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Easy ways with eigenvectors

Dilwyn Edwards

First, just in case it’s needed, here is a quick reminder of what they
are.

If you pre-multiply a column vector by a matrix you get another
vector which is usually not obviously related to the vector you started
with. Geometrically speaking it will be different in length and direc-
tion. For eigenvectors of the matrix, however, the resulting vector
is a simple multiple of the original. It is just the same as if we had
multiplied the vector by a scalar instead of by a matrix. This scalar
is the corresponding eigenvalue. Geometrically, the vector has kept
its direction but had its length multiplied by λ. In matrix algebra we
write Ax = λx; x is an eigenvector of the matrix A and λ is the cor-
responding eigenvalue. Incidentally, it is very common in textbooks
to read the phrase ‘eigenvalue and the corresponding eigenvector’,
which is really the wrong way round. To each eigenvector there can
only be one eigenvalue (you soon find what it is by doing the matrix
multiplication). But different eigenvectors can easily have the same
eigenvalue. So the phrase should be ‘eigenvector and the correspond-
ing eigenvalue’. The reason they write it back to front is because that
is the order in which we usually do things; we find the eigenvalues
first.

For lots of reasons, eigenvectors and eigenvalues are very useful
and important things, and there are various ways of finding them.
Generally speaking, the choice is between numerical methods, which
are clearly suited to computer work, and mathematical methods,
which are clearly suited to making students sweat. I shall just discuss
mathematical methods here, needing just pen, paper and (only a lit-
tle) time. There are no quick or easy ways of finding the eigenvalues
unless you are lucky enough to have a triangular matrix, in which
case you don’t have to do anything—the λ values are the numbers on
the main diagonal. In most cases you can find the values by solving
(much easier said than done!) the characteristic equation, which is
the polynomial equation of degree n (when the matrix A is n × n)
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given by |A− λI| = 0. I will assume all the eigenvalues have already
been found and that we just want the eigenvectors.

There are various methods of proceeding, both easy and hard.
OU courses tend to favour the harder methods (naturally, to give
students value for money). The quicker and easier methods do not
seem to be generally well known, which gives me my motivation for
writing this article.

Quick method 1

For each λ write down the matrix A − λI and simply fill in the
elements of the vector X which makes (A− λI)X = 0 (not counting
the trivial answer X = 0).

For 2× 2 matrices this is very easy. Take the example

[
3 1
1 3

]
for

which the eigenvalues are λ1 = 2, λ2 = 4. The matrix A − λ1I is[
1 1
1 1

]
and the vector we need to make

[
1 1
1 1

] [
∗
∗

]
=

[
0
0

]
is obviously[

1
−1

]
. (Remember that

[
−1

1

]
is not really a different answer.)

For the other eigenvalue we have

(A− λ2I)X =

[
−1 1

1 −1

] [
∗
∗

]
=

[
0
0

]
;

so the eigenvector this time is

[
1
1

]
. Did I take a particularly easy

example? Not really; it can never be much harder—not when the
eigenvalues are real numbers anyway.

Take another example,

[
2 4
3 1

]
for which the eigenvalues are λ1 =

5, λ2 = −2. The relevant matrices A− λI are

[
−3 4

3 −4

]
and

[
4 4
3 3

]
so the corresponding vectors are clearly

[
4
3

]
and

[
1
−1

]
.

Three-by-three matrices require a bit more thought, but not a lot.
Here’s one with obvious eigenvalues.
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1 2 0
2 −2 3

, λ1 = 1, λ2 = 2, λ3 = 3.

Take

(A− λ1I)X =

0 0 0
1 1 0
2 −2 2

∗∗
∗

 =

0
0
0


row by row. The first row works OK. For the second it is clear that
the first two elements in the eigenvector need to be like 1, −1. Using
these and moving on to the third row, we find the third value then
has to be −2. So we have found our eigenvector [1,−1,−2]T . Take

(A− λ2I)X =

−1 0 0
1 0 0
2 −2 1

∗∗
∗

 =

0
0
0

.

The first element has to be 0 to blot out that −1. This also blots out
the 1 on row 2. Moving to row 3 we see that we need 1 and 2 in the
last two positions, giving the eigenvector [0, 1, 2]T . Take

(A− λ3I)X =

−2 0 0
1 −1 0
2 −2 0

∗∗
∗

 =

0
0
0

.

We have to have 0 in the first position to knock out the −2 and from
row 2 we need another 0 in the second position to knock out the −1.
We then find in row 3 we have the luxury of putting anything for the
third element so it may as well be 1 and the eigenvector is [0, 0, 1]T .
(No point putting a zero there because a vector of all zeros will be a
trivial eigenvector for any matrix.)

This all takes more time to explain than to actually do. If there
are repeated eigenvalues, to find different eigenvectors try a zero in a
different place. Here’s an example to explain what I mean.

