

Alternatively, you could think of these +∞ points as being so packed
together, when they form a line, that removing one of them does not change
it at all (it would affect a collection of labelled points, of course, but remov-
ing one of them, in the context of that collection, would not leave bits of
the line of either side of it)—zero is very small, after all. The continuity
of the geometrical line, of +∞ points, is conceptually prior to the defini-
tion of continuity which we use with R, and the latter is basically a process
(although a ‘static’ terminology has been preferred because of the assumed
‘spatial’ nature of the usual N). With inc N, these definitions (interpreted
as processes) still apply, along with things like a geometric interpretation of
the Dirac delta function etc. Or, having a point anywhere need not imply
having points everywhere. For example, spheres are not space-filling, and
the necessary gaps between distinct points may correspond to the overlaps
which result if you try to fill space with spheres.

I am not thinking of the ‘temporal’ nature of inc N as some sort of time-
dependence for N itself. It was once thought to be convenient to model N
in this way, but this seemed to cause confusion for people who didn’t un-
derstand inc N. For example, it made them think that a maximum number,
perhaps arbitrarily assigned, was involved at any given time. Actually we
can look at inc N as a whole as long as we realize that it is a different sort
of object, ontologically, from the equally primitive notion of a geometrical
object. Its two defining rules generate a sort of feedback loop, as would the
rules for any sequence, so that it is the nature of any sequence (even an
atemporal, logical one) to be incompletable. To have got all the elements of
the sequence out of the loop you would have had to go round it an infinite
number of times, and if you go round such a loop an infinite number of times
you generate an element just as you do if you go round it a finite number
of times (unless it is a potential infinity).

If you are wondering what all this means in practice, consider how
infinite numbers can’t exist on the real number line R. If they did then
N would have to go all the way up to them, since it contains all the finite
whole numbers in an equally spatial way, which would then imply that
N had an end (at one less than an infinite number, i.e. it would contain
infinite numbers) whereas it is endless (and purely finite). With inc N we
can consider N’s endlessness to apply only to the labelling process, so that
infinite parts of the infinite geometrical line can actually exist as such. We
do not need to know the detailed structure of those parts (e.g. whether it
is ∞ or (+∞, −∞)) any more than we do now, but it is not consistent to
deduce that they do not exist. A finer division of those parts may correspond
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to Boffa’s universe; see [4], however.

Platonistic inc N can also shed a new (old?) light on the computable
reals (studied by Turing in the 1930s), V, say, which is the collection of the

real numbers which can be exactly described in a finite way (e.g. 1/4,
√

2, π),
or the points of the line so labelled which are therefore uniquely specified.
By contrast, the points of R− V are not uniquely specified (relative to the
points 0 and 1) since they are given only by endless expressions (though
they could, like 0 and 1, be arbitrarily assigned to a unique point in the
appropriate partition of R).

Take a point on the geometric line [0, 1] and successively subdivide this
line into tenths, noting where the point lies relative to this, so generating the
decimal expansion of the point. A point that is only infinitesimally distinct
from it would generate the same real ‘number’, and so an element of R−V
will not decide which of these points to label—whereas no infinitesimal
amounts are introduced by the constructions of V. This difference may help
to explain the philosophical disputes over the introduction of R and its set
theory (see [5]) and also relates to how ∞ (defined relative to 1 and 0 of
course) specifies a huge part of the infinite line instead of the single ‘point’
in projective geometry.

Now, V is countable (since we can list its descriptions alphabetically) but
with a correspondence N→ V given by an element of R−V, thus avoiding
Richard’s paradox, see [5], and if there are doubts over the existential nature
of points (their ontology) (e.g. some people like to think of arbitrarily small
blobs instead) then using only two (or an arbitrary finite number) of them
is advantageous, and V can capture applicable analysis, if applied within
the right conceptual framework. So if you think that the hyperreals are
unnecessary then consider that there are similar reasons to feel that way
about most of the elements of R (not to mention the imaginary numbers).

