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Dot products and determinants –
is there a connection?
Robin Marks
First I will try to explain briefly what is meant by a vector, an inner product,
a dot product and a determinant.

What is a vector? A position vector in Euclidean space can be thought
of as a line with two properties, length and direction. Two lines of the same
length which point in the same direction are considered to be the same
vector.

Suppose we have a vector f . If this exists in the vector space, 2-
dimensional Euclidean space, it can be represented by Cartesian coordi-
nates, which we will call f0 and f1. Thus f can be represented as the list
(f0, f1). This is actually a short way of saying f = f0e0 + f1e1, where e0
and e1 are vectors of length 1 which are mutually perpendicular (known as
orthonormal), and define the coordinate axes. They form a set of basis vec-
tors for the 2-dimensional Euclidean space. Note that we choose the vector
f first, then we choose any one set out of the infinite number of sets of
orthonormal basis vectors. Other sets can be obtained by rotating the co-
ordinate axes. The particular set of basis vectors chosen will not matter in
the following. Vectors can exist in any number of dimensions. For example,
in a 5-dimensional space, we can represent a vector f by (f0, f1, f2, f3, f4).

What is an inner product? What is a dot product? An inner product is
the result of combining two vectors in a particular way. There are different
types of inner product for different vector spaces. In Euclidean space we
use an inner product known as the dot product. The inner product or the
dot product of two vectors f and g may be written 〈f, g〉. The dot product
of vectors that are perpendicular to one another is zero. Therefore the dot
product of any two different basis vectors is zero. The dot product of a
vector of length 1 with itself is 1. Dot products are linear. This means that
for vectors f = f0e0 + f1e1 and g = g0e0 + g1e1 we have 〈f, g〉 = 〈f0e0 +
f1e1, g0e0 + g1e1〉 = 〈f0e0, g0e0〉+ 〈f0e0, g1e1〉+ 〈f1e1, g0e0〉+ 〈f1e1, g1e1〉 =
f0g0〈e0, e0〉+ f0g1〈e0, e1〉+ f1g0〈e1, e0〉+ f1g1〈e1, e1〉 = f0g0 + 0 + 0 + f1g1.

Similarly, in N -dimensional space, 〈f, g〉 =
∑N−1
i=0 figi. The square of

the length of f is given by 〈f, f〉 =
∑N−1
i=0 fifi so that the the length of f is

〈f, f〉1/2 which can be written ‖f‖. The dot product is equal to ‖f‖‖g‖ cos θ,
where θ is the angle between the vectors f and g. In two dimensions we
can prove this by putting f0 = ‖f‖ cos θf , and f1 = ‖f‖ sin θf , with similar

expressions for g, from which we get
∑1
i=0 figi = ‖f‖‖g‖ cos(θf − θg).
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What is a determinant? Eliminating x and y from the two equations
f0x + g0y = 0, f1x + g1y = 0, gives f0g1 − f1g0 = 0. Now f0g1 − f1g0 is
known as the determinant for this system of equations, or the determinant

of the matrix

[
f0 g0
f1 g1

]
, or det

[
f0 g0
f1 g1

]
.

Determinants of larger matrices can be found in a similar manner. De-
terminants exist only for square matrices. One useful property is that multi-
ples of rows or columns of a matrix can be added together without changing
the determinant’s value. Another property is that if we have two square ma-
trices M and N , the determinant of their product equals the product of their
determinants:

detMN = (detM)(detN).

A third property is that transposing a matrix leaves the determinant un-
changed: detM = detMT . So an inner product is the result of combin-
ing two vectors in a particular way, and a determinant is a property of a
square matrix. Why should I think these two might be connected? Well,
if we take vectors f = (f0, f1) and g = (g0, g1), with an angle θ between
them, the area of the parallelogram made with ‘sides’ f and g is equal to
‖f‖‖g‖ cos θ = 〈f, g〉, the inner product. The area of this parallelogram is

also equal to the absolute value of det

[
f0 g0
f1 g1

]
. (I came across this last

statement, with no explanation, in a mathematics book. Problem: Can any
M500 reader can prove it?)

