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The mathematics of bowls and marbles
Robin Marks
Having become the organizer of bowls competitions at Greenroyd Bowling
Club in Halifax, I was wondering whether it was entirely fair to use our
method of selecting partners for doubles bowling events.

The method we use is to pair the lowest handicap player with the high-
est handicap player, then repeat the process among the remaining players
until all are paired off. Another practical problem that arises is that Club
members wish to know when the competition will finish. It takes about 4
minutes to bowl an ‘end’ in a doubles competition. A score of 21 or more
is required to win a game. How long will a game last—minimum length,
average length, maximum length?

First I explain the rules of bowls. A small ball called the jack is thrown
first and becomes the target. Each player has two bowls. These are bowled
so as to arrive as close as possible to the jack. There may be one player on
each side (singles) or two players on each side (doubles). Call one side ‘A’
and the other ‘B’. Each player in turn throws a bowl until all the bowls
have been thrown. Each session of throwing all the bowls is called an ‘end’.
The score for the end is determined as follows.

(1) Count the number of side A’s bowls that have beaten the best bowl
of side B. This is the score for side A.

(2) Count the number of side B’s bowls that have beaten the best bowl
of A’s side. This is the score for side B.

In a game the various bowls end up around the jack, with probabili-
ties that could be reasonably modelled by a radial Gaussian distribution,
probability equal to e−sr

2

, where r is the distance of a bowl from the jack,
and s is a positive number that I will call the ‘skill factor’. A higher value
of s represents tighter grouping around the jack and therefore greater skill.
To model the distribution on a 2-dimensional surface, we need a parameter
θ, the direction of the bowl as measured from the jack. We need a total
probability of 1, for a bowl to end up anywhere on the playing surface, that
is, between r = 0 and r =∞, and between θ = 0 and θ = 2π.

Now ∫ 2π

0

∫ ∞
0

e−sr
2

r dr dθ =
π

s
.

The normalized Gaussian function is therefore s/πe−sr
2

. The graphs on the
next page show what this function looks like when s = 2 and when s = 1.
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Player A has skill factor 2

Player K has skill factor 1

To make things simple to begin with, let each side have one bowl each.
What is the chance that A will beat B? Well, the probability of B’s bowl
arriving at a radial distance of between r and r+δr from the jack is approx-
imately equal to the sum of the volumes of elements in a hollow cylinder
radius r, height b/πe−br

2

and thickness δr, that is, the volume of an ele-

ment is b/πe−br
2

δr r δθ. Adding these together, in the limit as δθ → 0 this
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becomes ∫ 2pi

0

b

π
e−br

2

r dθ δr = 2be−br
2

r δr.

Bowl J (skill factor 1) arrives at radius 0.75

The probability of A winning, that is, the probability of A’s bowl coming
to rest inside this radius r, is∫ 2π

0

∫ r

0

a

π
e−ar

2

rAdrAdθA = 2a

∫ r

0

e−ar
2

rAdrA.

So the joint probability of B’s bowl arriving at between r and r + δr, and
A’s bowl beating this is therefore

2be−br
2

rδr2a

∫ r

0

e−ar
2

rAdrA,

as shown on the next page.

The overall probability of A winning is now given by integrating the
above expression over radial distances 0 to ∞ of B’s bowl from the jack:∫ ∞

0

2be−br
2

r2a

∫ r

0

e−ar
2

rAdrAdr = 2b

∫ ∞
0

be−br
2

(1− e−ar
2

)rdr

= 2b

(
1

2b
− 1

2(a+ b)

)
=

a

a+ b
.

Thus the probability of A beating B is simply a/(a + b). By an amazing
stroke of luck we have arrived at an elegant and delightfully simple answer!
If A’s skill factor was 2x, say, and B’s was x, the chance of A beating B
would be 2/3.
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Bowl J at radius 0.75, Bowl A at < 0.75

In a standard game of bowls the players have two bowls each. Let A’s
side consist of bowls {A,B} and B’s side {J,K}. Now compare each bowl’s
position against the position of bowl B. I will use the notation ‘pattern
{A}J{BK}’ to mean the bowls have finished in the positions A before J ,
J before B and J before K.

To save space I introduce a compact notation for a certain double inte-
gral which is used on numerous occasions throughout the rest of the article.
Let

y

I
x
(z) =

∫ 2π

0

∫ y

x

z

π
e−zr

2
ZrZdrZdθZ ,

where z is the skill factor of the bowler of bowl Z, and the position of that
bowl relative to the jack is represented by polar co-ordinates (rZ , θZ).

Now let us look at an end where A’s side scores no points, pattern
J{EABK}. The joint probability of J beating A, J beating B and J
beating K is∫ ∞
0

∫ 2π

0

j

π
e−jr

2

r dθJ
∞
I
r

(a)
∞
I
r

(b)
∞
I
r

(k) dr = 2j

∫ ∞
0

e−jr
2

e−ar
2

e−br
2

e−kr
2

r dr

= 2j

∫ ∞
0

e−(a+b+j+k)r
2

r dr =
j

a+ b+ j + k
.
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Side A also scores nothing when we swap the position of bowl J with bowl
K. So the total probability of A’s side scoring zero on an end is P/(a+b+P ),
where P = j + k. For example, if skills are such that a + b = j + k, then
the probability of scoring nil on an end is 1/2. That is, B’s side will win
an end in 50 per cent of cases on average. Another example: if a = b = 2
and j = k = 1, the probability of A’s side scoring nothing on an end is now
reduced to 1/3.

Let us look at an end where A’s side scores 1 point, pattern {A}J{BK}.
The chance of A beating J , J beating B and J beating K is∫ ∞
0

∫ 2π

0

j

π
e−jr

2

r dθJ
r

I
0
(a)
∞
I
r

(b)
∞
I
r

(k) dr

= 2j

∫ ∞
0

(
e−(b+j+k)r

2

− e−(a+b+j+k)r
2
)
r dr =

j

b+ j + k
− j

a+ b+ j + k
.

Side A also scores 1 when we swap the position of bowl J with bowl K,
and also if we swap bowl A for bowl B. So the total probability of A’s side
scoring 1 is

j + k

b+ j + k
− j + k

a+ b+ j + k
+

j + k

a+ j + k
− j + k

a+ b+ j + k

= P

(
1

a+ P
+

1

b+ P
− 2

a+ b+ P

)
.

For example, when a = b = j = k = 1 the probability is 1/3. Another
example: if a = b = 2 and j = k = 1, the probability is, coincidentally, also
1/3.

Now let us look at an end where As side scores 2 points. This is pattern
{AB}J{K}. The chance of A beating J , B beating J and J beating K is∫ ∞

0

∫ 2π

0

j

π
e−jr

2

r dθJ
r

I
0
(a)

r

I
0
(b)
∞
I
r

(k) dr

=
j

j + k
− j

a+ j + k
− j

b+ j + k
+

j

a+ b+ j + k
.