Conversely, if it is spatial extension which allows the uncountability of
R to develop from an inc N, then there may be limitations (inherent in this
spatial concept) which explain why the more fundamental (wrt labelling)
incompletable property is exhibited by elements of totalities such as On
(the class of all ordinals). The totality of the points of the line is ‘spatial’
but in a class of its own. Philosophers have called the idea that a line
cannot be made of points because lots of zeroes is still zero the ‘fallacy
of composition’, arguing that the ‘lots’ implies successive addition whereas
R is uncountable. But perhaps they were themselves being fallacious in
confusing geometric lines with the real number line? There is a physical
concept of ‘spatial’ addition (e.g. gravity acts on each particle of a ball
individually but simultaneously, whereas a kick will apply to part of it and
then to neighbouring parts and so on in a wavelike manner) which could
apply to the line—we know that 0 ∈ 0∞ is not an equality, whereas zero
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times ℵ1 might not be nonzero at all for all we know.

In conclusion, the ontological foundations of maths are even more in-
teresting than they were when Aristotle first ‘solved’ Zeno’s paradoxes, and
perhaps our current set theoretical foundations (with their own philosophi-
cal problems) are just a least ontologically committed option. The ontolog-
ical problems of the natural sciences are probably related (both in results
and methodology) so this might also be a rewarding part of maths empir-
ically. For a recent introduction to the philosophy of mathematics see [6]
and for a classic overview of mathematics see [7].
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Solution 181.5 – Five digits
Find all solutions of

104a+ 103b+ 100c+ 10d+ e = f(104e+ 103d+ 100c+ 10b+ a)

in non-negative integers a, b, c, d, e, f subject to the usual con-
straints of decimal arithmetic, 0 ≤ b, c, d ≤ 9 and 1 ≤ a, e ≤ 9.

Paul Terry
Since a, b, c, d and e are all less than 10, the LHS of the equation is less
than 100,000. Also, since e > 0 the RHS can only be less than 100,000 if
f < 10.

Apart from the 900 ‘trivial’ solutions where a = e, b = d and f = 1
there are two which meet the given conditions:

a = 8, b = 7, c = 9, d = 1, e = 2, f = 4 from which 87912 = 4 · 21978;

a = 9, b = 8, c = 9, d = 0, e = 1, f = 9 from which 98901 = 9 · 10989.
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Solution 181.3 – Six-sided pencil
What is the function associated with the familiar curtain-like
graph that appears at the border of the exposed wood when you
sharpen a six-sided pencil?

John Bull
Consider just one example based on ar-
bitrary dimensions. The equation of the
cone of the pencil is

z2 = x2 − y2.

The equations of the three pairs of op-
posite flat sides of the pencil are

z = ±
√

3,

z = ± (2 + y)
√

3

and

z = ± (2− y)
√

3.

Substituting z =
√

3 in the first equation gives

x2 − y2 = 3.

Thus the curve of each sharpened segment takes the form of a hyperbola.
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Solution 181.2 – Six secs

Show that sec
π

7
sec

2π

7
sec

3π

7
sec

4π

7
sec

5π

7
sec

6π

7
= −64 and

that sec
π

7
+ sec

2π

7
+ sec

3π

7
+ sec

4π

7
+ sec

5π

7
+ sec

6π

7
= 0.

Sue Bromley
Taking the second part of the question first: generally, secα = 1/(cosα) =
−1/ cos(π − α) = − sec(π − α), so

sec
π

7
+ sec

2π

7
+ sec

3π

7
+ sec

4π

7
+ sec

5π

7
+ sec

6π

7

= sec
π

7
+ sec

2π

7
+ sec

3π

7
− sec

3π

7
− sec

2π

7
− sec

π

7
= 0.

For the first part, working in cos seems safe here and also easier. Using
(cosα)(cosβ) = 1

2 [cos(α+ β) + cos(α− β)], we have

cos
π

7
cos

2π

7
cos

3π

7
=

1

2

[
cos

π

7
+ cos

3π

7

]
cos

3π

7

=
1

4

[
cos

2π

7
+ cos

4π

7
+ cos

6π

7
+ 1

]
and

cos
4π

7
cos

5π

7
cos

6π

7
= − cos

π

7
cos

2π

7
cos

3π

7
.

