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Reciprocals of prime numbers
Dennis Morris
This paper investigates recurring decimals with periods of length p−1 digits
in the decimal expansions of reciprocals of primes, 1/p. Primes that generate
such (p − 1)-length periods are known as full period primes. Their periods
are known as cyclic numbers because they have the interesting property
that their digits are cycled around by multiplication; for example,

1

7
= 0.(142857);

2 · 142857 = 285714, 3 · 142857 = 428571.

The paper considers the decimal expansions of 1/p in positive integer num-
ber bases, B ≥ 2, and for p ≥ 3.

A terminological inexactitude: In preference to using unfamiliar ter-
minology, the paper uses the term decimal to mean an expansion in any
number base, not necessarily 10.

The paper draws heavily upon the theory of congruences and, in par-
ticular, the concept of primitive roots. The standard results quoted can be
found in the books listed at the end.

Notation

Throughout this article we use B to denote the base in which a number is
written. Also

a, b, c, . . . , n denote non-negative integers;

p and q are reserved for odd prime numbers;

j is restricted to the values 1 ≤ j ≤ p− 1;

l is reserved to denote k + 1;

rn is reserved to denote the nth remainder after a division;

t is reserved for the length (number of digits) of the recurring period of
the decimal expansion;

[x] denotes the largest integer less than or equal to x;

a|b means that a divides into b with zero remainder;

gcd(a, b) denotes the greatest common divisor of a and b;

φ(n) (Euler’s totient function) means the number of integers less than
n which are relatively prime to n. An integer a is relatively prime to n if
gcd(a, n) = 1.
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Known results for prime numbers

(1) The decimal expansion of 1/p is either finite or has a recurring period.

(2) The decimal expansion of 1/p is finite in number base B if and only
if B ≡ 0 (mod p).

(3) The length, t, of the period of an infinite decimal expansion of
1/p in number base B is given by the least positive integral solution of
Bt ≡ 1 (mod p). This means that full period decimals occur when the least
positive integral solution is t = p− 1.

(4) Fermat’s theorem: Bp−1 ≡ 1 (mod p) unless B is a multiple of p.

(5) If the decimal expansion of 1/p is not finite, the length, t, of the
period is a divisor of p− 1.

(6) Lagrange’s theorem. If d|p−1, then xd ≡ 1 (mod p) has d solutions.

To whet the reader’s appetite, we next take a look at a few decimal
expansions of 1/p in different number bases. Note the cyclic repetition of
period length as the number base increases.

Number base
1

3

1

5

1

7

1

11

4 0.(1) 0.(03) 0.(021) 0.(01131)

5 0.(13) 0.1 0.(032412)c 0.(02114)

6 0.2 0.(1) 0.(05) 0.(0313452421)c

7 0.(2) 0.(1254)c 0.1 0.(0431162355)c

8 0.(25) 0.(1463)c 0.(1) 0.(0564272135)c

9 0.3 0.(17) 0.(125) 0.(07324)

10 0.(3) 0.2 0.(142857)c 0.(09)

11 0.(37) 0.(2) 0.(163) 0.1

12 0.4 0.(2497)c 0.(186A35)c 0.(1)

13 0.(4) 0.(27A5)c 0.(1B) 0.(12495BA837)c

14 0.(49) 0.(2B) 0.2 0.(13B65)

(The subscript c indicates a cyclic number in the appropriate number base.)
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Finite expansions

Lemma 1. If p is prime and B = kp, the decimal expansion of 1/p is 0.k.

Proof. This follows immediately from pk ÷ p = k.

For example, with p = 5 we have 1/5 = 0.1 in base 5, 1/5 = 0.2 in base
10, 1/5 = 0.3 in base 15, . . . .

Infinite expansions

We calculate 1/p in the general number base B = pk+j, where 1 ≤ j ≤ p−1
and k ≥ 0:

1÷ p = 0, r0 = 1,
B ÷ p = (pk + j)÷ p = k, r1 = j,

jB ÷ p = (jpk + j2)÷ p = kj +

[
j2

p

]
, r2 = j2 mod p,

r2B ÷ p = (r2(pk + j))÷ p = kr2 +

[
jr2
p

]
, r3 = jr2 mod p,

r3B ÷ p = (r3(pk + j))÷ p = kr3 +

[
jr3
p

]
, r4 = jr3 mod p,

. . . . . .

rnB ÷ p = (rn(pk + j))÷ p = krn +

[
jrn
p

]
, rn+1 = jrn mod p.

The first digit of any recurring period is always k.

The decimal expansion is

0.k

{
kr1 +

[
jr1
p

]}{
kr2 +

[
jr2
p

]}
. . .

{
krn +

[
jrn
p

]}
,

where rn = jrn−1 mod p. When j = 1, this reduces to 1/p = 0.kkk . . . .

Lemma 2. (i) If p is prime and B = pk+ 1, the decimal expansion of 1/p is
0.(k).

(ii) If p is prime, the only decimal expansion of 1/p with a single digit
period occurs when B = pk + 1.

Proof. (i) This has been explained, above. (ii) When t = 1, (pk + j)t ≡
1 (mod p) only when j = 1.

For example, with p = 5 we have 1/5 = 0.11111 . . . in base 6, 1/5 =
0.22222 . . . in base 11, 1/5 = 0.33333 . . . in base 16, . . . .
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Returning to the decimal expansion

1

p
= 0.k

{
kr1 +

[
jr1
p

]}{
kr2 +

[
jr2
p

]}
. . .

{
krn +

[
jrn
p

]}
,

when j = p− 1, this reduces to

1

p
= 0.k

{
k(p− 1) +

[
p2 − 2p+ 1

p

]}{
k +

[
p− 1

p

]}
. . .

= 0.k{k(p− 1) + p− 2}{k} . . . ,

an infinite decimal of recurring period 2.

Lemma 3. (i) If p is prime and B = pk + (p − 1) = pl − 1, the decimal
expansion of 1/p is

1

p
= 0.k{k(p− 1) + p− 2}{k}.

(ii) If p is prime, the only decimal expansion of 1/p with a two digit period
occurs when B = pk + p− 1.

Proof. (i) As above. (ii) When t = 2, t(pk+)t ≡ 1 (mod p) has solutions
j = 1 and j = p − 1. By Lagrange’s theorem there are only these two
solutions. The first solution (above) occurs when B = pk + 1 but because
(pk+ 1)t ≡ 1 (mod p) when t = 1, this solution gives a period of length one
digit. The second solution, when t = 2, is B = pk + p− 1.