The matrix

2 2 1
1 3 1
1 2 2

 has eigenvalues λ = 1, 1, 5. The matrix
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A− I is

1 2 1
1 2 1
1 2 1

 and putting a 0 in the first position we see that

[0, 1,−2]T works very nicely. Putting a zero in the second position
we find that another eigenvector with eigenvalue equal to 1 for this
matrix is [1, 0,−1]T . For the third, we take the matrix A − 5I and
(perhaps after an initial slight hesitation) we quickly see that the
eigenvector which goes with eigenvalue λ = 5 is [1, 1, 1]T .

Quick method 2

Having the eigenvalues, write down the matrix A − λI for each
λ. For 2 × 2 matrices the columns of each A − λI matrix are just
repetitions of the eigenvector which goes with the other eigenvalue.

For example, the matrix A =

[
2 5
4 3

]
has eigenvalues λ1 = −2 and

λ2 = 7. The matrix A− λ1I is A =

[
4 5
4 5

]
whose columns are mul-

tiples of [1, 1]T which is the eigenvector that goes with λ2 = 7. The

matrix A−λ2I is A =

[
−5 5

4 −4

]
, which tells us that the eigenvector

[−5, 4]T goes with λ1 = −2. Check:[
2 5
4 3

] [
1
1

]
=

[
7
7

]
,

[
2 5
4 3

] [
−5

4

]
=

[
10
−8

]
= 2

[
5
−4

]
.

This will work for complex eigenvalues too. For example, the

matrix A =

[
3 −2
2 3

]
has eigenvalues λ = 3 ± 2i. The two matrices

A−λI are

[
−2i −2

2 −2i

]
and

[
2i −2
2 2i

]
; so the eigenvectors are [i, 1]T

and [1, i]T . Check:[
3 −2
2 3

] [
i
1

]
= (3 + 2i)

[
i
1

]
,

[
3 −2
2 3

] [
1
i

]
= (3− 2i)

[
1
i

]
.

The method fails only when the eigenvalues are equal, but for
2 × 2 matrices that’s a trivial situation anyway. The explanation
for the method is found in the fact that any matrix satisfies its own
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characteristic equation. For 2× 2 matrices we can write this as (A−
λ1I)(A − λ2I) = 0 and if you compare with (A − λ1I)X1 = 0, you
can see that X1 can be identified with A−λ2I, and similarly for X2.
The method extends to 3 × 3 but is not so convenient because the
characteristic equation is now (A − λ1I)(A − λ2I)(A − λ3I) = 0, so
to find X1 we need to multiply the two matrices (A− λ2I)(A− λ3I)
together. Let’s try this method on our previous 3× 3 example:1 0 0

1 2 0
2 −2 3

 , λ1 = 1, λ2 = 2, λ3 = 3.

I write down each of the (A − λI) matrices and underneath each I
put the product of the other two:

λ1 = 1 λ2 = 2 λ3 = 3 0 0 0
−1 1 0

2 −2 2

 1 0 0
1 0 0
2 −2 1

 −2 0 0
1 −1 0
2 −2 0


 2 0 0
−2 0 0
−4 0 0

  0 0 0
−1 −1 0
−2 −2 0

 0 0 0
0 0 0
0 −4 2

 .
The columns of these product matrices either are all zeros or give

us the eigenvectors [1,−1,−2]T , [0, 1, 2]T , [0, 0, 1]T . What determines
how many of the columns are zero vectors? (I don’t know.) Again, we
need the eigenvalues to be distinct for the method to work. Although
I have described both these methods as mathematical rather than
numerical, Quick method 2 could be obviously be programmed too.
Finally, if you fancy a challenge, see if you can find the eigenvectors
of 

5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

,

whose eigenvalues are 1, 2, 5 and 10.



Page 6 M500 191

Can a number be equal to the sum of the sum and
the product of its digits?

David Singmaster

Thomas Koshy [Fibonacci and Lucas Numbers with Applications, Wi-
ley, 2001, p. 10] observes that 8 + 9 + 8 · 9 = 89 and asks if other
numbers have the same property. Letting S be the sum of the dig-
its of an integer N and P the product of the digits, we are asking
when N = S + P . In 1998, I studied the question of when N = SP
[‘On the ratio of a number to the sum of its digits’, unpublished],
so Koshy’s question immediately intrigued me. Here I show that
N = S + P occurs if and only if N = 0 (an exceptional case) or
N = 19, 29, 39, . . . , 99. Then I examine a few related topics.

If N has only one digit, N = a > 0, then S = a, P = a and
S + P = 2N . The case N = 0 is a bit exceptional as it really has no
digits at all! Then S = 0, P = 1 as these are an empty sum and an
empty product, so N = 0 while S + P = 1.

If N has two digits, N = (ab)10, then S = a + b, P = ab and
N = S + P gives us 10a + b = a + b + ab or 9a = ab or b = 9 (since
a 6= 0).

If N has three digits, N = (abc)10, then N = S + P gives 100a+
10b+ c = a+ b+ c+ abc, or 99a+ 9b = abc. But abc ≤ a · 9 · 9 = 81a,
which shows that N = S+P cannot hold. A similar argument shows
that N = S + P cannot hold for any larger number of digits.

In fact, the above shows that N ≥ S + P for two or more digits
and hence that N < S + P only holds for N = 0, 1, 2, . . . , 9.