So, at least in the 2-dimensional case, the inner product equals the
absolute value of the determinant. This set me wondering ... how and ...
why?

Take a vector f . For convenience of illustration we will work in three
dimensions, so the vector can represented as (f0, f1, f2).

The projection of f onto each of the three axes is shown in Figure 1.
What is the length of the projection of the vector f onto the third axis?
Let the projection of f onto the axis with unit vector e2 be αe2, with α a
real number. The inner product of the orthogonal vectors n2 and αe2 must
be zero:

〈n2, αe2〉 = 0 ⇔ 〈f − αe2, αe2〉 = 0 ⇔ 〈f, αe2〉 − 〈αe2, αe2〉 = 0

⇔ α〈f, e2〉 − α2〈e2, e2〉 = 0 ⇔ α = 〈f, e2〉/〈e2, e2〉 = f2.

Thus the length of the projection of f is f2, hence the projection of f is
f2e2, which is (0, 0, f2) in list notation.
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Now let us introduce a second vector g, and ‘drop a perpendicular’
from g to f (Figure 2). Call the perpendicular n, where n is a vector. Now
n = g−αf for some value of α that minimizes the length of n, with α ∈ R;
αf is known as the projection of g onto f . To find the value of α giving a
minimum value of 〈n, n〉, put d〈n, n〉/dα = 0. Thus

d〈g − αf, g − αf〉
dα

= 0

⇔ d(〈g, g〉 − α〈f, g〉 − α〈g, f〉+ α2〈f, f〉)
dα

= 0

⇔ 2α〈f, f〉 − 2〈f, g〉 = 0 ⇔ α =
〈f, g〉
〈f, f〉

.

We can get the same answer more easily by arguing that the inner product
of orthogonal vectors, 〈n, f〉, must be zero:

〈g − αf, f〉 = 0 ⇔ 〈g, f〉 − α〈f, f〉 = 0 ⇔ α =
〈g, f〉
〈f, f〉

.

Now we can work out the area of the parallelogram which has sides f
and g.

(area fg)2 = (height)2 · (base)2

= 〈n, n〉〈f, f〉 = 〈g − αf, g − αf〉〈f, f〉
= (〈g, g〉 − 2α〈f, g〉+ α2〈f, f〉)〈f, f〉 (i)

= 〈g, g〉〈f, f〉 − 2
〈g, f〉
〈f, f〉

〈f, g〉〈f, f〉+

(
〈g, f〉
〈f, f〉

)2

〈f, f〉2

= 〈g, g〉〈f, f〉 − 〈g, f〉〈f, g〉.
I was very pleased to find this lovely symmetrical expression. Don’t you
think its nice? This (area fg)2, as I will call it, has a maximum when
〈f, g〉 = 0; that is, when the parallelogram is a rectangle. The area is zero
when f = kg, with k ∈ R, a constant; that is, when f and g are colinear.
For example, suppose f = (1, 1, 0) and g = (0, 1, 1) Then

(area fg)2 = 〈g, g〉〈f, f〉 − 〈g, f〉〈f, g〉

=

(
2∑
i=0

f2i

)(
2∑
i=0

g2i

)
−

(
2∑
i=0

figi

)2

= 2 · 2− 12 = 3.

Hence the parallelogram area is
√

3.

What about the determinant det

[
f0 g0
f1 g1

]
? Note that f and g now have

only two dimensions whereas in the discussion up to now they could have
had any number of dimensions. Call the matrix M . One day I suddenly
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realized that by pre-multiplying M with its transpose we obtain a matrix
full of inner products:

MTM =

[
f0 f1
g0 g1

] [
f0 g0
f1 g1

]
=

[
〈f, f〉 〈f, g〉
〈g, f〉 〈g, g〉

]
.

The determinant of MTM is

detMTM = (detMT )(detM) = (detM)(detM) = (detM)2

= 〈f, f〉〈g, g〉 − 〈g, f〉〈f, g〉 = (area fg)2.

So in two dimensions, the relation between between determinants and inner
products is

(detM)2 = 〈f, f〉〈g, g〉 − 〈g, f〉〈f, g〉 = (areafg)2.