For example, when p = 7, we have 1/7 = 0.050505 . . . in number base
6, 1/7 =2H2H2H. . . in base 20, 1/7 =3N3N3N. . . in base 27. (Here, H
represents 17 and N represents 23.)

So, every time B = pk, the decimal is finite, every time B = pk+ 1, the
decimal has a period of length one, and every time B = pl− 1, the decimal
has a period of length two. These period lengths clearly repeat every p
number bases. I propose to use the term p-cycle to refer to the decimal
expansions of 1/p between number bases B = pk and B = p(k + 1) − 1 =
pl − 1. Clearly, a p-cycle contains p number bases. As examples of such
repeating cycles, see the reciprocals 1/3, 1/5, 1/7 and 1/11 in the table
above.

Lemma 4. The fraction 1/5 generates an infinite number of cyclic numbers.
These numbers occur in number bases of the form 5k + 2 and 5k + 3.

Proof. With p = 5, using Bt ≡ 1 (mod p) and recalling that cyclic numbers
occur when least positive solution is t = p− 1, we have



M500 190 Page 5

(5k + 2)1 ≡ 2 (mod 5), (5k + 2)2 ≡ 4 (mod 5),

(5k + 2)3 ≡ 3 (mod 5), (5k + 2)4 ≡ 1 (mod 5)

and
(5k + 3)1 ≡ 3 (mod 5), (5k + 3)2 ≡ 4 (mod 5),

(5k + 3)3 ≡ 2 (mod 5), (5k + 3)4 ≡ 1 (mod 5).

Theorem 1. The whole (period length) structure of the p-cycle will repeat.

Proof. Using Bt ≡ 1 (mod p) for any number base B = pk + j we have

(pk + j)m ≡ jm (mod p), (p(k + 1) + j)m ≡ jm (mod p).

Thus 1/p gives rise to a cyclic number in the first p-cycle if and only
if it gives rise to an infinite number of cyclic numbers. We might coin the
term cyclic root to describe p if it so generates cyclic numbers. This term
immediately poses the question: Is every prime a cyclic root? The answer
is yes, but, before we go into that, let us examine the nature of the way
period lengths are distributed throughout the p-cycle of a prime.

The structure of the p-cycle

We begin by examining a table of minimal residues of jn mod 13. Recall
that the period length is given by the least positive solution of the congru-
ence Bt ≡ (pk + j)t ≡ jt ≡ 1 (mod p); thus we can read from this table
the period length of 1/13 in number base pk + j by looking for the lowest
power of j which is congruent to 1.

The congruences of the powers of j mod 13

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12

j = 1 1 1 1 1 1 1 1 1 1 1 1 1
j = 2 2 4 −5 3 6 −1 −2 −4 5 −3 −6 1c
j = 3 3 −4 1 3 −4 1 3 −4 1 3 −4 1
j = 4 4 3 −1 −4 −3 1 4 3 −1 −4 −3 1
j = 5 5 −1 −5 1 5 −1 −5 1 5 −1 −5 1
j = 6 6 −3 −5 −4 2 −1 −6 3 5 4 −2 1c
j = 7 −6 −3 5 −4 −2 −1 6 3 −5 4 2 1c
j = 8 −5 −1 5 1 −5 −1 5 1 −5 −1 5 1
j = 9 −4 3 1 −4 3 1 −4 3 1 −4 3 1
j = 10 −3 −4 −1 3 4 1 −3 −4 −1 3 4 1
j = 11 −2 4 −5 3 −6 −1 2 −4 −5 −3 6 1c
j = 12 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
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For example: The period length of 1/13 in number bases 13k + 3 is
three because j3 is the lowest power of j in these number bases which is
congruent to 1(mod 13). Similarly, the period length of 1/13 in number
bases 13k + 6 is twelve (cyclic) because j12 = jp−1 is the lowest power of j
in these number bases which is congruent to 1 (mod 13).

Several properties of the congruences are apparent.

(i) The only powers which are congruent to 1 (mod 13) are, of course,
the powers which are divisors of p − 1 = 12; this is one of the standard
results (5) stated above.

(ii) Fermat’s theorem: Bp−1 ≡ (pk + j)12 ≡ j12 ≡ 1 (mod p).

(iii) If the exponent, m, of j is a divisor of p−1, then there are m ones in
the mth column. This is Lagrange’s theorem: if d|p−1, then xd ≡ 1 (mod p)
has exactly d solutions.

The least positive value of the exponent, m, for which jm ≡ 1 (mod p)
is, in usual congruence parlance, the order of j; but this is exactly the least
positive solution of Bt ≡ 1 (mod p); i.e. the length of the decimal period.
Further, the values of j for which 1/13 gives a full period decimal have order
p − 1; they are the primitive (p − 1)-th roots of unity, more simply known
as the primitive roots of p. This is exactly where cyclic numbers are found.
They are found in number bases of the form pk + j, where j is a primitive
(p− 1)-th root of unity.

Theorem 2. (i) Cyclic numbers are associated with primes p in number
bases pk + j, where j is a primitive (p− 1)-th root of unity.

(ii) Every odd prime number is a cyclic root.

(iii) Every p-cycle of every odd prime has associated with it φ(p − 1)
cyclic numbers.

Proof. (i) By definition, primitive roots are residues with order p−1. But
this is precisely what we are looking for when we seek values of t for which
Bt ≡ 1 (mod p) has no solution less than t = p− 1.

(ii) It is a standard result that primitive roots exist in every odd prime
modulus.

(iii) It is a standard result that every odd prime has φ(p− 1) primitive
roots.

As with decimal periods of full length, it is also a standard result that
the number of decimals with periods of length m in the p-cycle is given by
φ(m), and this is normally how one would calculate such numbers. However,
rather than calculate the numbers of such shorter periods by this method,
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it is instructive to go about it in a longer way. Let us laboriously calculate
the numbers of different period lengths of 1/13 for the number bases 31 to
61.

(i) We know that this decimal is finite in number bases of the form
pk = 31k. Clearly, there is only one such number base in the range 31 to
61. In number base 31, 1/31 is finite, 1/31 = 0.1.

(ii) The integers, a, which are less than 30 and have gcd(a, 30) = 1 are
1, 7, 11, 13, 17, 19, 23 and 29. Thus we have: φ(p− 1) = φ(30) = 8. Thus
there are 8 full period decimals distributed throughout the range B = 32 to
61.