I computed examples where S + P divides N . Results are sum-
marized below; d is the number of digits, ‘Number’ is the number of
d-digit numbers with S + P | N , ‘Min R’ is the minimum value of
R = N/(S + P ), ‘#’ is the number of occurrences of the minimum
value of R, and in the last column are the values of N giving the
minimum R.
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d Number Min R #

1 0
2 19 1 9 19, 29, . . . , 99
3 78 3 2 285, 594
4 672 7 1 2793
5 5482 7 1 36498
6 48417 4 1 979968
7 439263 19 2 3989943, 3989962

The maximum value of R for d-digit numbers is easily determined.

R =
N

S + P
≤ N

S
=

∑d−1
i=0 ai10i∑d−1
i=0 ai

≤
∑d−1

i=0 ai10d−1∑d−1
i=0 ai

= 10d−1.

Equality can hold if and only if ai = 0 for i < d − 1, i.e. for N =
a · 10d−1, except when d = 1, for which R is always 2, and when
d = R = 0.

If one doesn’t require S + P | N , the minimum value of the ratio
R = N/(S + P ) for d-digit numbers seems to occur when N is all
9s, i.e. N = 10d − 1, assuming d > 2. (As already seen: for d = 0,
R = 0 = 100 − 1; for d = 1, R is always 2; and for d = 2, we have
R = 1 for N = 19, 29, . . . , 99.) This is borne out by my limited
calculations. However, I have not been able to prove this.

One obvious approach is to show that R decreases when one in-
creases its digits in some way. But when N = (10a999999999999)10,
we have that R increases as a increases. The same occurs when one
considers the 13th or 14th places (starting from the 0th place at the
right end), so that increasing the number of 9s in N0 by one fails to
decrease the value of R.

A second approach is to directly compareN/(S+P ) with the value
for Nd = 10d−1. However, the ratio Rd for Nd is (10d−1)/(9d+9d),
which is awkward to deal with, and one finds that all the digits of
N need to be considered, especially as d gets larger and when P gets
small. It may even be that the minimum does not occur for 10d − 1.

I’d be delighted to hear from anyone who can make progress on
determining when the minimum of R occurs.
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Solution 189.9 – Magic square

Fill in the missing numbers to make a
magic square.

Béla Bodó

15 14

12

5

As this is a variation of Dürer’s Melancholia, the solution can easily
be found by ‘Magic square arithmetic’, described in M500 120, 121,
134 and 135, where the elements of the square were denoted as shown
on the diagram, below.

Being Dürer’s square, its magic constant (�) is given by:

� = 2(g + j) = 2(12 + 5) = 34.

From M500 134, we have q = g + j − a = 17 − 5 = 2. Also,
m+ g + j + d = �; therefore m = �− g − j − d = 34− 17− 14 = 3.
Similarly, a+ b+ c+ d = �; therefore b+ c = 34− 15− 14 = 5.

Hence b or c can only take the value 1 or 4. If we choose c = 1, then
the other elements can be found from the table below, constructed
similarly to Table 1 in M500 135, and the magic square is completed
as shown.

a b c d 15 4 1 14

e f g h 6 9 12 7

i j k l 10 5 8 11

m n p q 3 16 13 2

g + j − 2 4c c g + j − 3c

j + c g − 3c g j + 2c

g − 2c j j + 3c g − c
3c g + j − c g + j − 4c 2c
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Tony Forbes

I cannot resist the brute force approach to solving this kind of prob-
lem. It might even be instructive as an exercise in solving linear
equations.

Just about every set of four symmetrically placed numbers sums
to 34. Let us work with these 32 equations in 16 variables:

a b c d
e f g h
i j k l
mn p q
a e i m
b f j n
c g k p
d h l q
a f k q
d g j m
a b e f




1
1
1
1

 =



c d g h
i j mn
k l p q
f g j k
a dm q
b c n p
e h i l
b e l p
c h i n
a b p q
c dmn




1
1
1
1

 =



34
34
34
34
34
34
34
34
34
34
34



,



a e l q
d h i m
a c n q
b d m p
a i h q
e m d l
e g j l
f h i k
b j g p
c k f n




1
1
1
1

 =



34
34
34
34
34
34
34
34
34
34


.

Obviously there is a certain amount of duplication and in fact there
are really only 12 independent equations. Hence any general solution
will have four parameters. Here is one possibility, with unknowns l,
m, p and q:

a = 17− q, b = 17− p, c = m+ p+ q − 17, d = 17−m, e = 17− l,
f = l + p+ q − 17, g = 17 + l −m− p, h = 17− l +m− q,
i = l−m+ q, j = m+ p− l, k = 34− l− p− q, n = 34−m− p− q.