Drawing a graph of cos from 0 to 2π helps us to see that

cos 0 + cos
2π

7
+ cos

4π

7
+ cos

6π

7
+ cos

8π

7
+ cos

10π

7
+ cos

12π

7
= 0,

2

(
cos

2π

7
+ cos

4π

7
+ cos

6π

7

)
= −1, cos

2π

7
+cos

4π

7
+cos

6π

7
= − 1

2
.

Putting all this together,

sec
π

7
sec

2π

7
sec

3π

7
sec

4π

7
sec

5π

7
sec

6π

7
=

−1(
cos 2π

7 cos 2π
7 cos 3π

7

)2
= −

(
1

4

(
−1

2
+ 1

))−2

= −64.

Working this out certainly took longer than six secs!
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Solution 181.7 – Five cots

Prove that

cot
π

11
cot

2π

11
cot

3π

11
cot

4π

11
cot

5π

11
=

1√
11
.

John Bull
We use the identity (cos(nπ/11) + i sin(nπ/11))

11
=
(
einπ/11

)11
= (−1)n

with n an integer ≥ 1. For convenience, put c = cos(nπ/11), s = sin(nπ/11)
and p = cot(nπ/11). Then

(c+ is)11 = c11 + 11c10si− 55c9s2 − 165c8s3i

+ 330c7s4 + 462c6s5i− 462c5s6 − 330c4s7i

+ 165c3s8 + 55c2s9i− 11cs10 − s11i = (−1)n.

Equate imaginary parts and divide through by s11,

11p10 − 165p8 + 462p6 − 330p4 + 55p2 − 1 = 0.

We know that cot(π/11) = − cot(10π/11), cot(2π/11) = − cot(9π/11),
etc. so the roots of this equation are p2 = cot2(π/11), cot2(2π/11), . . . ,
cot2(5π/11). As a quintic in p2, the product of the roots is given by the
negation of the constant term divided by the leading coefficient. So we have

cot2
π

11
cot2

2π

11
cot2

3π

11
cot2

4π

11
cot2

5π

11
=

1

11

and the required result follows.

The technique can be used to prove similar trigonometric identities,
such as the other problem in M500 181, ‘Six secs’.

Sue Bromley
I couldn’t resist another ‘

√
11’ problem but the thought of attempting ‘Five

cots’ using trig. formulae was not very appealing. However, M500 175, p.
23, helpfully provides this equality:

sin
π

n
sin

2π

n
. . . sin

(n− 1)π

n
=

n

2n−1
.

Having made the calculations for n = 3, 5, 7, 9, 11, I would put forward the
additional theorems

cos
π

n
cos

2π

n
. . . cos

(n− 1)π

n
=

(−1)(n−1)/2

2n−1
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and

tan
π

n
tan

2π

n
. . . tan

(n− 1)π

n
= (−1)(n−1)/2n,

where n is odd.

Using the formula for tan,

tan
π

11
tan

2π

11
. . . tan

9π

11
tan

10π

11
= − 11,

and since tan(π − α) = − tanα,

tan
π

11
tan

2π

11
. . . tan

5π

11
=
√

11

and

tan
6π

11
tan

7π

11
. . . tan

10π

11
= −

√
11.

Hence

cot
π

11
cot

2π

11
cot

3π

11
cot

4π

11
cot

5π

11
=

1√
11
.

Note that the formula for cos gives a very quick solution to ‘Six secs’. Since

cos
π

7
cos

2π

7
. . . cos

6π

7
=

(−1)3

26
=
−1

64
,

sec
π

7
sec

2π

7
. . . sec

6π

7
= − 64,

but I couldn’t have arrived at this without first going through various
thought processes and down many blind alleys trying to solve it.

Problem 183.1 – Three altitudes
John Bull
We all know that a triangle is uniquely
specified by the lengths of three sides. Is
a triangle also uniquely specified by the
lengths of three altitudes?
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General formula for sums of powers
Sebastian Hayes
Barry Lewis, in his two fascinating articles (‘Hip, Hip, Array’, M500 162,
and ‘Sums of powers – again’, M500 167) shows how to obtain the coeffi-
cients for sums of arbitrary powers of natural numbers. A general formula
can also be obtained without calculus by using the Method of Indeterminate
Coefficients.