(iii) The divisors of 30 are 1, 2, 3, 5, 6, 10, 15 and 30.

By Lagrange’s theorem, there is one solution of Bt ≡ 1 (mod 31) with
t = 1; that solution we know from above is in number base pk+ 1 = 32. So
we have a period length of 1 in number base 32.

There are two solutions of Bt ≡ 1 (mod 31) with t = 2; one is in number
base 32, and the other we know from above is in number base pl − 1 = 61.
So in addition to a period length of 1 in number base 32, we have a period
length of 2 in number base 61.

There are three solutions of Bt ≡ 1 (mod 31) with t = 3; one is in
number base 32, but there is not one in number base 61 because 2 does not
divide 3. So we have two periods of length 3.

There are five solutions of Bt ≡ 1 (mod 31) with t = 5. One is in
number base 32, but there is not one in number base 61 because 2 does
not divide 5, and there is not one in the number bases associated with the
three-digit periods because 3 does not divide 5. So we have four periods of
length 5.

There are six solutions of Bt ≡ 1 (mod 31) with t = 6. One is in number
base 32, one is in number base 61 because 2|6, two are in number bases
associated with three-digit periods because 3|6. So we have two periods of
length 6.

There are ten solutions of Bt ≡ 1 (mod 31) with t = 10. One is
in number base 32, one is in number base 61 because 2|10, four are in
number bases associated with five-digit periods because 5|10. So we have
four periods of length 10.

There are fifteen solutions of Bt ≡ 1 (mod 31) with t = 15. One is in
number base 32, two are in number bases associated with three-digit periods
because 3|15, and four are in number bases associated with five-digit periods
because 5|15. So we have eight periods of length 15.
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We summarize the results in the table below.

Periods of length 1 1 Periods of length 6 2
Periods of length 2 1 Periods of length 10 4
Periods of length 3 2 Periods of length 15 8
Periods of length 5 4 Periods of length 30 8

Thus we able to predict the numbers of different period lengths through-
out the p-cycle for any odd prime. Of course, this does not enable us to
know in advance of working it out what the period length will be in a given
number base. We continue by stating another standard result.

(7) If an integer j has order m modulo p and b > 0, then jb has order
m/ gcd(b,m). In our terms this means that if 1/p has a period of length m
in number base pk+ j, then in number base pk+ jb it has a period of length
m/ gcd(b,m).

We initially seek periods of full length; that is, cyclic numbers with
periods of length m = p− 1. In more technical terms, we seek the primitive
roots of p. Assume we have already found a primitive root of p. Let us
call it j. We thus have a number base, pk + j, in which 1/p is a full period
decimal. The standard result says that there will be other primitive roots
in number bases pk + jb provided gcd(b, p− 1) = 1. The required b are, of
course, the φ(p − 1) integers which are relatively prime to p − 1. Clearly,
because j is a primitive root of p and these φ(p − 1) different integers, b,
are all less than p− 1, all jb will all be mutually incongruent in modulus p.
Thus, given one number base in which 1/p is a full period decimal, we are
able to find all other number bases having full period decimals.

We demonstrate with p = 31. We have that 1/31 is a full period decimal
in number base 34 = pk + j, where j = 3; φ(p− 1) = φ(30) = 8. Since 3 is
a primitive root of 31, there will be primitive roots of 31 in number bases
3, 37, 311, 313, 317, 319, 323, 329. These will be at positions in the p-cycle
given by j = 3b mod p. So 31 ≡ 3, 37 ≡ 17, 311 ≡ 13, 313 ≡ 24, 317 ≡ 22,
319 ≡ 12, 323 ≡ 11 and 329 ≡ 21 (mod 31), giving j = 3, 11, 12, 13, 17,
21, 22, 24. Thus 31 has cyclic numbers in number bases 31k + j for these
values of j. Of course, we do not need to restrict ourselves to the search for
full period decimals. Decimals of period (p − 1)/2 = 15 occur in number
bases 31k+ (3b mod 31), where gcd(b, p− 1) = 2, and likewise for the other
divisors of p− 1.

In short, given the number base of any one full period decimal, we can
calculate the period lengths in every other number base.
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Some scraps

Lemma 5. If j is a primitive root of p then so is jp−2.

Proof. This follows from gcd(p− 2, p− 1) = 1.

So primitive roots come in pairs.

Lemma 6. If j is a quadratic residue of p, 1/p is never a full period decimal
in number base pk + j.

Proof. If j is a quadratic residue of p, then j(p−1)/2 ≡ 1 (mod p). Since
exactly half of the residues of an odd prime are quadratic residues, it follows
that 1/p cannot be a full period decimal in more than one half of the number
bases in the p-cycle (discounting B = pk).

Looking at the congruence table on page 5, we see that (i) even powers
are symmetric about the line between j = (13−1)/2 and j = 13−(13−1)/2;
(ii) odd powers are symmetric about the same line except that the signs are
reversed.

Lemma 7. (i) Within a p-cycle, the period length, t, is correlated between
number bases pk + j and p(k + 1)− j.

(ii) If the length, t, of a period is even both in number base pk + j and
number base p(k + 1)− j = lk + j, then the period length in these number
bases will be the same.

(iii) If the length, t, of a period is odd in number base pk + j, then the
period length in number base p(k + 1)− j = lk + j is twice this length.

Proof. (i) The period length in base pk + j is given by the least positive
solution, t, of (pk + j)t ≡ 1 (mod p).

(ii) This follows from (pk + j)t ≡ jt (mod p).

(iii) Similarly, (p(k + 1) + j)t ≡ (−1)tjt (mod p).

Lemma 8. If p = 2q + 1, where p and q are odd primes, then half of the
values of 2 ≤ j ≤ p− 2 are primitive roots.

Proof. We have φ(2q) = q − 1 = (p− 3)/2.
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Solution 187.3 – Square wheels
A car has square wheels. On what sort of road can you drive it
and experience a smooth ride?

John Smith
After much algebra, made worse by algebraic errors, I find the equation of
the road surface suitable for wheels of side 2a seems to be given by sections
of catenary of the form

y = a cosh
x

a

with |x| ≤ a log(1+
√

2), where x is measured horizontally and y is measured
downwards.

The best way forward seems to be to work back from the answer, to
show that it satisfies the question. To see that this is true, first we show
that the centre of the square wheel will remain at a constant height, and
second we show that the transitions between sections of curve are just as
needed.