Plugging in the known values, a = 15, d = 14, g = 12 and j = 5,
doesn’t quite yield a unique answer:

a = 15, b = 17− p, c = p− 12, d = 14, e = 19− p,
f = 2p− 17, g = 12, h = 20− p, i = p− 3, j = 5,
k = 34− 2p, l = p− 2, m = 3, n = 29− p, q = 2,

but things look promising because those values which are independent
of p are different integers in [1, 16]. From p − 12 = c ≥ 1 and k =
34− 2p 6= q = 2, we obtain 13 ≤ p ≤ 15. Therefore, since 14 and 15
are already taken, it must be that p = 13.
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Problem 191.1 – Bee

Tony Huntington

My daughter e-mailed me a simple problem to keep me occupied this
Ramadan. Or at least she said it was supposed to be simple, and
I thought so too when I read it, but neither of us can make much
headway with it. This is what she sent me.

A bee visiting a group of flowers behaves as follows. On arriving
at a flower, it drinks the nectar and moves on, unless it drank the
nectar on a previous visit, in which case it moves on at once. On
leaving a flower, it goes to a flower chosen at random from the whole
group of flowers (it cannot remember which it has visited before).
Suppose it takes 3 seconds to drink the nectar from a flower, and one
second to move from one flower to the next. Show that the expected
value of the time taken to visit all the flowers is

n

(
4 +

1

2
+

1

3
+ ...+

1

n− 1

)
and find its variance.

Problem 191.2 – LCM

ADF

Denote by [a, b, c] the lowest common multiple of a, b and c. Show
that [a, b, c] ≤ (n/3)3 for all sufficiently large n, where a+ b+ c = n,
1 ≤ a < b < c ≤ n.

Investigate the difference between the maximum value of [a, b, c]
and (n/3)3.

What about splitting n into four distinct parts, n = a+ b+ c+d?
Five? . . .

Why does

eleven plus two = twelve plus one?

Are there any more?—Colin Davies
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Problem 191.3 – Tetrahedron

ADF

How many ways are there of colouring the elements of a regular tetra-
hedron such that two vertices are red, two vertices are green, two faces
are blue, two faces are yellow, three edges are pink and three edges
are black.

You can reasonably interpret the problem in three entirely differ-
ent ways, depending on which symmetry group you choose to adopt:

(i) The trivial group. This is like having the tetrahedron fixed in
3-space.

(ii) You are allowed to rotate the tetrahedron. The relevant group
is A4, the group of even permutations of four objects. If we number
the faces 1, 2, 3, 4, the twelve face permutations are generated by the
cycles (1, 2, 3) and (1, 2, 4).

(iii) You are allowed to rotate tetrahedron or look at it in a mirror.
The group is S4, the group of all permutations of four elements. The
24 face permutations are generated by the cycles (1, 2, 3) and (1, 4).

Problem 191.4 – What’s next?
Here are the first few terms of an infinite sequence, Sn, if we haven’t
made a mistake:

10, 10, 11, 12, 15, 16, 21, 21, 23, 27, 27, . . . .

(i) What’s the next term?

(ii) What’s the rule?

When you’ve answered (i) and (ii), have a go at the following.

(iii) Prove that the terms always have two digits.

(iv) What can you say about the behaviour of the first digit of Sn
as n→∞?

Hint: S12 = 2B.

Add one w to stall to get a word with a similar meaning.—JRH
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Solution 189.8 – 30 degrees

If ABC is any triangle and P is any point inside ABC,
show that not all of the angles PAB, PBC and PCA can
exceed 30 degrees.

Dick Boardman

This solution is in two parts. First, the case where the three angles are
equal is examined. In this case, P is one of the two Brocard points,
named after Henri Brocard, a French army officer, who described
them in 1875. It is shown that the Brocard angle can never exceed
30 degrees and only reaches 30 degrees in the case of an equilateral
triangle. Secondly, it is shown that moving P away from the Brocard
point must always decrease at least one of the angles. Thus all three
angles can never simultaneously exceed the Brocard angle and hence
never all exceed 30 degrees.

Part 1

Given: a triangle ABC. Draw the perpendicular bisector to the
side AB. Draw a perpendicular to BC at B. Let them meet at Q.
Draw a circle, centre Q radius QB. Since QB is perpendicular to
BC, BC is a tangent to the circle at B. Furthermore, since Q is on
the perpendicular bisector to AB, the circle passes through A.

A

B C

P

Q

R
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There is a well known theorem in elementary geometry which
states that the angle between a tangent to a circle and a chord equals
the angle subtended by the chord in the alternate segment. Thus for
any point P on the circle, ∠CBP = ∠PAB

Similarly, draw the perpendicular bisector to the side AC. Draw
a perpendicular to AB at A. Let them meet at R. Draw a circle,
centre R, radius RA. These circles will meet at A and at a second
point, P . By the same theorem ∠PCA = ∠PAB. Hence for this
point P , the three angles are equal, and P is a Brocard point for
triangle ABC.

Let ∠BAC = a, ∠CBA = b, ∠ACB = c and ∠PAB = w. Then
∠PBA = b− w, ∠BPA = 180◦ − (b− w)− w = 180◦ − b. Similarly,
∠PAC = a − w and ∠APC = 180◦ − a. Applying the sine rule to
triangle APB gives AP = AB(sin(b−w))/(sin b). Applying the sine
rule to triangle APC gives AP = AC(sinw)/(sin a). Eliminating AP
gives

AB
sin(b− w)

sin b
= AC

sinw

sin a
.