We want a function in n and r which will sum ar for a = 0, 1, 2, . . . , n
and r=0, 1, 2, . . . . By hypothesis there is a polynomial expression in n:

A0 +A1n+A2n
2 +A3n

3 + · · ·+Arn
r +Ar+1n

r+1 + . . . ,

which is valid for any r = 0, 1, 2, . . . . The Ak are, however, not constants
as in a normal polynomial but functions of r, possibly constant functions:

f(0, r), i.e., summing from 0 to 0, = 0 for all r and so A0 = 0;

f(1, r), i.e., summing from 0 to 1, = 1 for all r.

This leads to the extremely useful result that for all values of r > 0, the
sum of the coefficients is 1.

Suppose r = 3. Since the formula we are looking for is (by hypothesis)
valid for any n, we can take the difference between summing a3 from 0 to
n+1 and summing it from 0 to n. Using the binomial coefficients we obtain

A1(1) +A2(2n+ 1) +A3(3n2 + 3n+ 1) +A4(4n3 + 6n2 + 4n+ 1)

+A5(5n4 + 10n3 + 10n2 + 5n+ 1) + higher powers.

However, this difference is just (1 + n)3 = n3 + 3n2 + 3n+ n0.

Equating coefficients for the same powers of n we can solve for A1, A2,
A3, A4, . . . . All coefficients accompanying powers higher than the third
must be zero, and there is no constant term so we obtain the well-known
values A4 = 1/4, A3 = 1/2, A2 = 1/4, A0 = 0. Check: Sum of coefficients
= 1.

This procedure can be made completely general and we can solve for
arbitrary r in piecemeal fashion, starting with the coefficient of the (r+1)th
power, Ar+1, and working backwards. (All coefficients for powers beyond
the (r + 1)th will be zero.)

In effect we have to solve an indefinitely extendible set of simultaneous
equations commencing with



M500 183 Page 17

r+1C1Ar+1 = 1,

r+1C2Ar+1 + rC1Ar = rC1,

r+1C3Ar+1 + rC2Ar + r−1C1 = rC2.

Once we have obtained a solution for one of the coefficients, we can feed
this (functional) value back into the subsequent equation.

First, Ar+1 = 1/(r+1) starts the ball rolling; Ar turns out, surprisingly,
to be independent of r and always = 1/2 except in the trivial case of f(n, 0)
when 10 + 20 + · · ·+ n0 = 1 + 1 + · · ·+ 1 = n making A0 = 0 in this case.

Feeding in these results, I found that

Ar+1 =
1

r + 1
,

Ar =
1

2
(r > 0),

Ar−1 =
r

12
,

Ar−2 = 0,

Ar−3 = − r(r − 1)(r − 2)

6!
,

Ar−4 = 0,

Ar−5 = − r(r − 1)(r − 2)(r − 3)(r − 4)

6× 7!
.

This led to the conjecture that all further coefficients Ar−k are either zero
or begin with r!/(r − k)!. This is in fact exactly what is required if we are
to have a single unchanging set of (functional) coefficients which must go to
zero apart from the first r + 1 coefficients for any r.

One could continue indefinitely in this fashion but the computation
soon becomes tedious. In any case, what we really want is a formula for the
general term expressed as Ar−k+1n

r−k+1, where k is fixed for a particular
setting and r is variable. It is more useful to work with r − k + 1 than
r− k because k then gives the power we are dealing with—for example, the
sum of the squares will have coefficients Ar+1, Ar, Ar−1 or Ar−k+1 with k
ranging from 0 to r.

After a very short time I hit upon a general recursive formula

Ar−k+1 = (1− (coefficients obtained so far))
rCk

r − k + 1
.
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Here, r is a variable, k is fixed and it is to be understood that the coefficients
within the brackets are previously obtained functions in r which have been
given the current value of k. Thus

Ar−k+1 =

(
1−

k+1∑
1

r

)
rCk

r − k + 1
.

For powers higher than the (r + 1)th, the coefficients are zero, so we com-
mence with Ar−0+1 (k = 0) which gives (1− 0)rC0/(r − 0 + 1) = 1/(r+ 1).

For k = 1, Ar−1+1 =

(
1− 1

2

)
r

r
=

1

2
.