Let s be the (curved) distance along the road surface; let ψ be the angle
between the horizontal and the tangent to the road surface. Then

s =

∫ √
1 + (y′)2 dx

=

∫ √
1 + (sinhx/a)2 dx =

∫
cosh

x

a
dx = a sinh

x

a

and

tanψ =
dy

dx
= sinh

x

a
,

cosψ =
1√

1 + (tanψ)2
=

1

coshx/a
,

sinψ = (tanψ)(cosψ) = tanhx/a.

When the wheel has rolled a distance s along the road surface, so that
the contact point between wheel and road is (x, y), then the centre of the
wheel will be at y-coordinate Y , where

Y = y − a cosψ − s sinψ

= a cosh
x

a
− a

coshx/a
− a sinh

x

a
· tanh

x

a

= little manipulation = 0.
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This establishes that the wheel centre remains at a constant height.

If the wheel has rolled a curved distance a along the road (from the top
of a lump), then

s = a ⇒ sinh
x

a
= 1 ⇒ tanψ = 1,

so that the wheel has rotated 45 degrees, and hence the wheel centre is
directly above the contact point with the road. Also the length of the bits
of road is determined by

|x| < a log(1 +
√

2),

which was chosen so that at the road junctions

s = a sinh
x

a
= a sinh log(1 +

√
2)

=
a

2

(
exp(log(1 +

√
2))− exp(− log(1 +

√
2))
)

=
a

2

(
1 +
√

2− 1

1 +
√

2

)
=

a

2
(1 +

√
2−
√

2 + 1) = a,

as required.

If the car is to maintain a constant forward speed, then the rate of ro-
tation of the wheels will not be constant. Will this generate an unfortunate
amount of wear on the engine?

What happens with an equilateral triangular or regular pentagonal
wheels? Maybe it’s obvious, but I haven’t thought about it.

Tony Forbes
The situation is illustrated by the upper diagram on the next page. The
curved part is the catenary.

Five positions of the wheel are shown. The tangents correspond to the
driving side of the square as the wheel progresses from one trough to the
next. The length of the curve is exactly the same as the length of a tangent,
2a. If you move out distance a at a right angle from the centre of a tangent,
you reach the axle of the wheel, indicated by a small black blob. In spite
of the complexity of the diagram, isn’t it marvellous to see the five blobs
neatly arranged in a dead straight line along the x axis?

Martyn Lawrence and Ralph Hancock showed that a reasonable
approximation to a smooth ride is possible if the humps have a quarter
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circle cross-section. The circle has radius 4a/π, and therefore (i) the length
of the curved part of each section is 2a, and (ii) the sections meet at right
angles. Unfortunately there is a slight wobble in the height of the axle, as
you can see in the lower diagram.

Martyn also wonders how a society where square-wheeled cars are the
norm might implement traffic calming measures in residential areas and
near schools. He suggests that the effect of ‘sleeping policemen’ could be
achieved by short sections of smooth, flat road.

Catenary

Quarter circle

How do you make a catenoid? . . .
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Brian O’Donnell
This solution is a ‘smooth ride’ in the sense that the axles remain at the same
level. It is not smooth in the sense that the forward motion is alternately
accelerating and decelerating for a constant angular velocity of the wheels.
A simple mechanism can remove this juddering motion, but if the pre-
Flintstones designers of the vehicle were up to the task, I suppose the round
wheel would have dawned on them! I start with a square wheel of side 2.

Θ

x x

y y

0 0

A little reflection will convince that the point of contact has to be verti-
cally below the axle. So the two conditions to be satisfied are f ′(x) = − tan θ
and f(x) = 1− sec θ. Thus tan θ = −f ′(x) = sec θ tan θ dθ/dx, and hence

⇒
∫

dx =

∫
sec θ dθ ⇒ x = log(sec θ + tan θ) + C.

At the origin, (x, θ) = (0, 0)⇒ C = 0; hence

x = log(sec θ + tan θ) = log(1− f ′(x)− f(x)) ⇒ f ′(x)− f(x) = 1− ex.

Multiplying through by ex and integrating, we obtain exf(x) =
∫

(ex −
e2x) dx. Therefore f(x) = 1 − ex/2 + Ae−x, and f(0) = 0 ⇒ A = −1/2.
Hence f(x) = 1− coshx. When θ = π/4, f(x) = 1−

√
2 = 1− coshx, and

x = arcosh
√

2.

By symmetry and periodicity we can now construct the road. For |x| ≤
arcosh

√
2, f(x) = 1 − coshx, and f(x) = f(x + 2n arcosh

√
2). Finally, I

confirm that this is an exact non-slip solution by showing that the arc length
from x = 0 to x = arcosh

√
2 is 1. Indeed, the arc length is∫ arcosh

√
2

0

(
1 + f ′(x)2

)1/2
dx =

∫ arcosh
√
2

0

coshx dx = 1.
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Solution 187.4 – Cots

Show that cot
π

2n
cot

3π

2n
. . . cot

(n− 2)π

2n
=
√
n for odd n.

Dick Boardman
We start with the familiar addition formula for the tangent,

tan(α+ β) =
tanα+ tanβ

1− tanα tanβ
.

From this we get

tan(2α) =
2 tanα

1− tan2 α
, tan(3α) =

3 tanα− tan3 α

1− 3 tan2 α
,

and so on. After a few steps a pattern emerges. The coefficients are the
familiar binomial coefficients except that they alternate between the denom-
inator and numerator, and their signs alternate in pairs. Taking the signs
into account, we can arrange the coefficients in Pascal’s tangent triangle:

1 1
1 2 −1

1 3 −3 −1
1 4 −6 −4 1

1 5 −10 −10 5 1

To prove the general case we use de Moivre’s theorem,

cosnα+ i sinnα = (cosα+ i sinα)n.

If we expand the right hand side using the binomial theorem and equate real
and imaginary parts, we get the formulae for cosnα and sinnα in terms of
powers of cosα and sinα, from which the formula for tannα is easily found:

tannα =
n tanα− nC3 tan3 α+ nC5 tan5 α− . . .

1− nC2 tan2 α+ nC4 tan4 α− . . .
.

To find the equivalent formulae for cotnα we use cotnα = 1/ tannα and
then divide top and bottom by tann α. Thus we get

cotnα =
cotn α− nC2 cotn−2 α+ nC4 cotn−4 α− . . .

n cotn−1 α− nC3 cotn−3 α+ nC5 cotn−5 α− . . .
.
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Now choose nα an odd multiple of π/2 so that the left-hand side is zero.
Then we use only the denominator and can cancel one cotnα, giving

0 = cotn−1 α− nC3 cotn−2 α+ nC4 cotn−5 α− · · ·+ nCn−1.