Let us look at integer-valued components of the 2-dimensional vectors f
and g, in particular, values giving a parallelogram with (area fg)2 = 1, that
is (f0g1 − f1g0)2 = 1. It is easy to generate such values. We start with a
matrix with a determinant which will square to 1; that is, with determinant

1 or −1. We will choose

[
1 0
0 1

]
. Now add an integer multiple of one column

to the other column, or an integer multiple of one row to the other row. For

example add 3 times column 1 to column 2:

[
1 3
0 1

]
, then add 2 times row 1

to row 2:

[
1 3
2 7

]
. These correspond to parallelograms constructed with the

vectors given by the rows or columns of the matrix, each with area 1. There
are clearly an infinite number of such parallelograms.

If one of the vectors is very long, the parallelogram will be correspond-

ingly very thin. For example, given the matrix

[
100 101
99 100

]
, with determi-

nant 1, the parallelogram’s width is of the order 1/100 at its widest point.
Problem: Suppose f and g are 3-dimensional, with integer components, and
suppose that at least one of f and g has a non-zero component in each of
the three dimensions. Can the area of the parallelogram formed by them
have (area fg)2 = 1? If not, can you find the smallest possible non-zero
area? What about when f and g are 4-dimensional vectors?

Now we introduce a third vector, h, and drop a perpendicular p to the
plane in which f and g lie (Figure 3).

We ‘drop a perpendicular’ from the tip of h to the subspace generated by
a linear combination of f and g. That is, the plane αf +βg, with α, β ∈ R.
We seek to minimize 〈p, p〉, the (perpendicular distance)2, with respect to
both α and β simultaneously. So, ∂〈p, p〉/∂α = 0 and ∂〈p, p〉/∂β = 0:
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∂〈h− (αf + βg), h− (αf + βg)〉
∂α

= 0

and
∂〈h− (αf + βg), h− (αf + βg)〉

∂β
= 0.

This is fairly easily solved to yield:

α =
〈g, g〉〈h, f〉 − 〈f, g〉〈g, h〉
〈g, g〉〈f, f〉 − 〈g, f〉〈f, g〉

, β =
〈f, f〉〈g, h〉 − 〈f, g〉〈h, f〉
〈g, g〉〈f, f〉 − 〈g, f〉〈f, g〉

.

The vector αf + βg is the projection of h onto the subspace. The
parallelepiped defined by the vectors f , g and h has a volume

(volume fgh)2 = (height)2 · (area fg)2

= 〈p, p〉(〈g, g〉〈f, f〉 − 〈g, f〉〈f, g〉)
= 〈h− (αf + βg), h− (αf + βg)〉(〈g, g〉〈f, f〉 − 〈g, f〉〈f, g〉).

Expanding and simplifying eventually (after considerable effort!) gives

(volume fgh)2

= 〈f, f〉〈g, g〉〈h, h〉 − 〈f, f〉〈g, h〉2 − 〈g, g〉〈f, h〉2 (ii)

− 〈h, h〉〈f, g〉2 + 2〈f, g〉〈g, h〉〈h, f〉.
This is another very nice expression, don’t you think? It holds for vectors f ,
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g and h of any number of dimensions. For example, suppose f = (1, 0, 1, 0),
g = (0, 1, 1, 1) and h = (1, 0, 0, 1). Then

(volume fgh)2

= 〈f, f〉〈g, g〉〈h, h〉 − 〈f, f〉〈g, h〉2 − 〈g, g〉〈f, h〉2

− 〈h, h〉〈f, g〉2 + 2〈f, g〉〈g, h〉〈h, f〉
= 2 · 3 · 2− 2 · 12 − 3 · 12 − 2 · 12 + 2 · 1 · 1 · 1 = 7.

Hence (volume fgh) =
√

7.