A also scores 2 when we swap the position of bowl J with bowl K. So the
total probability of A’s side scoring 2 is

P

(
1

P
− 1

a+ P
− 1

b+ P
+

1

a+ b+ P

)
,
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Bowl A inside radius 0.75, J at 0.75, K at > 0.75

where, as before, P = j + k. For example, when a = b = j = k = 1 the
probability is 1/6. If a = b = 2 and j = k = 1, the probability of scoring 2
rises to 1/3. To check, we add up the probabilities of side A scoring zero, 1
or 2 at an end,

P

(
1

P
− 1

a+ P
− 1

b+ P
+

1

a+ b+ P

)
+ P

(
1

a+ P
+

1

b+ P
− 2

a+ b+ P

)
+

P

a+ b+ P
= 1.

Now I wish to consider a game of doubles. As well as finding out how
many ends it takes to finish a game, I also want to look at how players of
differing standards can be selected to make pairs that are approximately
evenly matched. Sides now have four bowls each; side A has {A,B,C,D}
and side B has {J,K,L,M}. We write

Q = j + k + l +m.

First let us look at the case where A’s side scores no points. The prob-
ability of pattern J{ABCDKLM} is∫ ∞
0

∫ 2π

0

j

π
e−jr

2

r dθJ
∞
I
r

(a)
∞
I
r

(b)
∞
I
r

(c)
∞
I
r

(d)
∞
I
r

(k)
∞
I
r

(l)
∞
I
r

(m) dr

=
j

a+ b+ c+ d+ j + k + l +m
.
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Side A also scores zero when we swap the position of bowl J with each of
the bowls K, L or M . So the total probability of A’s side scoring no points
is

Q

a+ b+ c+ d+Q
.

Let us look at the case where A’s side scores 1 point. The probability
of pattern {A}J{BCDKLM} is∫ ∞

0

∫ 2π

0

j

π
e−jr

2

r dθJ
r

I
0
(a)
∞
I
r

(b)
∞
I
r

(c)
∞
I
r

(d)
∞
I
r

(k)
∞
I
r

(l)
∞
I
r

(m) dr

=
j

b+ c+ d+Q
− j

a+ b+ c+ d+Q
.

Side A also scores 1 when we swap the position of bowl J with bowls K, L
or M , and also if we replace A with any of the bowls B, C or D. So the
total probability of A’s side scoring 1 is

Q

(
1

a+ b+ c+Q
+

1

a+ b+ d+Q
+

1

a+ c+ d+Q

+
1

b+ c+ d+Q
− 4

a+ b+ c+ d+Q

)
.

For example, when a = b = c = d = j = k = l = m = 1 the probability is
2/7. If a = b = 1, c = d = 4, j = k = 3 and l = m = 2, the probability
is 23/76, which is about 1.7 per cent more than 2/7, whereas if a = b = 2,
c = d = 3, j = k = 1 and l = m = 4, the probability is 44/153, about 0.2
per cent more than 2/7.

Let us look at the case where A’s side scores 2 points. The probability
of pattern {AB}J{CDKLM} is∫ ∞

0

∫ 2π

0

j

π
e−jr

2

r dθJ
r

I
0
(a)

r

I
0
(b)
∞
I
r

(c)
∞
I
r

(d)
∞
I
r

(k)
∞
I
r

(l)
∞
I
r

(m) dr

=
j

c+ d+Q
− j

a+ c+ d+Q
− j

b+ c+ d+Q
+

j

a+ b+ c+ d+Q
.

Side A also scores 2 when we swap the position of bowl J with bowls K,
L or M , and also if we replace C and D with any of the other five pairs of
bowls that can be chosen from A, B, C and D. So the total probability of
A’s side scoring 2 is

Q

(
1

a+ b+Q
+

1

a+ c+Q
+

1

b+ c+Q
+

1

a+ d+Q
+

1

b+ d+Q
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+
1

c+ d+Q
− 3

a+ b+ c+Q
− 3

a+ b+ d+Q
− 3

a+ c+ d+Q

− 3

b+ c+ d+Q
+

6

a+ b+ c+ d+Q

)
.

For example, when a = b = c = d = j = k = l = m = 1 the probability
of A’s side scoring 2 is 1/7. Another example: if a = b = 1, c = d = 4,
j = k = 3 and l = m = 2, the probability is 101/684, which is about 0.5%
more than 1/7. Another example, if a = b = 2, c = d = 3, j = k = 1 and
l = m = 4 the probability is 409/2856, about 0.04% more than 1/7.

Let us look at the case where A’s side scores 3 points. The probability
of pattern {ABC}J{DKLM} is∫ ∞

0

∫ 2π

0

j

π
e−jr

2

r dθJ
r

I
0
(a)

r

I
0
(b)

r

I
0
(c)
∞
I
r

(d)
∞
I
r

(k)
∞
I
r

(l)
∞
I
r

(m) dr

=
j

d+Q
− j

a+ d+Q
− j

b+ d+Q
− j

c+ d+Q
+

j

a+ b+ d+Q

+
j

a+ c+ d+Q
+

j

b+ c+ d+Q
− j

a+ b+ c+ d+Q
.

Side A also scores 3 when we swap the position of bowl J with bowls K, L
or M , and also if we swap D with A, B or C. So the total probability of
A’s side scoring 3 is

Q

(
1

a+Q
+

1

b+Q
+

1

c+Q
+

1

d+Q
− 2

a+ b+Q
− 2

a+ c+Q
− 2

a+ d+Q

− 2

b+ c+Q
− 2

b+ d+Q
− 2

c+ d+Q
+

3

a+ b+ c+Q
+

3

a+ b+ d+Q

+
3

a+ c+ d+Q
+

3

b+ c+ d+Q
− 4

a+ b+ c+ d+Q

)
.

For example, when a = b = c = d = j = k = l = m = 1 the probability
of A’s side scoring 3 is 2/35. Another example: if a = b = 1, c = d = 4,
j = k = 3 and l = m = 2, the probability is 2293/52668, about 1.4 per cent
less than 2/35, whereas if a = b = 2, c = d = 3, j = k = 1 and l = m = 4,
the probability is 1039/18564, about 0.1 per cent less than 2/35.