Choose n to be odd and note that nCn−1 = n. This is a polynomial in even
powers of cotα. The products of the roots of this polynomial will be n.
However, the roots are cot2(mπ/(2n)), where m is odd. Taking the square
root of this gives the required expression.

John Smith
After much fiddling and experimental calculation, I find that

sin
π

n
· sin 2π

n
· · · · · sin (n− 1)π

n
=

n

2n−1
, (1)

cos
π

n
· cos

2π

n
· · · · · cos

(n− 1)π

n
= ± 1

2n−1
(n odd),

and by taking the first (n− 1)/2 terms (the positive ones) we have

tan
π

n
· tan

2π

n
· · · · · tan

(n− 1)π

n
=
√
n,

or

cot
(n− 2)π

2n
· · · · · cot

3π

2n
· cot

π

2n
=
√
n.

But how to prove the results of the sines and cosines?

Sine and cosine identities seemed vaguely familiar from old M500s. I
looked through past issues, and there, back in 171, during the consideration
of the products of lengths of chords of polygons, is the result (1), proved by
considering the product of the magnitude of the roots of the polynomial

(z − 1)n−1 + (z − 1)n−2 + · · ·+ (z − 1) + 1 = 0.

Looking at

(z + 1)n−1 + (z + 1)n−2 + · · ·+ (z + 1) + 1 = 0

gives the corresponding identity for the product of cosine terms. The re-
quired result follows.

So not entirely an original solution, but I think sufficiently complete.

Also solved by John Bull and Jim James.
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Solution 181.2 – Six secs
Show that

sec
π

7
sec

2π

7
sec

3π

7
sec

4π

7
sec

5π

7
sec

6π

7
= − 64

and

sec
π

7
+ sec

2π

7
+ sec

3π

7
+ sec

4π

7
+ sec

5π

7
+ sec

6π

7
= 0.

John Reade
As an alternative to the solution already published [Sue Bromley, M500
183, p. 13], it is interesting to show that these problems can be done with
Chebyshev polynomials.

There are two kinds of Chebyshev polynomials, Tn(x) and Un(x), de-
fined as follows:

Tn(cos θ) = cosnθ, Un(cos θ) =
sin(n+ 1)θ

sin θ
.

The first few polynomials are

T0(x) = 1, U0(x) = 1,
T1(x) = x, U1(x) = 2x,
T2(x) = 2x2 − 1, U2(x) = 4x2 − 1,
T3(x) = 4x3 − 3x, U3(x) = 8x3 − 4x.

The easiest way to calculate them is to use the recurrence relations

Tn(x) = 2xTn−1(x)− Tn−2(x),

Un(x) = 2xUn−1(x)− Un−2(x)

(the same for both!).

For the problem, the operative polynomial is

U6(x) = 64x6 − 80x4 + 24x2 − 1.

The roots of the equation U6(x) = 0 are cosnπ/7, n = 1, 2, . . . , 6, since

U6(cos θ) =
sin 7θ

sin θ
= 0

if θ = nπ/7, n = 1, 2, . . . , 6. Therefore if we substitute 1/x for x in U6(x),
we get the polynomial equation whose roots are secnπ/7, n = 1, 2, . . . , 6,
namely

x6 − 24x4 + 80x2 − 61 = 0,
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from which we obtain immediately

6∑
n=1

sec
nπ

7
= 0,

6∏
n=1

sec
nπ

7
= − 64.

The moral is that sines and cosines are all very well but when it comes to
secs you have to use your initiative!

Solution 187.6 – Iteration
Find an iteration formula for A1/n that generalizes Heron’s
method for computing square roots.

John Bull
There are many iteration formulae that would work, and which of these
would be regarded as the most analogous to Heron’s formula is arguable.
But here is one possible answer.

Derive Heron’s formula from a rearrangement of a2 = A:

2a2 = A+ a2, a =
1

2

(
A

a
+ a

)
.

Now consider a similar rearrangement of an = A:

nan = A+ (n− 1)an, a =
1

n

(
A

an−1
+ (n− 1)a

)
.

This gives the analogous iteration formula for the nth root of A as

a → 1

n

(
A

an−1
+ (n− 1)a

)
which, of course, also gives Heron’s formula for the particular case of n = 2.

D. M. Tansey points out that if Heron were familiar with the Newton–
Raphson method, that would work just as well. Put f(a) = an − A in the
iteration formula

a → a− f(a)

f ′(a)
.



Page 18 M500 190

Solution 184.1 – Twelve boxes
There are twelve closed boxes numbered 1, 2, . . . , 12. On each
turn you throw a pair of dice and you must open closed boxes
whose numbers add up to the sum of the numbers shown by the
dice. If this is impossible, the game stops and you lose. If you
manage to open all the boxes, the game stops and you win. If
neither, the game continues. What’s the probability of winning?

We have already printed contributions by Dick Boardman and
Ron Potkin in M500 188. However, the following solution to
this interesting and difficult problem arrived too late for that
issue. Also we can take this opportunity to correct an erratic
decimal point in Dick’s solution: Dick’s strategy achieves 34
games out of 10000, not 1000.

John Smith
Resorting to a computer, we can find the optimal strategy and the proba-
bility of winning the game.

First we solve the problem, find the probability of winning, for all possi-
ble combinations of closed boxes summing to less than some number n, and
store the probability of winning for each such combination. Then, given a
combination summing to n, a search over combinations summing to n − 2
gives us the strategy of winning if we throw a 2. Similarly we can solve for
throwing a 3, 4, . . . , 12, thus solving the problem for the new combination.

Initially we know the probability of winning when all the boxes are open
(i.e. probability 1), so we can inductively work up until reaching all boxes
closed. How much effort is involved?

All told, there are 12 boxes, so 212 = 4096 possible combinations of
boxes. To solve each combination requires that we search over roughly
11 · 4096/78 (eleven possible dice throws, and 78 is the sum 1 + 2 + . . . +
12), which is about 600 possible combinations. Now 4096 · 600 is less than
2.5 million, which is not a lot. Thus, with computer run times of a second
or so, we find that the the probability of winning if you always do the best
thing is 0.003622181. Using 64 bit integers, we can find this as a rational
number,

275901419419/76169967501312;

the denominator is 319 · 216.