This (volume fgh)2 is a maximum when 〈f, g〉 = 〈g, h〉 = 〈h, f〉 = 0,
that is, when the parallelepiped is a cuboid. The volume is zero when any
two of f , g and h are colinear, and when all the vectors are coplanar. For
2-dimensional vectors we get

(volume fgh)2

= (f20 + f21 )((g20 + g21)(h20 + h21)− (f20 + f21 )(g0h0 + g1h1)2

− (g20 + g21)(f0h0 + f1h1)2 − (h20 + h21)(f0g0 + f1g1)2

+ 2(f0g0 + f1g1)(f0h0 + f1h1)(g0h0 + g1h1) = 0.

That is, the formula gives a volume of zero for any three coplanar 2-
dimensional vectors.

What about the determinant det

f0 g0 h0
f1 g1 h1
f2 g2 h2

? Note that f , g and h

now have only three dimensions whereas in the discussion up to now they
could have had any number of dimensions. Call the matrix M . As before,
we calculate

MTM =

f0 f1 f2
g0 g1 g2
h0 h1 h2

f0 g0 h0
f1 g1 h1
f2 g2 h2

 =

〈f, f〉 〈f, g〉 〈f, h〉〈g, f〉 〈g, g〉 〈g, h〉
〈h, f〉 〈h, g〉 〈h, h〉

.

Hence

detMTM = 〈f, f〉〈g, g〉〈h, h〉+ 〈f, g〉〈g, h〉〈h, f〉
+ 〈f, h〉〈h, g〉〈g, f〉 − 〈f, f〉〈h, g〉〈g, h〉
− 〈g, g〉〈f, h〉〈h, f〉 − 〈h, h〉〈f, g〉〈g, f〉

= (volume fgh)2 = (detM)2,

because, as we showed earlier, detMTM = (detM)2. So in three dimen-
sions, the relation between between determinants and inner products is

(detM)2 = 〈f, f〉〈g, g〉〈h, h〉+ 〈f, g〉〈g, h〉〈h, f〉
+ 〈f, h〉〈h, g〉〈g, f〉 − 〈f, f〉〈h, g〉〈g, h〉
− 〈g, g〉〈f, h〉〈h, f〉 − 〈h, h〉〈f, g〉〈g, f〉 = (volume fgh)2.
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Again, it is interesting to find sets of integer values f0, f1, f2, g0, g1, g2,
h0, h1, h2 such that (f0g1h2+f1g2h0+f2g0h1−f0g2h1−f1g0h2−f2g1h0)2 =
1, thus giving a parallelepiped with volume 1. It is easy to generate such
sets. We start with a matrix with determinant 1 or −1. An obvious choice is1 0 0

0 1 0
0 0 1

. Now add an integer multiple of one column to another column,

or an integer multiple of one row to another row. For example add 3 times

column 1 to column 2 and add 2 times column 1 to column 3:

1 3 2
0 1 0
0 0 1

,

then add 2 times row 1 to row 2 and add 3 times row 1 to row 3:

1 3 2
2 7 4
3 9 7

.

There are clearly an infinite number of such parallelepipeds with unit
volume. The longer the vectors, the thinner the parallelepiped. For

example, given the either the matrix

101 101 102
100 101 101
100 100 101

, or the matrix101 101 102
100 101 102
100 100 101

 (spot the difference!), both of which have determinant

1, the corresponding parallelepipeds are extraordinarily spindly. Problem:
Suppose f , g and h are 4-dimensional, with integer components, and sup-
pose that at least one of f , g and h has a non-zero component in each of the
four dimensions. Can the area of the parallelogram formed by them have
(volume fgh)2 = 1? If not, can you find the smallest possible non-zero
volume? What about when f , g and h are 5-dimensional vectors?

Inner products. Here is a brief introduction. A Banach space is particular
type of vector space that, among other things, admits a norm. The norm
defines a distance. A Hilbert space, denoted by H, is a Banach space with an
inner product. The inner product defines angles. The inner product of two
vectors 〈f, g〉 is linear with respect to its first argument. For all λ1, λ2 ∈ C,
〈λ1f1 + λ2f2, g〉 = 〈λ1f1, g〉 + 〈λ2f2, g〉. It also has Hermitian symmetry
〈f, g〉 = 〈g, f〉∗, where ∗ denotes complex conjugation. Moreover, 〈f, f〉 ≥ 0
and also 〈f, f〉 = 0 ⇔ f = 0. Hence 〈f, f〉1/2 = ‖f‖ is a norm; that is, for
all f, g ∈ H and λ ∈ C, ‖f‖ ≥ 0, ‖f‖ = 0 ⇔ f = 0, ‖λf‖ = |λ|‖f‖ and
‖f + g‖ ≤ ‖f‖+ ‖g‖.