Considerable simplification using the formula AB/AC = (sin(a+
b))/(sin b) shows that this reduces to cotw = cot a+cot b−cot(a+b),
which matches the published equation for the Brocard angle, cotw =
cot a+cot b+cot c. But cotw = cot a+cot b−cot(a+b) is symmetrical
in a and b, and will have a maximum for w when a = b. Call this w1.
Then w1 = arccot(2 cot a− cot 2a).

Differentiating with respect to a and equating to zero shows that
the maximum value of w1 is 30 degrees and occurs when a = b = 60
degrees. Thus the Brocard angle is always less than or equal to 30
degrees.

Part 2

The problem states that P is inside the triangle. Moving P away
from the Brocard point must involve moving it closer to one of the
sides of triangle ABC and this must reduce one of the angles PAB,
PBC or PCA and hence not all of the angles can exceed the Brocard
angle; hence not all of the angles can exceed 30 degrees.
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Solution 187.7 – Task

You have a task, T , to perform on your computer. Nor-
mally the task takes t seconds to complete. However, in
any interval of duration one second while it is running T
will fail with probability p. When T fails it has to be
started again from the beginning.

David Kerr

We start with some definitions and assumptions. Let t and p be as
in the statement of the problem; let q = 1− p. Each new attempt at
the task is known as a run. We assume that a failure can only occur
at an integral number of seconds after the start of a run; i.e. at 1 or
2, etc. up to t seconds.

Random variables are defined as follows. Let X be the time re-
quired to complete the task. The range of X is {t, t+ 1, . . . }. Let N
be the number of failed runs before the successful run. The range of
N is {0, 1, 2, . . . }. Let Y denote the length of a failed run. The range
of Y is {1, 2, . . . , t}.

Lower case letters x, n and y represent specific values of X, N
and Y . The probability that X = x is given by P(x), and the mean,
or expectation, of X is given by E(X). Similarly for N and Y .

The problem is to find E(X).

It is easy to see that

E(X) = E(N) · E(Y ) + t. (1)

Prima facie, this might seem obvious, but if you think that it does
need to be proved, the details are provided on p. 16.

The problem therefore reduces to finding E(N) and E(Y ). We
start with E(N). The probability of a given run being successful is
qt. The probability of n failed runs followed by a successful run, i.e.
P(n), is (1 − qt)nqt. Hence N has a geometric distribution and the
mean is given by E(N) = (1 − qt)/qt. This is a standard result but
it follows, after some calculation, from E(N) =

∑∞
n=0 n(1− qt)nqt.

The other mean, E(Y ), is a bit more complicated. The method is
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to find P(y) and use E(Y ) =
∑t

y=1 yP(y).

Let A be the event that a run fails at the yth second and let B be
the event that a run fails (anywhere). Then P(y) = P(A | B). This
says that the probability that a failed run fails at the yth second is
the same as the probability that a run fails at the yth second given
that it is known to fail somewhere. By the theorem of conditional
probability,

P(A | B) =
P(A ∩B)

P(B)
=

P(A)

P(B)
,

as A ∩B is clearly just A.

Now P(A) = pqy−1 and P(B) = 1− qt. Hence P(y) = pqy−1/(1−
qt) for y in the range [1, t] and

E(Y ) =
t∑

y=1

y
pqy−1

1− qt
=

1− qt(1 + tp)

p(1− qt)

after some more work. Finally,

E(X) =
1− qt

pqt
· 1− qt(1 + tp)

p(1− qt)
=

1− qt

pqt
.

Notice that the limit of E(X) as p → 0 is t. Also, if tp = 1, the
limit of E(X) as p→ 0 is t(e− 1). For example, if t = 1000 seconds
and p = 0.001, the mean of X is 1720 to the nearest second.

The above fully solves the problem as posed but it is interesting
to find the probability generating function of X. The usual conven-
tion is to denote this by ΠX(s), where s is a dummy variable. The
probability generating function is such that the coefficient of sx gives
the probability that X = s. We already know that X is given by
the sum of a number of failed runs given by the random variable N
each of length Y , plus t seconds for the final successful run. Using
a standard result (that students of M343 will know), the probability
generating function of X can therefore be written as

ΠX(s) = ΠN (ΠX(s))st. (2)

It is therefore sufficient to find ΠN and ΠY .
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The first, ΠN , is straightforward; from P(n) = (1− qt)nqt we can
see that ΠN (s) = qt/(1− (1− qt)s).

The other one, ΠY , is a bit more difficult. We know that
P(y) = pqy−1/(1 − qt) for y = 1, 2, . . . , t. From this and some fairly
horrendous algebra we get

ΠY (s) =
ps(1− qs)t

(1− qt)(1− qs)
.

Hence, after lots more calculation,

ΠX(s) =
(qs)t(1− qs)

1− s+ pqtst+1
.