Actually describing the strategy is not easy. Certainly, as previously
suggested, usually you should open fewer big boxes rather than more smaller
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boxes. However there are exceptions.

For example, if boxes 5 and 7 are closed, the probability of winning is
0.064815 = 7/108; if boxes 1, 2, and 9 are closed, the probability of winning
is 0.044753 = 29/648. Thus if 1, 2, 5, 7 and 9 are closed, and one throws
12, then open 1, 2, 9.

But if boxes 5 and 4 are closed, the probability of winning is 0.129629
= 7/54; if 6, 2, and 1 are closed, the probability of winning is 0.135802 =
11/81. Thus if 1, 2, 4, 5, 6 are closed and one throws 9, then open 4 and 5.

If I can reduce the masses of data that I now have on the optimal move
to something worthwhile, and describe it as a strategy, then I will. But at
the moment it is just a huge table of what to do next, and largely still inside
the machine.

Problem 190.1 – 50 pence
Colin Davies
Starting on his sixth birthday, a child is given 50 pence every day but always
in a different combination of coins. The money stops when this is no longer
achievable. How old is the child when that happens?

For readers unfamiliar with British currency, what we are asking for
is the number of solutions in non-negative integers a, b, c, d, e, f of the
equation a+ 2b+ 5c+ 10d+ 20e+ 50f = 50.

Problem 190.2 – Nested roots
Jim James
Given √√√√√4 +

√√√√
42 +

√
43 +

√
· · ·+

√
4n +

√
. . . = 3,

solve √√√√√4−

√√√√
42 −

√
43 −

√
· · · −

√
4n −√. . . = ?,

where n ∈ N and the sequence of nested roots continues indefinitely.

If it is possible to have only 17 different patterns of wallpaper, how is it
that all DIY stores have tons of the stuff on display? —Keith Drever
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Problem 190.3 – Goat
In view of the success of Problem 186.5 – Horse, as judged by the amount of
interest it generated, here is another transcendental farming problem. This
time we have a goat.

There is an infinite field (an expanse of grass—not the kind of thing
that you would do arithmetic in). The field contains a barn occupying a
space in the form of a regular polygon with 2n sides of length 1 metre. The
goat is tethered to a corner of the barn by a rope of length n metres. What
is the area of grass that the goat can reach?

I (ADF) don’t have the answer, but I do know that if you divide the
area by the radius2 of the barn and let n tend to infinity, you should get
5π3/6. For it is the answer to Problem 34.3 – Goat and field II, which we
reprinted in M500 180. In that version, the barn is a circle of radius 1 metre
and the goat is attached to the circumference by a rope of length π metres.

Thanks to Martyn Lawrence and Basil Thompson for sending in
further solutions to the Horse problem. Alas! they were too late to be men-
tioned in M500 189. Both found the correct formula for the area accessible
to the horse, as a function of r, the length of the rope,

A(r) = π + φ(r) cosφ(r)− sinφ(r);

φ(r) is the angle subtended by that part of the grazeable area where the
rope is taut. (Draw a diagram, or see Simon Geard’s article in M500 189.)

The consensus of opinion is that it is impossible to invert A(r) to an
expression r(A) involving only elementary functions. Therefore, except for a
few special cases, one of which is where r(π−1) =

√
2, the solution requires

numerical methods. We are also interested in an elegant solution to the
circular barn case. Here, I think ‘elegant’ has to imply that the solution
comes out in a natural manner and does not involve hideous integrals of
square roots of quadratic functions. It is possible that such a thing does
not exist.

Problem 190.4 – Six celebrities
TG
My mum reckons that there must be something special about her birthday.
After all, she can say six celebrities that share her birthday. So the question
is: How many people would she need to know for there to be a greater than
50 per cent chance of knowing six people with her birthday?

. . . By pulling its tail. [cat annoyed]
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Solution 187.7 – Task
Normally a computer task takes t seconds to complete. However,
in any interval of duration one second while it is running the
task will fail with probability p. When the task fails it has to be
started again from the beginning. What is the expected total
time for a successful completion of the task?

David Hughes
At last, a problem I think I can solve! Let the failures occur independently
according to a Poisson process,

P(failure in (t, t+ δt]) = λδt+ o(δt).

Then the time between events has an exponential probability distribution
function,

f(t) = λe−λt, P(T ≤ t) = 1− e−λt,
with mean µ = 1/λ.

If the expected total time is A, say, then

A =

∫ s

0

(t+A)λe−λt dt+

∫ ∞
s

sλe−λt dt.

The factor t + A in the first integral corresponds to the failure occurring
before time s, where s is the duration of the task, for then the process must
be restarted. The second integral applies if the failure occurs after time s.
Thus

A = A− (s+A)e−λs +
1

λ

(
1− e−λs

)
+ se−λs =

1

λ

(
eλs − 1

)
,

or, in the notation of the problem, A = (ept − 1)/p.

As pt→ 0, ept → 1+pt and A→ t. The presence of p in the denominator
as well as in the exponential means that it is more important to fix your
computer than shorten the task!

Problem 190.5 – Eight switches
You have a battery, some wire, some light bulbs and eight switches of the
simple on–off kind. Design a circuit that allows you control as many lights
as possible, in the sense that you can select any single bulb and switch it on
while all the others remain unlit. What if you use LEDs instead of bulbs?
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Solution 188.2 – Cylinder
Gradually fill a cylindrical container with a liquid. When is the
centre of gravity at its lowest point?

Jim James
It is assumed that the cylinder is set vertically upright and remains so as
liquid is added to it. Because of the radial symmetry of its cross section,
the centres of gravity of the cylinder, its liquid content and the system as a
whole then lie along the cylinder axis. All heights in this solution are relative
to the inside, upper surface of the cylinder’s base and any consistent system
of units may be employed for practical applications.

Let w be the weight of they empty cylinder and c the height of its
centre of gravity. Let h be the height of the liquid contained within the
cylinder. The height of its centre of gravity is then h/2, and the weight of
the liquid is kh where k is the cross-sectional area of the cylinder multiplied
by the liquid density. Let s be the height of the centre of gravity of the
system overall; then because all centres of gravity lie along the cylinder
axis, (w + kh)s = wc+ kh · h/2, or

s =
wc+ kh2/2

w + kh
.

The minimum value of s occurs when ds/dh = 0, that is when

(wc+ kh2/2)k = (w + kh)kh, or kh2 + 2wh− 2wc = 0.