M500 193 Page 9

For more information see http://mathworld.wolfram.com/HilbertSpace.
html. Mathworld is a wonderful Web site for mathematicians. Inner prod-
ucts involving complex numbers are used extensively in signal processing,
for example in image compression and audio compression, and also they are
of crucial importance in quantum mechanics. In these applications an inner
product looks like 〈f, g〉 =

∑N−1
i=0 fng

∗
n, or 〈f, g〉 =

∫ +∞
−∞ f(t)g∗(t)dt, and f

and g are generally signals that can be decomposed into components which
are complex sinusoids like eiωt. For more on this try looking up ‘Fourier
transforms’. For advanced readers, a very up-to-date and thoroughly math-
ematical treatment of signal processing techniques, including audio process-
ing and MPEG video compression, is A Wavelet Tour of Signal Process-
ing by Stephane Mallat, Academic Press, 1999, http://www.hbuk.co.uk/ap/.
This amazing book runs to over 600 pages of brilliant maths, and has many
illustrations of images being processed.

Dot Product. In Euclidean space RN , with N finite, we can define an inner
product 〈f, g〉, as follows: 〈f, g〉 =

∑N−1
i=0 figi, where fi and gi are the ith

components of vectors f and g in some orthogonal basis. A set of vectors
{ei}, i = 0, 1, 2, . . . , N − 1, is said to be an orthogonal basis for RN . When
we take inner products on both sides of the above equation we get

〈f, ej〉 =

〈
N−1∑
i=0

fiei, ej

〉
= fj〈ei, ej〉

since 〈ei, ej〉 = 0 if ei 6= ej . Thus fj = 〈f, ej〉/〈ej , ej〉. Hence f can be
decomposed as a sum of orthogonal vectors,

f =

N−1∑
i=0

〈f, ei〉
〈ei, ei〉

ei. (iii)

Computing the inner product of each side of (iii) with g yields

〈f, g〉 =

〈
N−1∑
i=0

〈f, ei〉
〈ei, ei〉

ei, g

〉
=

N−1∑
i=0

〈f, ei〉〈ei, g〉
〈ei, ei〉

=

N−1∑
i=0

fi〈ei, ei〉gi〈ei, ei〉
〈ei, ei〉

.

If we use orthonormal, that is, unit length orthogonal, basis vectors, then
〈ei, ei〉 = 1, hence 〈f, g〉 =

∑N−1
i=0 figi, which is the dot product formula.
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Solution 190.6 – Triangle
The problem asks for a construction of the polygon ABC and
everything inside it.

G

H

J

D E

F

A

B

C

P

Q
R

X

Y
Z

Ken Greatrix
Instead of drawing smaller triangles, draw larger ones. Extend the sides of
the triangle alternately clockwise and anticlockwise

In such an infinite cascade, every alternate figure is in the same orien-
tation. It is relatively simple to construct a larger figure, then the smaller
ones can be drawn by parallel lines. This proof and the proof for n-sided
regular polygons is left for the amusement of the Editor and/or the reader.

Referring to the diagram, above: ABC is a triangle with its sides ex-
tended to D, E, F such that AB = AD, BC = BE, AC = CF ; P , Q, R
are the mid-points of AB, AC, BC with perpendiculars from these points
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meeting at O (the centre of the figure which I haven’t shown because it’s a
bit cluttered in there already!).

Join OD, OE, OF and then construct triangle GHJ such that GH,
HJ , GJ , are perpendicular to OD, OE, OF .

Triangle XY Z is the required triangle inside ABC such that QY is
parallel to GJ , ZP with GH, XR with HJ .

I expect a pentagon in the next issue!