For k = 2, Ar−2+1 =

(
1−

(
1

3
+

1

2

))
rC2

r − 2 + 1
=

r

12
.

So the formula seems to be working. However, I found this innocuous ex-
pression, so easily obtained, impossible to prove and, on Barry Lewis’s sug-
gestion, turned to the matrix representation to see if this approach would
yield better results. In matrix terms, we have to solve the following equation
for arbitrary r.

r + 1 0 0 . . . 0
(r+1)r

2 r 0 . . . 0
(r+1)r(r−1)

3!
r(r−1)

2! r − 1 . . . 0
(r+1)r(r−1)(r−2)

4!
r(r−1)(r−2)

3!
(r−1)(r−2)

2 . . . 0

. . . 0

1 1 1 . . . 1





Ar+1

Ar

Ar−1

Ar−2

. . .

A1


=



1

r
r(r−1)

2
r(r−1)(r−2)

6

. . .

1


.

Since we do not require coefficients for powers beyond the (r + 1)th—since
they are all zero—finding the inverse of this matrix for arbitrary r will
provide everything we need. The one piece of additional information we
start with is that the coefficients must sum to 1 for any r.

At first sight it seems an impossible task to evaluate the inverse of this
indefinitely extendible algebraic matrix. However, the determinant of this
matrix is just (r + 1)!. Why is this?

By definition, the determinant of a single entry matrix is this entry, and
of a 2× 2 matrix it is the cross product ad− bc. For a larger square matrix
you have to mentally block out the line and column of an entry in the top
line and multiply this entry by the determinant of the remaining square
block. However, since the first line is all zeros except for entry 1, det(r+ 1)
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matrix = (r+ 1)× det(r× r) matrix, i.e. the square minus the top row and
first column, what the Greeks called the gnomon.

But the next square matrix turns out to have all zeros in the top line as
well except for r in first place. Thus we go from square to inner square until
we reach the final last entry which is 1 with determinant 1. Thus, rather
pleasingly, the determinant of the (r + 1) × (r + 1) matrix is (r + 1)r(r −
1) . . . 1 = (r + 1)!.

It is in fact a basic theorem in linear algebra that if a square matrix A
of order n is upper triangular, lower triangular or diagonal, then detA is
the product of the entries on the main diagonal.

In principle, then, the Power Matrix has an inverse, since it has a non-
zero determinant for any r.

Simply by observation we can fill in a few places of (R + 1)−1 which
must, on multiplying matrix R+ 1, yield the unit matrix

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0 . . .

Also, if we get out the inverses of some small matrices, we see a pattern
emerging: the coefficients of the sums of rth powers (with one exception)
appear as the bottom row of the inverse matrix. For r = 4 the inverse of
the 5× 5 matrix is as follows.

1

5
0 0 0 0

−1

2

1

4
0 0 0

1

3
−1

2

1

3
0 0

0
1

4
−1

2

1

2
0

− 1

30
0

1

6
−1

2
1

If we apply this to the column matrix
1
4
6
4
1

 ,
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we obtain the coefficients of the sum of the fourth powers, namely

A5 =
1

5
, A4 =

1

2
, A3 =

1

3
, A2 = 0, A1 = − 1

30
.

Check: Sum = 1.

It is necessary to prove that this will always be the case for any value of
r. I did eventually establish this though in rather a long-winded way that
I will not give here. This can be a test for the reader.

Model railways
ADF
Some time ago I went to see the model railway at New Romney, on the
south Kent coast. It was probably typical of such things—rural landscape,
two villages, each with station, houses, pub, etc. and, of course, lots of little
trains running around on little tracks.

While I was watching the trains going about their business it occurred to
me that the inhabitants of the model (all 30–40 of them) were blessed with
a public transport system that real people could only dream about. Indeed,
one could imagine the following timetable for about 11:00 on a typical day:

Village-A d 11:00:00 11:00:03 11:00:07 11:00:10 11:00:12 11:00:15 . . .
Village-B a 11:00:05 11:00:08 11:00:12 11:00:15 11:00:17 11:00:20 . . .

Village-B d 11:00:01 11:00:04 11:00:06 11:00:09 11:00:13 11:00:16 . . .
Village-A a 11:00:06 11:00:09 11:00:11 11:00:14 11:00:18 11:00:21 . . .