This gives h = (−w +
√
w2 + 2kwc)/k, the positive square root being se-

lected since h can never be negative. Substituting this value of h into the
expression for s, the minimum value of s is therefore

smin =
wc+ (A− w)2/(2k)

w + (A− w)
=

2kwc+ (A− w)2

2kA
,

where A =
√
w2 + 2kwc.

5 10 15 20 25

4

6

8
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12
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The graph illustrates the significance of the magnitude of k in the so-
lution. It shows quantitatively what we expect intuitively: that at liquid
levels h < 2c (= 20 here), increasing the liquid density and/or the cylinder
diameter results in a substantially lower system centre of gravity and hence
a more mechanically stable system overall.

Note, too, that all three curves intersect at h = 2c = 20. At this point
the centres of gravity of the cylinder, liquid content and system are all equal
to c = 10.

ADF writes — Colin Davies observes that there is insufficient data. He
says, ‘Does not the mass of the cylinder matter? If the cylinder has a mass
that is nearly zero, the centre of gravity will go to the bottom immediately
after the first few drops of liquid are poured in.’ Colin also sent me a
cutting from IEE News containing an account of various solutions to the
problem as it appeared in that publication. In their version, the parameters
of the problem, the weight, height and radius of the can, not to mention
the density and thickness of the material it was made of, were given in the
appropriate SI units. The solutions were presented in the form of numbers
to two decimal places and sometimes beyond. However, whilst it might have
some appeal to electrical engineers, this was not the kind of answer we were
looking for.

I was introduced to the problem during an M202 summer school at
Stirling University by that gang of OU tutors, Angela Dean, John Ja-
worski, John Mason, Alan Slomson, Richard Ahrens, Fred Holroyd and
John Kassab, who were known by the name of Chez Angelique. At Stirling
in the 1970s there was considerable demand amongst mathematics students
for something a little more exciting than the usual social activities one nor-
mally associates with summer school evenings. Chez Angelique filled that
need. It was, simply, an informal gathering to discuss interesting mathe-
matical problems. Sometimes the problems were trivial, sometimes at the
cutting-edge of research, but all had in common that element of surprise,
beauty, elegance, whatever, that makes our subject worth studying. And to
their eternal credit, the hosts did an such excellent job of presenting their
nightly material in a delightful and entertaining manner that the impression
they made on me lasts to this day, over a quarter of a century afterwards.

Getting back to the cylinder, it turns out that there is indeed an un-
expected, ‘lateral’ way of viewing the problem. Let us look once again at
smin, the position of the centre of gravity when it is at its lowest, and hmin,
the corresponding height of the liquid, recalling that A =

√
w2 + 2kwc;

smin =
2kwc+ (A− w)2

2kA
, hmin =

−w +
√
w2 + 2kwc

k
,

Before reading on, see if you can spot a likeness between the two expressions.
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Yes, you’ve guessed it, smin and hmin are identical.

The answer to the problem is that the centre of gravity is at its lowest
when it is coincident with the surface of the liquid.

The proof is a simple thought-experiment.

Suppose the centre of gravity is coincident with the surface of the liquid.

Imagine the can tipped on its side and placed on a fulcrum positioned
at the level of the liquid surface. (Yes, I admit that this stretches the
imagination. As an aside, can you devise an engineering solution to the
problem of keeping the liquid from slurping out of the can?)

The can balances. Now add a small amount of liquid. In the diagram,
below, the can tips to the right because weight is added to the right of the
fulcrum. On the other hand, if we remove some liquid, the system loses
weight from the left of the balancing point and, again, the can tips to the
right.

Thus in both cases the centre of gravity moves to the right, or upwards
when the can is returned to its usual position.

The Stirling summer-school material was collected together and pub-
lished as Chez Angelique, by John Jaworski, John Mason, Alan Slomson et
al. (1975). If you have it, you might recognize our ‘Problem 189.2 – Brown
eyes’ as a politically corrected version of their ‘Forty faithless wives’.

Here’s another from the book. Which of these statements are true?

1. Exactly one of these statements is false.

2. Exactly two of these statements are false.

3. Exactly three of these statements are false.

4. Exactly four of these statements are false.

5. All five of these statements are false.
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Letters to the Editors
Re: Deniable encryption
Dear Tony,

In my article in M500 182 I introduced the notion of deniable encryption
and claimed that no one had yet devised a suitable encryption algorithm,
nor a practical proposal. Actually, there is a way, albeit not a good way.
Deniable encryption is feasible but not as would be suitable for general
deployment.

Suppose Alice and Bob have devised or procured a hard, near unbreak-
able, symmetric, private encryption system that takes any size plaintext
with any size key. A one-time pad obviously meets the requirement but,
given published technology, it would not be difficult to find a more practical
alternative. Denote the encryption function as C = E(P,K) where P is the
plaintext, K is the key, and C is the encrypted output. Decryption would
be achieved with the same function using P = E(C,K).

Now consider the following steps:

1. Alice creates C = E(P,K) and J = E(D,C), where P is a real
espionage type of plaintext, D is a dummy compromising message, such as
‘Book a room at the Nookie’, K is a key shared by Alice and Bob.

2. Alice sends C to Bob.

3. Bob recovers P = E(C,K). Also Bob creates J = E(D,C).

Suppose Alice and Bob have been communicating for some time, with
a government agency monitoring the traffic. The cipher is too difficult to
break, so the government, supported by the Regulation of Investigatory
Powers Act, demands that Alice hand over her key. We assume she would
also be required to hand over the encryption algorithm. Rather than hand
over K, she hands over J . The government now use J , together with their
intercepted ciphertext C, to decipher the message. But rather than recover
the real message P , they recover the dummy message D = E(C, J).

There are problems. The key J handed over would need to be dif-
ferent for each message, and moreover each one would be a different size.
A standard commercial encryption system generally takes a fixed-size key,
usually 128 bits, with the same key used for many messages. An encryption
system of this sort would arouse suspicion, especially as it would be much
less efficient, by way of processing power and communications bandwidth,
than a standard system. Also a different dummy message would be needed
each time which, to avoid leaving evidence, would imply meticulous and
non-trivial management. Bob may be required to hand over his data, and
dummy messages could not be sent over the communications channel, so
Alice and Bob would have to build up a bank of dummy messages by prior
agreement and synchronize their use.
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However, if Alice and Bob were armed with plausible explanations and
robust organization, it would be impossible for the authorities to prove that
D were not the real intended message.