Finally, let us look at the case where A’s side scores 4 points. The
probability of pattern {ABCD}J{KLM} is∫ ∞
0

∫ 2π

0

j

pi
e−jr

2

r dθJ
r

I
0
(a)

r

I
0
(b)

r

I
0
(c)

r

I
0
(d)
∞
I
r

(k)
∞
I
r

(l)
∞
I
r

(m) dr
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=
j

Q
− j

a+Q
− j

b+Q
− j

c+Q
− j

d+Q
+

j

a+ b+Q
+

j

a+ c+Q

+
j

a+ d+Q
+

j

b+ c+Q
+

j

b+ d+Q
+

j

c+ d+Q

− j

a+ b+ c+Q
− j

a+ b+ d+Q
− j

a+ c+ d+Q

− j

b+ c+ d+Q
+

j

a+ b+ c+ d+Q

Side A also scores 4 when we swap the position of bowl J with bowls K, L
or M , so the total probability of A’s side scoring 4 is

Q

(
1

Q
− 1

a+Q
− 1

b+Q
− 1

c+Q
− 1

d+Q
+

1

a+ b+Q
+

1

a+ c+Q

+
1

a+ d+Q
+

1

b+ c+Q
+

1

b+ d+Q
+

1

c+ d+Q

− 1

a+ b+ c+Q
− 1

a+ b+ d+Q
− 1

a+ c+ d+Q

− 1

b+ c+ d+Q
+

1

a+ b+ c+ d+Q

)
.

For example, when a = b = c = d = j = k = l = m = 1 the probability
of A’s side scoring 4 is 1/70. If a = b = 1, c = d = 4, j = k = 3 and
l = m = 2, the probability is 325/52668, about 0.8 per cent less than 1/70,
whereas if a = b = 2, c = d = 3, j = k = 1 and l = m = 4, the probability
is 1475/111384, about 0.1 per cent less than 1/70.

In summary, then, if a = b = c = d = j = k = l = m = 1, the
probabilities of A’s side scoring 4, 3, 2, 1 and 0 are 1/70, 2/35, 1/7, 2/7,
1/2, respectively. (Note that they add up to 1.) The average score per end is
0.8. When a = b = 1, c = d = 4, j = k = 3 and l = m = 2, the probabilities
are 325/52668, 2293/52668, 101/684, 23/76, 1/2, and the average score per
end is 0.7532, whereas if a = b = 2, c = d = 3, j = k = 1 and l = m = 4,
the probabilities are 1475/111384, 1039/18564, 409/2856, 44/153, 1/2 and
the average score is 0.7948.

The latter two cases show that a doubles side consisting of a player of
skill 2 and a player of skill 3 has an advantage over a pair of players with
skills 1 and 4. However the advantage is relatively slight at only 0.0416
points per end.
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Now for the second question. How long will a game of doubles last?
That is, how many ends does it last on average? The game finishes when
one side achieves a score of 21 or more. The shortest possible game is one
lasting six ends; for example when side A scores 4 on five consecutive ends,
reaching a score of 20–nil, then wins the game on the 6th end. The longest
possible game is when side A and side B each score 1 on 20 occasions,
reaching a score of 20–20, the game finishing on the 41st end. Thus the
game can take from 6 to 41 ends. Can M500 readers work out the average
number of ends? Assume that the sides are evenly matched so that the
chances of a side scoring 4, 3, 2, 1 and 0 are 1/70, 2/35, 1/7, 2/7 and 1/2,
respectively.

Solution 185.5 – Two pegs
In the classical 37-hole French soli-
taire game, vacate the central hole,
mark the two pegs at opposite
ends of a centre line and play to
leave just these two pegs on the
board having interchanged their
initial positions.

x h h h h xh h h h h h h
h h h h h h h

h h h h h

h h h h h

h h h

h h h

John Beasley
Suppose the columns are labelled a, b, . . . , g and the rows 1, 2, . . . , 7; then
a possible solution is

d2 → d4, b2 → d2, c4 → c2, c1 → c3, b3 → d3, e3 → c3,
d1 → d3 → b3, a3 → c3, e1 → e3, e4 → e2, f2 → d2, g3 → e3,
e6 → e4, g5 → e5, e4 → e6, e7 → e5, d5 → f5, c6 → c4, a5 →
c5, c4 → c6, c7 → c5, d7 → d5 → b5, a4 → c4 → c2 → e2,
b6→ b4, g4 → e4 → c4 → a4, f6→ f4, e2 → e4 → g4.

Our federal income tax law defines the tax y to be paid in terms of the
income x; it does so in a clumsy enough way by pasting several linear func-
tions together, each valid in another interval or bracket of income. An
archaeologist who, five thousand years from now, shall unearth some of our
income tax returns together with relics of engineering works and mathemat-
ical books, will probably date them a couple of centuries earlier, certainly
before Galileo and Viète.

—Hermann Weyl
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One-edge connections
Mike Warburton
Start with squared graph paper, shade a square somewhere in the middle
of the sheet and index it as zero. Shade the four adjoining edge-connected
squares. index with 1. The rule: You can add squares that connect with
earlier squares only on one edge.

The question: What is the formula that describes the total number of
shaded squares, S(x), as a function of the index, x?

I have found an estimate that fits exactly when the x is an integer power
of 2:

S(x) =
4

3
x2 +

11

3
.

I sense a recursive (recursive . . . ) expression. Consider replacing the square
with an equilateral triangle. That ‘looks’ harder. Regular hexagons look
easier but I’d given up by then.

I have data for squares and regular triangles up to an index of 1024,
which make for some interesting plots, spiced with a hint of fractal, although
I’m really not sure. The illustration below shows what happens when x = 6.
Your thoughts are welcome.

6 5 4 3 2 1 0 1 2 3 4 5 6
5

5

3

3

1

1

3

3

5

5

6

6

3

3

2

2

3

3

6

6

6

6

5

5

4

4

5

5

6

6

6
5

3

3

5
6



Page 12 M500 188

Solution 186.5 – Horse
A horse is tethered to the perimeter of a circular field with radius
1 kilometre. The tether allows the horse to graze all but one π-th
the area of the field. How long is the tether?

Keith Drever
The rope is

√
2 kilometres long. If the rope is attached to the edge of the

field at point A, the path that the horse will make when the rope is taut
will be an arc of a larger circle which crosses the perimeter of the circular
field at points B and C as shown.

Suppose that BC is the diameter of the field. The shaded region rep-
resents the area of the field which the horse cannot reach. Since the area
of the field is π square kilometres and the area of the shaded section is 1/π
times the area of the field, the area of the shaded section that we want is 1
square kilometre. Since AB = AC =

√
2 and ∠BAC = 90◦,

area of shaded region

= (area of semicircle) + (area of triangle ABC)
− (area of sector ABC)

=
π

2
+ 1− 90

360
2π = 1,

as required.

ADF writes—We also had solutions from David Kerr, Ralph Han-
cock and Jim James. Ralph points out that a real horse tethered by a
hind leg would trespass a few metres into the forbidden area. Jim was more
concerned, on behalf of animal lovers, about the weight of over 1400 metres
of rope which the poor horse has to drag around.