Clearly this is ridiculous, and certainly at odds with another model, the
somewhat larger Romney, Hythe and Dymchurch Light Railway, where 15”
gauge steam trains carry full-size people at (real) speeds of about 10 mph
At peak times the service is half-hourly, I think.

So I ask: In a scale-model, what is the correct speed for objects to
travel at? Or, to put it more simply, how should time and velocity scale
with distance?

The weather is going to be much less predictable in future. That means there
will be fewer white Christmases.—BBC News. [Sent by Peter Fletcher]
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Seven a side
Eddie Kent
You know how it is when you open a box that hasn’t been touched for years.
It’s like browsing through a junk shop with the added bonus that it isn’t
going to cost you anything, or add to the clutter in your house. That is
how this puzzle turned up. It was clearly filched from some long forgotten
publication, which we will be delighted to acknowledge if anyone recognizes
it. The puzzle was cut out of cardboard and painted a different colour each
side.

The rules are simple. You have one piece shaped like (a), ten like (b)
and one like (c). Those who can count will notice that this gives a total of 49
little squares; and so the objective is to assemble them into one large square.
No flipping is allowed, which is why the faces are differently coloured.

I don’t recollect that anyone ever solved it, though I cannot believe that
it is not possible. Surely someone can prove me right.

Good luck.

HaL HbL HcL

Problem 183.2 – Fifteen objects
There are fifteen objects to be painted red, yellow or blue. In each case the
colour is chosen at random with probability 1/3. What’s the probability of
five red, five yellow, five blue?

The world’s most powerful unclassified supercomputer is at Berkeley Na-
tional Laboratory . . . It has a top speed of 3.8 tetraflops, or 3.8 trillion
calculations every second.—The Big Issue, September 17–23, 2001 [Spotted
by JRH.]
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Solution 179.2 – Four tans
Show that tan 11◦ = (tan 19◦)(tan 33◦)(tan 41◦).

ADF
I would like to resurrect the idea of solving this problem by an approximate
numerical computation (M500 181 13). It can be done.

Let ζ = eπi/180. Then the formulae for the complex trigonometric func-
tions look like this: cosx◦ = (ζx + ζ−x)/2, sinx◦ = (ζx − ζ−x)/(2i) and
tanx◦ = i (1− ζ2x)/(1 + ζ2x). Solving the problem, therefore, is equivalent
to showing that

1− ζ22

1 + ζ22
+

1− ζ38

1 + ζ38
· 1− ζ66

1 + ζ66
· 1− ζ82

1 + ζ82
= 0,

or, multiplying out and simplifying, that p(ζ) = 0, where p(x) is the poly-
nomial defined by

p(x) = x208 − x148 − x120 + x88 + x60 − 1.

Since ζ is an algebraic integer (it is a root of x180 + 1), so is p(ζ); therefore
N(p(ζ)), the norm of p(ζ), is an ordinary integer. Furthermore

N(p(ζ)) =
∏

1≤k≤359, gcd(k,360)=1

p(ζk).

The way ahead is clear. Pretending that we haven’t spotted the factor
x120 − x60 + 1 of p(x), we use a pocket calculator, or whatever, to compute
N(p(ζ)) with sufficient accuracy to verify that −1 < N(p(ζ)) < 1. Now we
can conclude that N(p(ζ)) = 0 and hence p(ζ) = 0.

Problem 183.3 – Seven real numbers
Barbara Lee
Suppose a, b, c, d, e, f and g are seven non-negative real numbers that total
1. If M is the maximum of the five sums,

a+ b+ c, b+ c+ d, c+ d+ e, d+ e+ f, e+ f + g,

what is the minimum value that M can possibly take?

Problem 183.4 – Two real numbers
John Bull
If x and t are real numbers, find values of t such that coshx ≤ exp(tx2) for
all x.
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Letters to the Editors
Four points
Dear Jeremy,

Re: Problem 181.4 [Choose two points inside a circle and draw the line
segment joining them. Then select another two points inside the circle and
draw the line segment joining these two points. What is the probability that
the two line segments intersect?]. Take four points randomly distributed on
the circumference of a circle. Call one of them A, and the others B, C, D
in that order. Then A can join to B, C, or D whence C must join D, A, or
B. So there are three possibilities, in one of which the lines intersect. The
probability of that happening is one third.