The mean of X is given by Π′X(1). I won’t bother with the gory
details, but after differentiating and letting s = 1 this comes out as
(1− qt)/pqt, confirming the result above.

As promised, we can now give a simple proof of (1). Differentiat-
ing (2), we have

Π′X(s) = Π′N (ΠY (s))Π′Y (s)st + ΠN (ΠY (s))tst−1

and therefore

E(X) = Π′X(1) = Π′N (ΠY (1))Π′Y (1) + ΠN (ΠY (1))t

= Π′N (1)Π′Y (1) + t

= E(N)E(Y ) + t,

since E = Π′(1) and ΠN (1) = ΠY (1) = 1.

The variance of X, σ2X , is given by Π′′X(1)+µX−µ2X , where µX is
the mean and σX is the standard deviation of X. After differentiation
and another load of algebra we get

σ2X =
1− pqt(1 + 2t)− q2t+1

(pqt)2
.

It can be shown that the limit of σX as p → 0 is also 0, which
offers some reassurance that the algebra is correct.

Using the above example, i.e. t = 1000 seconds and p = 0.001,
we get σ2X = 977. I’m not really sure exactly what this means but I
think we can say that the distribution has a very long tail. Although
the mean is 1720 seconds, there is a not insignificant probability that
it could take, say, 4000 seconds to complete the task.
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Solution 188.2 – Cylinder

A cylindrical container is gradually filled a liquid. When
is the centre of gravity at its lowest point?

David Kerr

Without loss of generality we can let the height and weight of the
cylinder be 1 unit. Let the full weight of the liquid be w units. We
assume that the weight of the base of the cylinder is negligible. Let
x be the height of the liquid and y the height of the centre of gravity.

Taking moments about the base,

y(1 + wx) =
1

2
· 1 +

x

2
· wx

⇔ y =
1 + wx2

2(1 + wx)
(1)

⇔ dy

dx
=

2(1 + wx)(2 + wx)− 2w(1 + wx2)

4(1 + wx2)
.

Thus y will be a minimum when

2(1 + wx)(2 + wx)− 2w(1 + wx)2 = 0

⇔ wx2 + 2x− 1 = 0

⇔ x =

√
1 + w − 1

w
. (2)

By substituting (2) into (1) we get, rather neatly, that the minimum
y also equals (

√
1 + w − 1)/w. For example, if w = 3, we get the

minimum y = x = 1/3; w = 8 ⇒ y = x = 1/4; w = 15 ⇒ y = x =
1/5.

Solution 187.6 – Iteration

Dilwyn Edwards

The answer must be an =
1

2

(
an−1 +

A

am−1n−1

)
which, if it converges

to anything, will converge to L, where L =
1

2

(
L+

A

Lm−1

)
. So

L = A1/m.
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More moving points

Martyn Lawrence

Following on from ‘Moving point’ by Dilwyn Edwards [M500 189 11],
in the diagram, below, BC is given by y = mx+ c, where in this case
m = 1 and c = −0.7. Thus y = x − 0.7 and P has co-ordinates
(x, x− 0.7).

For large values of positive x, the slopes of AP and BP approach
m. Also for large positive x, angle APB tends to zero. If we let
PB = PF , then AF = AP − PB. For large positive x, angle AFB
tends to π/2. Thus AB2 = AF 2 + FB2.

With the slope of AP approaching m, by simple trigonometry
it can be shown that AF tends to 1/

√
m2 + 1. For this particular

example, where m = 1, AF tends to 1/
√

2, which supports Dilwyn’s
figure of 0.7. A similar argument applies to large values of negative
x. Hence for large |x|, |AP − PB| tends to 1/

√
m2 + 1.

X

Y

A B

C

F

P

Next, we have

AP =
√

(mx+ c)2 + x2 =
√
x2(m2 + 1) + 2mcx+ c2



M500 191 Page 19

and hence

d(AP )

dx
=

2xm2 + 2x+ 2mc

2
√
x2(m2 + 1) + 2mxc+ c2

. (1)

Also

BP =
√

(mx+ c)2 + (x− 1)2

=
√
x2(m2 + 1) + 2x(mc− 1) + c2 + 1

and

d(BP )

dx
=

2xm2 + 2x+ 2mc− 2

2
√
x2(m2 + 1) + 2x(mc− 1) + c2 + 1

. (2)

To look for any minimum or maximum points on the graph of
AP − PB we need to subtract (2) from (1) and equate to zero, ob-
taining

x =
−c
m

and x =
−c(2mc+m2 − 1)

2c+ 2m2c+m3 +m
.

Observe that x = −c or −c2/(2c + 1) for m = 1, and when c = 0.7
these become 0.7 and 1.225, as found by Dilwyn. Also −c/m is merely
the point on the x-axis where the line given by y = mx+ c crosses it.

Further investigation on the computer (by varying values of m
and c) suggests that a maximum value of |AP −BP | occurs at

x =
−c(2mc+m2 − 1)

2c+ 2m2c+m3 +m
,

when the line y = mx+ c passes between A and B.