I don’t know about you, but I
think it’s quite amazing to see the
three most familiar numbers of in-
creasing transcendence, 1,

√
2 and

π, all occurring in one of the fun-
damental problems of the farming
industry.

I wonder what happens if you
replace π by a variable. I suspect
the problem becomes unsolvable; it
might be worth investigating.

B C

A

2

2
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Solution 186.4 – Sixteen coins
One of 16 coins is identical to the others except for its weight.
What is the minimum number of weighings that will guaran-
tee to identify it? A weighing involves using a machine to tell
you if the total weight of a set of coins is ‘correct’ or ‘incor-
rect’. Sometimes—but no more than once in a sequence of 12
weighings—the machine gives a false answer.

Tony Forbes
Coding theorists might recognize the problem as a thinly disguised demand
to construct a certain perfect 1-error-correcting code. I put it in M500
because I believed that a simple-minded solution might be possible, and for
a while I thought I could find one; alas! it was not to be.

Label the coins 0, 1, . . . , 15. Then do

W1: weigh {8, 9, 10, 11, 12, 13, 14, 15},
W2: weigh {4, 5, 6, 7, 12, 13, 14, 15},
W3: weigh {2, 3, 6, 7, 10, 11, 14, 15},
W4: weigh {1, 3, 5, 7, 9, 11, 13, 15}.

If we assume that these weighings are true, then they uniquely identify
the bad coin. For example, if W1 indicates ‘incorrect’ and the other three
indicate ‘correct’, the coin number is narrowed down to {8, 9, 10, 11, 12,
13, 14, 15} by W1, to {8, 9, 10, 11} by W2, to {8, 9} by W3 and finally to
8 by W4. By performing this ‘binary chop’ three times and selecting the
majority solution, it is clear that the coin can be found in 12 weighings. In
the other direction, seven weighings are necessary, for otherwise we would be
able to resolve 112 different possibilities—16 for the coin and 7 for the false
weighing (or the absence thereof)—from only 26 = 64 sets of observations.

We can get quite near to seven weighings with the following relatively
straightforward solution (which I once thought would actually work for
seven). Begin with W1, W2, W3, W4 as above. Let c be the coin iden-
tified by assuming W1– W4 are all true; let fi be the coin identified on the
assumption that Wi is the false weighing, i = 1, 2, 3, 4. Then do

W5: weigh {f1, f2}, W6: weigh {f3, f4},
and let f be the coin identified by W5 and W6 on the assumption that the
bad coin is one of the fi. So after six weighings we have reduced the problem
to two cases:

(i) W1 – W4 are true and coin c is truly bad.
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(ii) One of W1 – W4 is false, c is good and f is bad.

Now we could continue with W7: weigh c, W8: weigh c, and then it
would be easy to decide which of {c, f} is the counterfeit. Unfortunately I
cannot see how to do it with just one additional weighing.

Instead we present the ‘coding theory’ solution in seven weighings. If
you want to follow the argument, I suggest get you get yourself a pencil and
some large pieces of paper. Alternatively you may wish to use a computer
and your favourite matrix-bashing software.

With the same numbering of the coins as above, perform the seven
weighings:

W1, W2, W3, W4: as before;

W5: weigh {1, 2, 4, 7, 9, 10, 12, 15};
W6: weigh {1, 2, 5, 6, 8, 11, 12, 15};
W7: weigh {1, 3, 4, 6, 8, 10, 13, 15}.

Let

L =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 , S =



0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1


,

E0 = (0, 0, 0, 0, 0, 0, 0), E4 = (0, 0, 0, 1, 0, 0, 0),
E1 = (1, 0, 0, 0, 0, 0, 0), E5 = (0, 0, 0, 0, 1, 0, 0),
E2 = (0, 1, 0, 0, 0, 0, 0), E6 = (0, 0, 0, 0, 0, 1, 0),
E3 = (0, 0, 1, 0, 0, 0, 0), E7 = (0, 0, 0, 0, 0, 0, 1),

where we adopt the usual convention of writing column vectors horizontally
but separating the elements by commas rather than blank spaces. Notice
that (i) the columns of L are the binary digits of the numbers 1, 2, . . . , 7,
and (ii) the weighing instructions are represented by S.

Let R = (R1, R2, . . . , R7) be a vector of zeros and ones which represents
the results of the weighings. For i = 1, 2, . . . , 7, Ri = 1 if the machine
indicates that in Wi the weight of the coins is incorrect, Ri = 0 if the
machine indicates that the weight is correct. The main purpose of what
follows next is to identify the false weighing (if any). That is, we want to
map result vectors R to numbers k ∈ {0, 1, . . . , 7}, where either k > 0 and
k is the index of the false result in R, or k = 0 and all the results are true.
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Indeed, the function F (R) = L · R mod 2 provides this mapping. It so
happens that F (R) = (0, 0, 0) if there are no false weighings in result vector
R and otherwise weighing number F (R) (in binary) of R is false. (Here
we are interpreting the 3-vector (x, y, z) as the integer 4x + 2y + z.) Once
the false weighing (if any) has been located the bad coin can be determined
from the results of W1–W4, corrected if necessary.

To see why it works, first observe that for each coin c, the result vector
Sc, column c of S, identifies c on the assumption that all the weighings are
true. Check that L · Sc ≡ (0, 0, 0) (mod 2). In fact, you only need to check
the vectors

B = {(0, 0, 0, 1, 1, 1, 1), (0, 0, 1, 0, 1, 1, 0), (0, 1, 0, 0, 1, 0, 1), (1, 0, 0, 0, 0, 1, 1)}

for, as linear algebraists would say, S is a four-dimensional vector space over
GF(2), the finite field of order 2, and it is generated (by component-wise
addition modulo 2) from B. Indeed, S is the kernel of the linear mapping
L : GF(2)7 → GF(2)3.

Now verify that every possible result vector R can be expressed uniquely
in the form Sc + Ek mod 2 for some coin number c and one of the vectors
Ek. I’m sorry, I can’t offer a quick and easy way of performing this task.
Take eight copies of S, add Ek (mod 2), k = 0, 1, . . . , 7, to each column
vector and you should end up with 128 different 7-vectors. The numbers
work out exactly: eight Ek, sixteen Sc and 128 zero-one 7-tuples; hence the
perfectness of this arrangement. Thus, if R is any 7-vector of zeros and
ones, we have

F (R) ≡ L ·R ≡ L · (Sc + Ek) ≡ L · Ek (mod 2)

for some c ∈ {0, 1, . . . , 15} and k ∈ {0, 1, . . . , 7}. Hence F (R) = L · Ek,
which has the stated property.