ADF
I admit that I didn’t see the possibility of starting from the centre and
drawing outwards. As Ken has shown, the construction becomes quite easy
once you decide to take that sensible viewpoint. In fact, starting with

X = (0,
√

3/3), Y = (1/2,−
√

3/6), Z = (−1/2,−
√

3/6),

one can construct the other points as follows:

P = 2X − Z, Q = 2Z − Y , R = 2Y −X,
A = −2R, B = −2Q, C = −2P ,

D = 2A−B, E = 2B − C, F = 2C −A,
G = −2E, H = −2F , I = −2D.

We received similar
solutions and observa-
tions from Ted Gore
and Robin Marks. Just
to prove that it really
works, on the right we
have drawn the pentagon
using Mathematica
code supplied by Robin.
And mainly because we
thought it looked pretty,
we have printed part of
Robin’s construction for
the 15-gon on the front
cover of this issue of
M500.
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John Spencer
The Argand diagram provides a general method for solving the problem of
finding the coordinates of an inner polygon whose side can be extended
to meet the midpoint of the side of a regular n-sided polygon so that
the line joining the midpoint to the inner polygon is the length of a side
of the inner polygon. From the origin draw n equally spaced ‘spokes’ of
unit length. These represent the original or ‘outer’ polygon. Label them
{o1, o2, o3, . . . , on}.

Then rotate and shrink the ‘outer’ polygon to create an ‘inner’ polygon

{i1, i2, i3, . . . , in} = α exp(iθ){o1, o2, o3, . . . , on},

where α < 1 is the length of the ‘spokes’ of the inner polygon and θ is the
angle through which the inner polygon is rotated relative to the original
polygon.

For some combination of values of θ and α the line i1i2 meets the mid-
point of the edge o1o2 (i.e. (o1 + o2)/2) in such a way that

i2 − i1 =
o1 + o2

2
− i2.

Substituting for i1 and i2,

α exp(iθ) =
o1 + o2

2(2o2 − o1)
,

from which the length and orientation of the inner polygon can be read off.

For example, for the square, with o1 = 1 and o2 = i, i.e. in Cartesian
coordinates, (1, 0), (0, 1), (−1, 0), (0,−1),

α exp(iθ) =
1 + i

2(2i− 1)
=

1− 3i

10
.

So the points of the ‘inner’ square are located at ( 1
10 ,−

3
10 ), ( 3

10 ,
1
10 ),

(− 1
10 ,

3
10 ), (− 3

10 ,−
1
10 ), which is indeed the required figure.

For the pentagon, with o1 = 1 and o2 = exp( 2πi
5 ) ≈ 0.309 + 0.951i,

α exp(iθ) =
1.309 + 0.951i

2(−0.382 + 1.902i)
= 0.174− 0.379i.

So the points of the inner pentagon are at approximately (0.174,−0.379),
(0.414, 0.0483), (0.082, 0.409), (−0.363, 0.204) and (−0.307,−0.283).

The number you have dialed is imaginary. Please divide it by i and try
again.
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Problem 193.1 – Smallest square
Given a convex quadrilateral Q, with area A and diagonals r, s, show that
the smallest square containing Q has area at least

r2s2 − 4A2

r2 + s2 − 4A
.

Problem 193.2 – Concave to convex
Start with a non-convex
quadrilateral. By remov-
ing some bits of it you
can end up with a convex
polygon. What is the min-
imum area you have to re-
move?

Problem 193.3 – Thirteen tarts
Tony Forbes
There are thirteen tarts. All weigh the same, with one exception. Either
(i) devise a strategy involving three weighings to determine the odd tart
and whether it is lighter or heavier than the others; or (ii) prove that (i) is
impossible.

As usual, a weighing means deciding whether one set of tarts is heavier
than, lighter than, or the same weight as another set of tarts. Recall from
M500 191 that there exists a strategy for twelve tarts. The reason why I
ask about 13 is that the number of different sets of observations you can
obtain in three weighings is 27, which, unless someone can show otherwise,
looks sufficient to resolve the 26 cases pertaining to 13 tarts.

Ron Potkin has provided us with a most interesting solution to the
general problem of resolving (3n − 3)/2 tarts in n weighings—see his letter
on page 25—but here I am only after a simple proof one way or the other
about (3n − 1)/2 tarts in n weighings.