If y = mx+ c passes outside A or B, then the maximum value of
|AP −BP | occurs at x = −c/m, the value where the line crosses the
x-axis. For example, if m = 0.6 and c = −0.7, then the maximum of
|AP −BP | occurs at 1.167 and has the value 0.857.
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Letters to the Editors

Horses

Dear Tony,

‘Problem 186.5 – Horse’ is quite old. My earliest reference is the
following, which deals with the outside of a circle!

Upnorensis, proposer; Mr Heath, solver; Ladies’ Diary, 1748–49.
Also Leybourn, II: 6-7, question 302 [Leybourn, Thomas (1770–1840),
The Mathematical Questions, Proposed in the Ladies’ Diary, And
their original answers, Together with some new solutions, From its
commencement in the year 1704 to 1816. In Four Volumes, J. Maw-
man, London 1817]. (I have a reference to p. 41 of the Ladies Diary.)
A circular pond is enclosed by a circular railing of circumference 160
yards. The horse is tethered to a post of the railing by a rope 160
yards long. How much area can he graze?

The fortuitous constants of Problem 186.5 simplify the solution
enormously to the point where it is not obvious how to generalize the
problem. But if we go back to basics, we can get a solution of sorts.

Let O be the circumference of the circle. Let OA = OB = OC = r
be the radius of the circle and AB = AC = L be the length of the
rope. It turns out that γ = ∠AOC is the easiest parameter to use.
Then ∠CAB = π − γ, L = 2r sin 1

2γ and L2 = 2r2(1 − cos γ). The
area of sector CAB is (π − γ)L2/2 = (π − γ)(1 − cos γ)r2. Sectors
COA and BOA each have area γr2/2. Triangles COA and BOA
each have area 1

2r
2 sin γ. Thus the area that the horse can reach is

(π − γ)(1− cos γ)r2 + γr2 − r2 sin γ
=
(
π − (π − γ) cos γ − sin γ

)
r2.

Normally the reachable area is specified and we want to find L.
A classic version of the problem gives the area as half of the circular
pasture, i.e. πr2/2. So we get π/2 = (π − γ) cos γ − sin γ. This
kind of equation cannot be explicitly solved, but we can always use
numerical methods. The simplest approach is to try and convert the
equation into the form γ = f(γ) such that the iterating function f
will produce a convergent sequence. After several trials I found that
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γ = cos−1
(
π/2− sin γ

π − γ

)
worked well. Starting with the estimate 1.25, three iterations pro-
duced γ = 1.235896924 = 70.81167767◦ and L/r = 2 sin 1

2γ =
1.158728473. For Problem 186.5, again I started with 1.25 and four
steps gave γ = 1.5707963267 = π/2 = 90◦ and L/r =

√
2.

I gave the classic form of the problem in my department newsletter
in 1987 and Victor Nikola misinterpreted it to produce an interesting
problem and answers that may amuse you.

David Singmaster

[It and they did, so we have included it in this issue as ‘Problem 191.6
– Porthole.’—ADF]

Rates again

Further to Dilwyn Edwards’s article in M500 189, it is common for
journalists to ‘calculate’ the annual rate of inflation by subtracting
last January’s retail price index from that for the current January.
For example, the RPI for January 2002 was 173.3 and, for January
2001, it was 171.1 giving, so they said, an inflation rate of 2.3 percent.
This ignores the fact that current RPIs are based on January 1987
being 100. (The RPI is ‘rebased’ every few years at irregular intervals)
so that the true annual rate of increase for January 2002 was 1.29
percent. This was brought home to me when I compared the annual
increase in my ‘index-linked’ pension with the increase in RPI quoted
in the news media.

Another thing: what exactly do journalists think they are talking
about when they use the term ‘slide rule’ as in ‘running a slide rule
over’ something or, as I heard Andrew Marr say recently in Start the
Week, ‘putting a slide rule against’ something?

Patrick Lee

There are 10 types of mathematician—those who understand binary
numbers and those who don’t.
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M500 189

Problem 189.5. Not only is it not true that everyone’s 40th wedding
anniversary is on a Sunday but, in a sense, it fails fairly spectacularly.
It’s a nice example where one should not be seduced into seeing a
pattern by looking at a lot of handy examples.

1. Not everyone gets married on a Saturday. For anyone married
during the 20th century on a non-Saturday, their 40th anniversary is
not on a Sunday. (Proof as exercise for reader)

2. For anyone whose 40 years of marriage spans a non-leap year
century and who did get married on a Saturday, the 40th anniversary
is not a Sunday either. (ditto)

It reminds me of the fact that n2 + n + 41 produces primes for
n = 1, 2, . . . , 39 but not for 40 or (even more obviously) 41.

Problem 189.2. Owners of the now very rare Chez Angelique col-
lected problems booklet know a more entertaining and bloodthirsty
version of this called the Faithless Spouses (OK, OK it was faith-
less wives in those less egalitarian days). The editors may care to
resurrect the original for everyone’s amusement.