For example, let the bad coin be 5 and suppose the third weigh-
ing is false. Then S5 = (0, 1, 0, 1, 0, 1, 0) and we get the result vector
(0, 1, 1, 1, 0, 1, 0). Thus

L · (0, 1, 0, 1, 0, 1, 0) ≡ (0, 0, 0) (mod 2),

and

L · (0, 1, 1, 1, 0, 1, 0) ≡ L · (0, 0, 1, 0, 0, 0, 0) ≡ (0, 1, 1) (mod 2),

the binary representation of 3.

Question. What is the difference between British and American calculus?

Answer. The British derive on the left.



Page 16 M500 188

When two fives don’t make ten
Puzzling over percentages

Dilwyn Edwards
The magazine New Scientist recently reported the experiences of a reader
who was told by a salesperson that if he chose to pay both his gas and
electricity bills by direct debit he could save 5 per cent off each, or ‘10
per cent in total’. When he tried to explain that this was wrong he only
managed to convince the caller that he was clearly mad. What made him
more worried was when he repeated this to his well-educated (but non-
mathematical) colleagues. Unamused, they all just looked blank and were
mystified as to the point of his story. This item reminded me once again of
the apparent universal lack of proper understanding of simple percentages
which I have noted consistently in 30 years’ teaching in higher education.
From whatever school in whatever part of the country (or even the world)
they come, young people seem to me to have been let down by their school
teachers when it comes to percentages. I think the basic fault stems from
a failure to see percentage changes as multiplications (which they naturally
are) rather than additions or subtractions. Many people, when told that
‘adding on 17.5 per cent VAT’ is the same as multiplying the original amount
by 1.175 will look puzzled. (You don’t believe me?—try it!) They will also
be rather hazy about the fact that 1 per cent a month is not the same as
12 per cent a year. The astonishing fact is that the same often applies to
professionals working in insurance, investment and banking who actually use
percentages every day of their lives and in at least one case (I’ll return to this
in a moment) a distinguished and highly respected professor of economics.

Once the fact is grasped that an increase of x per cent is equivalent to
multiplying by 1+x/100, it all becomes so easy that it’s hard to understand
why children are not taught to think like this in schools. If you invest £1000
for 5 years and receive interest at 7 per cent a year, your money is multiplied
by 1.07 every year so the final amount will be £1000 · (1.07)5. This is very
easy to do with a pocket calculator and it is just as easy to see that 1 per cent
a month accumulates to (1.01)12 = 1.126825 so about 12.7 per cent a year
and the monthly equivalent of 12% a year is given by (1.12)1/12 = 1.009489
i.e. about 0.95 per cent a month. The mysteries of mortgage repayments,
too, all become clear.

Ask an A-Level maths student to write down in symbols the statement
‘Y is five per cent greater than X’. You are unlikely to get the correct
answer Y = 1.05X; instead something nonsensical like Y = X + 5 per cent
appears, again because they think of addition rather than multiplication.
Which is the bigger price cut, 10 per cent followed by 20 per cent or two
cuts of 15 per cent?

The first is (0.9)(0.8) = 0.72 while the second is (0.85)2 = 0.7225 so
the first cuts off more. What is the average annual percentage increase if
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three consecutive years show increases of 10 per cent, 22 per cent and 37
per cent? Not 69/3 = 23 per cent! We need a value x such that multiplying
by 1 + x/100 three times is the same as (1.1)(1.22)(1.37) = 1.83854. The
cube root of this is 1.225061 so x is 22.5.

Here is another common fallacy: ‘inflation at 2 per cent a year (for
example) means that today’s £ will be worth only 98p in one year’s time’—
Wrong again! for the same reason. An annual inflation of 2 per cent means
that you will need £1.02 to buy the same goods in one year’s time. So
today’s £1 will be worth 1/1.02 of its present value in a year’s time, which
brings me back to the professor of economics. He was writing about the
rate of increase (in real terms) of house prices at a time of inflation and his
calculations were all based on the difference between the annual percentage
rise in house prices and the annual rate of inflation. Again, it is the ratio
not the difference that measures the change in real terms. If your house
value goes up by 10 per cent while inflation is 2 per cent the increase in the
value of your house in real terms is not 10− 2 = 8 per cent. It is given by
the ratio 1.1/1.02 = 1.078431 so about 7.8 per cent. Will we ever learn?

Trigonometric Delights by Eli Maor
Barbara Lee
This book is written in the same style as e: The Story of a Number, reviewed
in M500 168.

It traces the history of trigonometry from Plimpton 322 (1800 BC) to
Fourier, with plenty of mathematics such as infinite series and infinite prod-
ucts, epicycloids, the tangent function and the function (sinx)/x. Every-
thing you can think of in relation to trigonometry is here, always interesting,
never dull.

The short items between the main chapters describe the lives and work
of Regiomontanus, Viète and de Moivre, amongst others. There is also
a section on Lissajous and his figures, and an excellent chapter on map-
making and Mercator. The appendices contain trigonometrical formulae
and special values of sinx, some of which are related to nested roots and
the regular pentagon.

This is one of the best mathematics books that I have come across in
the last few years, and at £11 it is excellent value for money.

Problem 188.1 – Ones
Colin Davies
Throw n dice. The total score is s. What is the expected number of ones?
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Interesting experiment
Tony Forbes
Try this scientific experiment. You will need a vacuum cleaner with the
‘crevice tool’ attached to the end of the hose, a spaghetti jar and a small
amount of powdery material; pepper or household dust will do but you can
experiment with other substances such as talcum powder and small sodium
chloride crystals. For safety, you and anyone in your vicinity must wear
appropriate protective clothing, hard hats, goggles, gloves, etc.

Put the powder in the spaghetti jar. Then insert the crevice tool of the
vacuum cleaner into the top of the jar and hold it steady with one of your
hands. You can use your other hand to vary the size of the air-gap between
the vacuum cleaner and the rim of the jar. If you get the gap just right,
you will see the powder at the bottom of the jar suddenly go into a rapid
swirling motion, round and round, like a whirlwind. (The vacuum cleaner
should be switched on.)

I am fascinated. What mathematical processes are at work? I would
be very interested if someone can explain how the linear flow of air into the
vacuum cleaner causes the powder in the jar to behave in a cyclical manner.

If you do not have a spaghetti jar, you can make do with a 500ml
measuring cylinder of the kind used in a chemistry laboratory.

Problem 188.2 – Cylinder
Before you put the spaghetti jar away, here’s something else you can do

with it. Colin Davies submitted this interesting problem

Take a cylindrical container. Gradually fill it with a liquid. It is clear
that the centre of gravity of the system will start somewhere near the middle
of the jar and then migrate downwards as the liquid pours in. At some
point it must reach a lowest level and then move upwards because when
the cylinder is full the centre of gravity is once again somewhere near the
middle. Question. When is the centre of gravity at its lowest point?