Then I reread the question, and saw that the points are inside the circle,
not on the circumference. I thought it seemed too easy.

Take point A randomly inside the circle. It will be a point on an in-
scribed circle with the same centre. As a big circle will have more room for
points than a little circle, it suggests that the random point is more likely
to be on a big circle. But point A will also be on a diameter of the circle,
and therefore has equal probability of being in the centre or at the edge, be-
cause all diameters are the same length. That seems to be a contradiction,
or have I just shown an example of Cantor’s argument that the number of
points on all lines are equal? No it does not, because the diameter has two
points at the circumference but only one at the centre.

Instinctively there does seem to be more room in the circle away from
the centre, and that is where the four points are more likely to be. Such are
my random thoughts.

Colin Davies

Chimps
CHIMP to WOMAN is a short journey (though not as short as APE to
MAN!). CHIMP, CHAMP, CLAMP, CLAMS, CLAPS, CLOPS, COOPS,
CORPS, CORES, COVES, COVEN, WOVEN, WOMEN, WOMAN (13).

Rob Williams

My best so far is 12 changes: CHIMP, CHAMP, CHAMS, CHAPS, CHOPS,
COOPS, CORPS, CORES, COVES, COVEN, WOVEN, WOMEN,
WOMAN.

Cham is in dictionaries, an old spelling of khan but still vaguely current
because someone called Dr Johnson the Grand Cham of Literature.

Best wishes

Ralph Hancock
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A small ditrigonal icosidodecahedron
Marion Stubbs
Reprinted from M500 38

Cut a regular 5-pointed star-shape template from card, also a similar card
template for an equilateral triangle with sides equal in length to the length
of the star sides. Place each template on the material to be used, such as
computer cards, or even old wallpaper if strong enough, prick a mark on
the material at each vertex of the template, and join up the marks with a
scoring knife or pencil. Then cut round the shape, leaving about quarter
inch tabs all round for gluing. Fold the tabs inwards along the scored lines.

You need 12 stars and 60 triangles. Start with one star, surrounded
by ten triangles. It is easiest if the triangle pairs are glued together first
and then glue them between star arms, as dihedral grooves. Then you can
immediately add the next five stars, followed by the remaining pieces. As
usual, the final star is the most difficult to insert. It is best done slowly,
in stages, gluing one tab at a time, and using a suitable instrument as a
probing needle to work in where needed.

The result is a pretty Christmas decoration . . . .

Tony Forbes writes—Here is the construction which I used for the illus-
trations.

Start with the point e1 = (1/(2 sin(π/5)), 0, 0). Scale e1 by a factor of
cos(2π/5)/ cos(π/5) and rotate through π/5 about the z-axis to create point
f1. Rotate both e1 and f1 by multiples of 2π/5 about the z-axis to obtain
eight new points, e2, f2, . . . , e5, f5. Thus s0 = {e1, f1, e2, f2, . . . , e5, f5}
is a regular five-pointed star in the (x, y)-plane.

Lift s0 up the z-axis by (
√

5 + 1)5/22−7/25−1/4, the radius of the in-
sphere of the regular dodecahedron, to get s1, say. Rotate s1 by arctan 2
about the y-axis and then by π/5 about z to obtain another star, s2, say.
Rotate s2 by multiples of 2π/5 about z to create four more stars, s3, s4, s5,
s6. Then s1, s2, . . . , s6 are the stars of the top half of the SDI. Rotate by
π about y for the bottom half.

Now form triangle t with the points corresponding to e1 and f1 of star
s1 and the point corresponding to f3 of star s2. Rotate t by multiples of
2π/5 about the z-axis to create a set of five triangles, t1, say. Associate t1
with star s1 and propagate triangle sets exactly as we did with the stars.
Interestingly, the 60 triangles generated in this manner appear in the right
places and with no overlapping.



M500 183 Page 25

While we’re on the subject, can anyone explain in an extremely con-
vincing manner why joining together regular pentagons results in a three-
dimensional figure that closes up exactly?
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