Problem 189.3. As a regular reader of the said Model Engineer
magazine, I saw this. Having had the privilege of being a colleague of
Richard Ahrens, I have seen his beautiful model of the gadget drawn
here. To see the object roll across a horizontal plane is a truly weird
experience. The drawings show that it must roll smoothly. One’s eyes
refuse to totally believe what they are seeing when it does; the object
simply looks too angular for it to be possible. (And that’s the only
clue I’m giving as to the solution, except to say that anyone who
ever attended M101 summer school has the solution in the official
literature. The shape is there, and a hint as to how to calculate the
volume.)

Bob Margolis

‘Queen’s horse scores first win since 1949’—Headline in The Times,
12 February 2003. [Spotted by JRH]
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Twelve tarts

Tony Forbes

Colin Davies kindly sent me a cutting from the Telegraph concerning
one of the classic conundrums of tart weighing.

There are 12 jam tarts. All weigh the same, with one
exception. In three weighings, determine the odd tart
and whether it is lighter or heavier than the others.

I have to admit that I was dismayed by the hideous complexity of
what I saw. The solution offered by Ian Stewart & Martin Golu-
bitsky [Telegraph, 8 February 2003] involved a tedious case-by-case
analysis, where the instructions for the third weighing depend upon
the outcome of the second, the details of which, in turn, depend on
the result of the first.

Then I remembered that I did some work on the very same prob-
lem while I was analyzing Dick Boardman’s ‘Nine tarts’ [M500 182
and 184]. I had also managed to find a solution to ‘Twelve tarts’ in
which the three weighings are fixed in advance. Here it is:

1st weighing: A B C D against E F G H
2nd weighing: A B C E against D I J K
3rd weighing: A D F I against B G J L

With the results of the three tests it is easy to identify the tart
with the odd weight. Although it is not really needed, the following
table shows how. The possible results of the weighings are shown as
movements of the left-hand pan, U: up, D: down, B: balanced.

UUU ⇒ A light UUB ⇒ C light UUD ⇒ B light
UBU ⇒ G heavy UBB ⇒ H heavy UBD ⇒ F heavy
UDU ⇒ D light UDB ⇒ E heavy UDD ⇒ –
BUU ⇒ J heavy BUB ⇒ K heavy BUD ⇒ I heavy
BBU ⇒ L heavy BBB ⇒ – BBD ⇒ L light
BDU ⇒ I light BDB ⇒ K light BDD ⇒ J light
DUU ⇒ – DUB ⇒ E light DUD ⇒ D heavy
DBU ⇒ F light DBB ⇒ H light DBD ⇒ G light
DDU ⇒ B heavy DDB ⇒ C heavy DDD ⇒ A heavy
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Problem 191.5 – Another magic square

Claudia Gioia

On the Web there are lots of hints on how to create magic squares.
Here is a 9× 9 one. Fill in the missing numbers.

47 58 69 80 12 23 34 45

68 79 9

8 10

20

41

62

72 74

73 3 14

37 48 59 70 2 13 24 35

Problem 191.6 – Porthole

David Singmaster

Consider a circular porthole of radius r. One end of a windscreen
wiper of length L is attached to a point on the circumference, and
the wiper arm turns on this point, thereby sweeping out a circular
sector on the porthole. This sector is half the area of the porthole.
How long is the wiper?

There is something unusual about the solution—do you see it?
Can you generalize it? What length of wiper clears the maximum
area?

Problem 191.7 – Sum and reciprocal
There are n positive numbers, a1, a2, . . . , an. Show that

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≥ n2.
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Problem 191.8 – Infinite exponentiation

Dilwyn Edwards

I want to know the value of y = xx
xx

···

(where the powers go on for
ever) when x = 1.1. Writing it as y = xy I get log y = y log x; so
log x = (log y)/y. Putting x = 1.1, I find this has two solutions:
y = 1.111782011... and y = 38.22873285.... They can’t both be right.
What is the explanation?

Problem 191.9 – Switch
There is a game show involving a host, H, a switch, S, and n con-
testants. The switch has two settings, ON and OFF, but it is not
connected to anything. At the start, H sets the switch one way or
the other. The game then proceeds in stages.

At each stage, H chooses a contestant, C, who can either (i)
change the setting of S, or (ii) leave S unchanged, or (iii) announce
that all n contestants have been chosen by H. The game continues
until case (iii) occurs, when the game ends. The contestants win a
Valuable Prize if and only if C’s assertion is true.

The rules are: (a) the contestants may consult with each other
before the game begins; (b) no communication is allowed after the
game has started; (c) if the game goes on for ever, each contestant
will be chosen infinitely often.

Formulate a strategy which will guarantee a win for the contes-
tants. If that is too difficult, try relaxing rule (b).

Yes, it’s different. M500 is now set in LATEX. This issue uses 11-point

type instead of the usual 10 because I didn’t notice until it was half done.

I must admit that if it wasn’t for a 21 percent increase in paper costs I

would be inclined to keep it that way for future issues. I still have a lot to

learn about the new system. I don’t know how to draw diagrams, nor have

I figured out how to start an article with the traditional big letter. (Any

advice from experts?) But I’m slowly getting there, and sifting through the

huge amount of LATEX related material available via the Internet.—ADF
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