Problem 188.3 – Window envelope
You have a window envelope of (internal) dimensions 1 ×

√
2/3 with a

window somewhere on the front of it. You also have a sheet of paper, 1×
√

2,
on which is printed an address in a region of the same size and shape as the
window.

Is it always possible to fold the page such that it fits rigidly in the
envelope, with the address viewable through the window? Of course, the
size, shape and placement of the window and the address are not necessarily
sensible.
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Solution 186.1 – Polygon division
Take a regular polygon of n sides and draw
lines in its interior and parallel to the sides
such that each line is divided into three equal
segments of length x(n) at the points where it
intersects with the two adjacent lines. What
is x(n) ?

x(4) x(4) x(4)

Ted Gore
I use the triangle for illustration but the arguments apply to any regular

polygon. First note that at each apex there is a rhombus of size x.

Working with the triangle ABC, θ = 2π/n and φ = (π − θ)/2; so
sinφ = cos θ/2. Now x = w/(w + z) (similar triangles APQ and ABC),
w/ sinφ = x/ sin θ (sine rule on triangle APQ) and z/ sin θ = x/ sinφ (sine
rule on triangle QBN). Therefore

x =

x sinφ

sin θ
s sinφ

sin θ
+
x sin θ

sinφ

=
sin2 φ

sin2 φ+ sin2 θ

=
cos2

θ

2

cos2
θ

2
+ 4 sin2 θ

2
cos2

θ

2

=
1

1 + 4 sin2 θ

2

;

x(n) =
1

1 + 4 sin2 π

n

.

A

BC
M N

P Q

x x

x

1

z

w
Θ

Φ

Φ

A

BC x x

x
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Jim James
In this solution the term ‘n-gon’ implies any n-sided, regular convex polygon
of side length s, and internal angle θ, where n ≥ 3 and 0 < θ < π. To make
the working easier, we shall use d, temporarily, in place of the given x(n).

We shall also need two easily proved properties of n-gons, namely that
θ = π(n− 2)/n and their area is ns2(tan θ/2)/4.

The sketches on the cover of this issue show the given construction for
n = 3, 4, 5, . . . , 18 at constant side length, s. We make the following
observations.

1) The length of each construction line is 3d and it connects points on
next but one sides of the n-gon. As θ increases, so also does 3d, but since
0 < θ < π, it follows that 3d is always less than 3s, that is d < s, for all
n-gons.

2) As a result of the construction lines being drawn parallel to the n-
gon sides, their central third sections create a second n-gon, at the original
n-gon’s centre, having the same orientation but with side length d.

3) The region between the inner and outer n-gons is populated with a
number of smaller polygons of various types and sizes. There is a geometric
structure within this region, however, that is common to all n-gons. We
examine the space between any one side of the outer n-gon and the con-
struction line parallel to it. There are just two basic configurations possible,
depending upon whether d ≤ s/2 or d > s/2.

4) The sketch below illustrates the configuration for d ≤ s/2, which
occurs when n ≤ 6. Lines KL and MN are the ends of the construction
lines parallel to the two adjacent sides. The trapezium AXND has parallel
sides, AX and DN , of length 2d and s−d respectively and the perpendicular
distance between them is d sin θ. Its area is therefore d(s+ d)(sin θ)/2.

By symmetry there are n such trapeziums and between them they fill
the whole of the region between the inner and outer n-gons. Note that for
the square, the trapeziums become rectangles simply because their interior
angles are all π/2.

D L N C

A X B

K M

Θ
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5) The next sketch illustrates the configuration for d > s/2, which
occurs when n ≥ 7. The construction lines KL and MN now overlap and
this causes the ends of two further construction lines to be introduced into
the space under consideration. Despite this added complication, however,
we still have trapezium AXND, with parallel sides 2d and s − d, distance
d sin θ apart, with area d(s + d)(sin θ)/2. Again, by symmetry there are n
of them and they fill the whole of the region between the inner and outer
n-gons. This feature, therefore, applies to all n-gons.

D LN C

A X B

K M

Θ

6) But the area of any n-gon is ns2(tan θ/2)/4, so the area between the
inner and outer n-gons must be

1

4
n(s2 − d2) tan

θ

2
=

1

2
nd(s+ d) sin θ.

This equation can be simplified by putting 1
2 sin θ = (sin θ/2)(cos θ/2) and

dividing both sides by n(s+ d) sin θ/2, to give the general solution

d =
s

(1 + 4 cos2 θ/2)
,

or, since cos θ = 2 cos2 θ/2− 1, d = s/(3 + 2 cos θ), whence

x(n) =
s

3 + 2 cos
π(n− 2)

n

.

Here are some calculated values of x(n) with s = 1: x(3) = 1/4, x(4) =
1/3, x(5) = 0.419821, x(6) = 1/2, x(8) = 0.630602, x(10) = 0.723607,
x(100) = 0.996069, x(1000) = 0.999961.

Also solved by Basil Thompson using a similar method.
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Robin Marks
Let the length of each
side of the inner poly-
gon be 1. Drop two
perpendiculars from
two adjacent vertices
of the inner polygon,
as shown. 1 1 1

1

1

1
T

LHnL

ΘΦ

Φ

Consider the triangle T . Then q(n) = cos θ = − cosφ. Hence

L(n) = 1 + q(n) + 1 + q(n) + 1 = 3− 2 cosφ.

Also φ = 2π/n; hence L = 3 − 2 cos 2π/n. Note that the length q(n) =
− cos 2π/n is zero when n = 4 and negative for n > 4.

The problem asks for x(n) = 1/L(n). Here is a table of q(n), L(n) and
x(n).

n q(n) L(n) x(n)

3
1

2
4 0.25

4 0 3 0.333333

5 −1

4

(√
5− 1

)
3− 1

2

(√
5− 1

)
0.419821

6 −1/2 2 0.5

8 −1

2

√
2 3−

√
2 0.630602

10 −1

4

(√
5 + 1

)
3− 1

2

(√
5 + 1

)
0.723607

12 −1

2

√
3 3−

√
3 0.788675

16 −1

2

√
2 +
√

2 3−
√

2 +
√

2 0.867874

20 −1

2

√
1

2

(√
5 + 5

)
3−

√
1

2

(√
5 + 5

)
0.910841

24 −
√

3 + 1

2
√

2
3−
√

3 + 1√
2

0.936200
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Letters to the Editors
Why does calculus work?
Dear Editor,

I was interested in Sebastian Hayes’s piece ‘Why does calculus work?’
in M500 185 because some of the issues he raises resonate with work I have
been doing on the development of systems ideas in the 20th century.

In the course of my studies I came across the work of Jakob von Uexküll,
a Danish vitalist, that is to say, someone from the tradition that believed
life is an added ingredient to inorganic matter.