Given the above method, and the mathematics I demonstrated in pre-
vious articles, I suspect there must be a neater way, but so far it eludes
me.

John Bull

PS. All of the above is already in the public domain (for example, see
Bruce Schneier, Applied Cryptography) so I am not revealing anything that
could compromise national security.

Calculus
Dear Tony,

When I put into Mathematica ‘FullSimplify[TrigExpand[Cot[2Pi/7]]]’,
it told me that this Cot was the root of a certain polynomial with only even
powers and with the constant term of 7. Similarly for 9, 11, 13, etc.

I looked into my copy of Trigonometric Delights (reviewed by Barbara
Lee in M500 188) and found that this polynomial was the denominator
in Pascal’s tangent triangle and that this solved the problem fairly simply.
[See page 14.]

I note that people are still discussing Sebastian Hayes’s note, ‘Why does
calculus work?’. My own view is that in providing a rigorous base for the
calculus, the rigorists found it necessary to impose conditions that were only
met approximately in the real world, notably that matter was continuous
and infinitely divisible rather than molecular and that energy and time
were continuous rather than quantized as in quantum mechanics. Calculus
works when these approximations are almost valid and tends to fail when
we consider molecules or cells or other discontinuous features. These need
to be dealt with more like cellular automata.

This is confirmed by looking closely at another book, The Algorithmic
Beauty of Sea Shells. In this book, Professor Meinhardt produces many of
the lovely patterns that appear on sea shells. In the text of his book, he uses
many formulae based on partial differential equations but in the program
that comes on a disc with the book, the methods he uses are much more
akin to cellular automata than true partial differential equations.

Dick Boardman
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Venn diagrams
Dear Tony,

I first came across the Venn diagram problem during my early teaching
days so I could easily recall the very nice article by Margaret Baron in
the Mathematical Gazette, vol. LIII, page 113, May 1969, ‘A note on the
historical development of logic diagrams: Leibniz, Euler and Venn’.

Perhaps you could convey this information to interested colleagues since
there is so much more that might be said concerning, for example, the use
of lines instead of circles/ellipses for the representation. Perhaps Chris Pile
could follow up with a piece based on this article. I’m quite happy to leave
it to him!

Bryan Orman

Deux nombres
Dear Tony,

I saw your remarks on the impossibility of ‘Deux nombres’ [M500 188].
Would this help?

If this is about Russian mathematicians, quite likely the original was in
Russian. In Russian, the verb ‘to be’ is often omitted and replaced with a
dash (or nothing) whose meaning may be, indifferently, ‘it is’ or ‘they are’.
Also, Russian has a genitive case, so ‘the sum of two numbers’ is ‘summa
dvuh nomerov’, ‘summa dvukh nomerov’. So ‘One knows the product and
the other the sum of two integers between 2 and 100’ might originally have
been ‘One knows the product, the other the sum of-two of-integers – (=
they’re) between 2 and 100’, where the last part refers to the product and
the sum, not to the integers.

Does restricting the product and the sum to between 2 and 100 give a
unique solution?

Ralph Hancock

ADF—An interesting suggestion. However, I still can’t get a unique answer
for any reasonable interpretation of the parameters of the problem. For
example, if 2 ≤ a < b ≤ 100, the original solutions are {80, 85} and {84, 88}.
However, if we apply the additional constraints ab ≤ 100 and a + b ≤ 100,
the solution set changes to {{4, 16}, {4, 19}, {4, 23}, {7, 14}}. Similarly, for
2 ≤ a ≤ b ≤ 100, pair {2, 6} survives, {84, 88} is lost and three new ones
appear, {4, 19}, {4, 23} and {7, 14}.
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Mathematics in the kitchen – II
Tony Forbes
Following the trend which we started in M500 188, here’s another scien-
tific experiment that you can perform with materials available in any well-
equipped kitchen. As no dangerous procedures are involved there should
be no need for any specific safety advice. Nevertheless, we ask you: please
do not do this experiment if you are unwilling to take responsibility for any
accidents.

You will need a kitchen sink, several litres of liquid water and a colander.
Again, there is a perplexing mathematical principle the elucidation of which
is at present beyond our comprehension. Enlightenment would be much
appreciated.

Place the water in the sink. There should be sufficient to submerge
the colander, regardless of its orientation in 3-space. Carefully place the
colander, right way up, on the surface of the water and let it go.

Water will enter the colander through the holes at the bottom and,
not surprisingly, it will descend vertically into the sink. However, after a
little while the graceful vertical descent ceases abruptly and the colander
tips to one side. Its descent continues in this listed fashion until another
mysterious condition arises and then the colander suddenly reverts to its
vertical position in which orientation it remains for the remainder of its
journey to the bottom of the sink.

Crossnumber solution
Tony Forbes writes — I hope it wasn’t too dif-
ficult. It should come out fairly quickly as soon
as you notice that 1-down must be a sixth power.
On the other hand, I apologize for the crossnum-
ber in M500 182. The story is that I tried it by
hand and after about 12 pages of working I was
getting nowhere. I therefore began to suspect
that it might be unsolvable without the aid of a
computer.

1
6
5
1
7
7
1

5

2

8

3

3
1
4

8

5
6
2

7
5
9

1

4
6
3

5

2

9

6

1
4
6
2
4
2
8

So I asked Jeremy for his opinion and I was quite reassured when he
told me that he had completed it ‘in about 10 minutes’. Presumably I had
missed something. Unfortunately, I did not realize that Jeremy was in fact
referring to a totally different crossnumber! That one was sent to us by
Colin Davies and appeared sometime last year in IEE News.
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Problem 190.6 – Triangle
Tony Forbes
Look at the left-hand diagram (which I found impossible to draw without
solving this problem!). The short lines bisect each other as well as the sides
of the big triangle. The big triangle is equilateral.

Clearly the small triangle is equilateral. What are the co-ordinates of
its vertices?

Devise a ruler-and-compasses construction for the diagram.

Do the same for a square, a pentagon, . . . . I cannot draw the pentagon
because my solution has not progressed beyond the square.

Problem 190.7 – Four roots
Show that if a3 > 4b > 0, the polynomial

x4 − ax3 + bx− b2

a2

has four real roots which are in a harmonic ratio.

(I (ADF) found something like this in an old book of problem papers for
university entrance examination candidates. I thought it looked interesting,
so I offer it to M500. If you do submit a solution, perhaps you can remind
the Editor of what it means to be in a harmonic ratio.)
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