I have not yet had access to his work in the original German but he
appears to have anticipated some lines of thought taken up by systems
thinkers in the late 20th century.

Writing in the first decade of the 20th century, and thus well before
the development of modern systems ideas, he argued that organisms have
no access to an objective environment in the sense that every interaction is
mediated through senses; rather the information received by the senses is
processed in the merkwelt (or ‘world of perception’) to create, among other
things, a subjective view of the environment.

Using the subjective view, the organism then proceeds to interact with
its environment and to modify its perceptions and future interactions in the
light of the feedback it receives through the senses.

His use of the word umwelt rather than assenwelt was to emphasize the
subjective nature of our concept of the environment and, though his concept
has gone into use across the world, this subtlety is lost in translation.

So, calculus works because it allows us to develop perceptions of our
environment which, while not exact analogues, are sufficiently close for us
to receive consistent feedback from our environment when we act on the
basis of our perceptions.

There is plenty of evidence that organisms in many species communicate
their perceptions and can develop quite sophisticated shared perceptions,
along with some rather simplistic ones! The question is whether any number
of shared perceptions tested repeatedly by many people would ever give us
access to ‘the true nature of the world we live in’, whatever that is.

Forsaking Uexküll for a moment, let us suppose, as many people believe,
that we have access to ‘the true nature’ of the world. What difference has
it made? By what method and using what tests can we distinguish this
‘knowledge’ of an objective environment from what are merely shared per-
ceptives based on interactions with a subjectively perceived environment?

Since we have good reason to believe that there will be no ‘big bang’
moving us from all states of shared perception to full knowledge of ‘the true
nature of the world we live in’, there will presumably be a long period in
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which the boundaries between what is ‘true knowledge’ and what is just
‘shared perception’ will be shifted.

Yet in the meantime we will all continue to use the mathematics we
have to solve problems in everyday life. Chemicals will be measured, ma-
chines will be designed, buildings will be erected and people will be tested
using mathematical concepts which we use because the feedback from our
interactions with our environment suggests that they are sufficiently close
analogues to enable us to interact successfully on the basis of them. Isn’t
this what the scientist and engineer want—without getting into a debate
about what is or is not a ‘fact’.

No doubt we will continue to discover mathematical concepts which
appear to be better bases for our interactions with our environment. No
doubt mathematicians will continue to gain aesthetic satisfaction from de-
veloping and refining mathematical concepts. But as long as they work for
us as organisms, does it really matter whether they are exact analogues
of an objective environment? Our survival depends on their effectiveness
for us as organisms interacting with our environment, not on their exact
correspondence with anything in that environment.

Yours sincerely,

John Hudson

Calculus and irrational numbers
Dear Tony,

With regards to ‘Why does calculus work?’ by Sebastian Hayes, M500
185, I would like to raise a couple of points.

This article was wide in its scope in dealing with the historical issues
around the calculus. It has often come to my attention that many scientists
make the assumption that space is discrete, or there are no actual infinities,
without stating it. To my mind we have two separate scientific models
rather like separate Euclidean and non-Euclidean geometries. Nobody has
proved that space is discrete experimentally. What they have proved is that
there is an experimental limit to our knowledge of fine detail in space; and
this is done by a formulation of the Heisenberg uncertainty principle.

It is possible that actual infinities exist and it is easy to see that no
experiment can divide space for ever to prove it, but that does not disprove
it. A well-used argument is that germs existed before there were microscopes
to see them. The calculus is a good tool, as Mr Hayes says, and I am not
convinced that the calculus is at fault when our models are not complicated
enough to describe reality. It seems to me that this all points to a possible
fundamental limit to a numerical understanding of the universe, but there
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is no need to blame the tools we have made so far.

It is also interesting to note that there are refutations of Zeno’s para-
doxes using the language of ‘actual infinities’. And if there really are ‘holes’
in space to which a closing door does not transverse—then whereabouts are
these holes located? To paraphrase Kant; it is impossible for the human
mind to conceive of ‘no space’, it is an a priori concept.

Further to these arguments, I would like to add two more comments in
light of M500 186, ‘the creation of irrational numbers’. The writer suggests
that irrational numbers don’t exist in the real world. I would contend the
opposite for the same reasons in my earlier statements. This is again based
on the assumption that space is discrete and therefore there are no irra-
tional lengths. This is possible because we could be living in a topological
space which is defined only on the rational numbers, but again, no one has
proved this experimentally. For an amusing refutation of that argument,
read Conceptual Physics, Matter in Motion, Ballif & Dibble, 1969. It is not
quite watertight, because of the topological space without irrational number
possibility, but is very convincing:

Most mathematicians are taught about the beauty and brilliance of
Euclid’s Elements of 2000 or so years ago. If you take the Proposition of
Incommensurability (Book X), you have a Greek proof essentially stating
something like a hypotenuse and a side of a triangle cannot be measured
with the same measure (they did not like irrational lengths either). This
leads us to the logical absurdity of never being able to draw a right-angled
triangle. It is interesting that the scientists who refute infinite mathematics
and continuity are quite happy to rely on the legacy of Euclid, which Newton
used extensively in his Principia, may I add. It is possible to be as happy
with the reality of the irrational numbers, and people do argue for the reality
of complex numbers. After all, what is a number? You could argue that
integers don’t exist in reality; show me the number 3 in reality. All you
can show me is 3 objects or a representation of this on paper. You can’t
actually point to the number 3. If you call it a distance, then you are still
dodging the issue, because the number is representing the distance and it
is clear it is far more than that, so point to it. As Piaget would argue, we
gain our understanding of integers by being shown different sets, say of 3
objects, and extrapolate to this very abstract idea of number. Maybe the
problem is also one of being unable to be explicit in our definition of what
we mean by a number. The same goes for time (M500 186, ‘Time’). We
have immense difficulty pinning down what we mean by time. Again, as
Kant said, time is another a priori concept, and I add that we happen to
have a word for it, with which we play Wittgenstein type games.

Sheldon Attridge
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Thirteen
Dear Eddie

Just got the answer to this, I think. [M500 186, 13]: Two French
mathematicians. One knows the first letter and the other the last letter of
the name of an integer between 1 and 22. The first mathematician says to
the other, ‘Je connais la lettre premiere du nombre mais pas le nombre.’ The
other replies, ‘Je connais la lettre dernier du nombre mais pas le nombre.’
The first replies, ‘Ah! Je connais le nombre!’ What number is it?]

TREIZE. The first mathematician has T, which can stand only for trois
or treize. This is the only initial letter in the sequence that can stand for
two numbers, all the rest being unique or standing for three or more. The
second mathematician must have E, because trois is the only number ending
in S, so if he had S he would know the number.

Best wishes,

Ralph Hancock

ADF—Interesting. That’s the answer I got but I had to work harder. I
listed the integers from un up to vingt deux and then I crossed out all those
which were inconsistent with the conversation.

With regard to that other problem, the one about the two French-
speaking Russians (‘Deux nombres’, M500 185, 25: There are two Russian
mathematicians; one knows the product and the other the sum of two inte-
gers between 2 and 100. The first says to the other, “I know the product
of the two numbers, but not the two numbers.” The other replies, “I know
the sum but not the two numbers.” Then the first says, “I have just found
them!” And the other replies, “Me too!”), I confess that I am puzzled. I
have seen several attempts, including my own, and I am unable to arrive
at a satisfactory answer. Is there anyone out there who can speak with
authority? Perhaps something was lost in the translation. When I tried
working the problem I found that could not avoid a non-unique answer. I
shall continue to ponder.

By the way, I actually had someone question the interpretation of the
word ‘between’. Does ‘between 2 and 100’ mean [2, 100] or [3,99]? In an
office where I once worked I would often preach to authors of management
reports that there was never any serious ambiguity. Nor was it ever nec-
essary to add the qualifier ‘inclusive’ to constructs such as ‘from a to b’.
If the space is discrete, surely it is perverse to omit the end-points from
consideration; and in a continuous space it doesn’t matter one way or the
other because the set {a, b} is null.
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Solution 184.1 – Twelve boxes
There are twelve closed boxes numbered 1, 2, . . . , 12. On each
turn you throw a pair of dice and you must open closed boxes
whose numbers add up to the sum of the numbers shown by the
dice. If this is impossible, the game stops and you lose. If you
manage to open all the boxes, the game stops and you win. If
neither, the game continues. What’s the probability of winning?

Dick Boardman
It seems to me that the probability of winning depends on the strategy used
by the player. If we slightly rearrange the example given in the statement
of the problem, let the sequence of dice throws be

{3, 3}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}.

If the player opens boxes 6, 12, {11, 1}, {10, 2}, {9, 3}, {8, 4} and {7, 5},
he wins. However, if he opens {4, 2}, 12, {11, 1}, {9, 3}, {7, 5}, he loses
since the remaining closed boxes {6, 8, 10} cannot total 12.

I wrote a simulation with a strategy as follows:–

If possible, open exactly one box.
Else if possible open exactly 2 boxes.
Else if possible open exactly 3 boxes.
Else if possible open exactly 4 boxes.
Else lose unless all boxes open.

This strategy wins about 34 games per 10000. Can anyone devise a better
one?

ADF
It is an improvement on a simulation of mine. When N is thrown I open
boxes by invoking Openbox(N), where the procedure is defined by:

Openbox(X)
If box X is shut, open it and return(OK).
Otherwise for I = 1, 2, . . . , [(X − 1)/2]:

Save the state of the boxes.
If Openbox(I) = OK and Openbox(X − I) = OK, return(OK).
Restore the state of the boxes.

Return(FAIL)

Elegant it may be, but this strategy achieves only about 0.0030.
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Ron Potkin
The probability of opening the twelve boxes is 0.003384 approximately. In
order to win the game, three obstacles have to be overcome.

(1) Select those sequences that will open the boxes. We do this by
ignoring the order in which the dice are thrown. For example, if we are
given the complete sequence {12, 12, 12, 12, 12, 11, 7} it will be possible to
open all of the boxes.

(2) If we obtain a sequence that will open all the boxes, we cannot be
sure that a win can be achieved because boxes must be opened after each
throw. A strategy has to be selected which will determine how the boxes
should be opened in order to keep the odds as high as possible. The strategy
selected is

(a) on each throw, open as few boxes as possible. So, if 10 is thrown
and box 10 is still closed, open it;

(b) if the box is already opened then work inwards. For example, if box
10 is opened then open {9, 1}. If 9 or 1 is opened then open {8, 2}; if 8 or
2 is opened then try {7, 3}, and so on. Opening more than two boxes such
as {1, 3, 6} or {1, 2, 3, 4} must be the last resort.

I don’t think this strategy can be improved but I would be pleased to
hear of a better one.

(3) Test every combination of throws that satisfy (1) against the strat-
egy. The sequence {12, 12, 12, 12, 12, 11, 7} has 42 combinations of which
only 14 are successful.

All sets from 2-sided dice and four boxes to 6-sided dice and 12 boxes
were tested. The results are shown below.

The first two rows can be calculated with pencil and paper but for the
last three one must resort to the computer. The last case required several
hours of computing time.

Dice sides Boxes Number of Probability of Probability of
successful satisfying the throws

throws strategy
2 4 2 0.234375 0.234375
3 6 7 0.073972. . . 0.073972. . .
4 8 29 0.029616. . . 0.027699. . .
5 10 131 0.011188. . . 0.009674. . .
6 12 636 0.004453. . . 0.003384. . .



M500 188 Page 29

Problem 188.4 – Sixteen tarts
Tony Forbes
There are 16 indistinguishable jam tarts. Some jam has been removed from
one and put back into another so that fourteen weigh the same, one weighs
a bit more and one a bit less. Devise a scheme to find the light and heavy
tarts in five weighings.

By a weighing we mean the process of selecting two sets of tarts, A and
B, and determining whether A is lighter than B, A weighs the same as B,
or A is heavier than B. Alternatively, you can imagine that the weighings
are done with one of those simple two-pan-and-pointer devices which were
so common a long time ago but are nowadays found only in the kitchens of
those who can justify spending the exorbitant prices charged by up-market
department stores. Of course, they do have the advantage over machines
like the one in ‘Sixteen coins’ (p. 13)—they never make mistakes.

I claim no prize for originality; Dick Boardman sent us ‘Nine tarts’ for
M500 182 and a solution appeared in M500 184. However, I think ‘Sixteen
tarts’ is of special interest because it seems to be the most difficult of the
n-tart problems. When n = 16, there are 16 ·15 = 240 choices for the heavy
and light tarts, and five weighings provide 35 = 243 sets of observations.
The system has a slack of only 3. As a further amusement, you might like
to show that things never again get as tight.

Prove that if w > 2, the minimum non-negative value of 3w − n(n− 1)
is 3, which occurs at w = 5, n = 16.

M500 Winter Weekend 2003
The twenty-second M500 Society WINTER WEEKEND will be held at
Nottingham University from Friday 3 to Sunday 5 January 2003.

This is an annual residential weekend to dispel the withdrawal symptoms
due to courses finishing in October and not starting again until February.
It is an opportunity to get together with friends, old and new, and do some
interesting mathematics. It promises to be as much fun as ever!

Cost: £155 for M500 members, £160 for non-members. This includes
accommodation and all meals from dinner on Friday to lunch on Sunday.
Please send a stamped, addressed envelope for a booking form to

Norma Rosier.
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