Problem 193.4 – Factorial inequality
Show that for positive integer n,

n! ≤
(
n(n+ 1)3

8

)n/4
.
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Finite and discontinuous
Sebastian Hayes
Dick Boardman (M500 190 p. 26) refers to my article ‘Why does calculus
work?’ and, rather surprisingly, gives substantially the same answer as
I arrived at—though I hasten to add that the much more controversial
suggestions made in this letter / article are wholly my responsibility.

Some thirty years ago, despite detesting the subject at school, I decided
I’d have to study mathematics. My reasons? I wanted to find out about
‘reality’, what was real and what wasn’t, and I reckoned mathematics ought
to be able to help me there.

On being exposed to calculus for the first time, I noted at once that the
assumptions required for the mathematical treatment—in particular ‘infi-
nite divisibility’ and ‘continuity’—were completely unrealistic. This worried
me a good deal—for how could a symbolic system that didn’t square with
real-life conditions come up with the right answers? But no mathematician
I met was even remotely interested in the issue, let alone capable of resolving
it; the only answer I ever got from OU tutors or professional mathemati-
cians I wrote to was substantially the answer given by d’Alembert to one of
his pupils, ‘Allez de l’avant, la foi vous viendra’ (‘Keep going, you’ll end up
as a believer’).

‘La foi’ never came. For the greater part of my adult life I have thus
been the mathematical equivalent of a churchgoer who mumbles his way
through the Apostles’ Creed when invited to do so by the vicar but does
not in fact believe that Christ was the Son of God—does not because he
cannot. I did at one time consider trying to invent a ‘discontinuous’ calculus
but eventually gave up the attempt as being both beyond my powers and,
in the final analysis, unnecessary; in the vast majority of cases dx is small
and so calculus is a good enough approximation and, when it is not, these
days we can slog it out with computers.

The conceptual problem remains, however, though few indeed are pre-
pared to confront it. Ask a pure mathematician about any question con-
cerning ‘reality’ and he or she will refer you at once to the Philosophy
Department. But philosophers are a declining species these days and those
there are have a severe inferiority complex with regard to mathematics. Far
from daring to pronounce on issues mathematical, they take the view that
‘if the mathematicians say so, it must be true’. What they (the philoso-
phers) fail to realize is that ‘true’ for a mathematician these days simply
means ‘consistent with a particular set of assumptions’ whereas ‘true’ in the
philosophic sense means, or should and used to mean, ‘is the case’. The pre-
cision and cleanliness of modern mathematical systems have been bought
at a price—mathematics has turned its back on the real world.

Thus one reads again and again in ‘philosophical’ works that Zeno’s
paradoxes of motion have been ‘decisively refuted by the methods of mod-
ern mathematics’. But the question to be addressed is not whether such and
such mathematical assumptions permit, or on the contrary rule out, such
and such consequences but whether the assumptions made are plausible and
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realistic in the first place. Zeno hardly needed the techniques of transfinite
set theory to determine that Achilles overtakes the tortoise—simple obser-
vation and Greek mathematics sufficed. Zeno’s parables were designed to
make people think; he wanted people to confront the philosophic issues of
the nature of space, time and motion—and they are not empty mathemat-
ical postulates but postulated realities. Mathematics cannot arrogate to
itself complete freedom to invent whatever it wants and at the same time
claim to be a guide to what goes on outside the printed page—this is what
is commonly known as having your cake and eating it.

Nonetheless, so great is the prestige of mathematics and the correspond-
ing fear that mathematicians inspire amongst laymen that the most extrav-
agant propositions are taken seriously just so long as they are dressed up in
symbolic garb whilst inherently plausible ideas never get a hearing if they
run counter to ingrained mathematical habits of thought. Cantor’s weird
cogitations about the nature of the continuum have been the subject of
much learned debate but what one might call the discontinuum hypothesis
is never discussed at all.

I take the commonsense view that the bulk of our knowledge of the
world comes from sense-data and, far from being an exception to the rule,
mathematics is—or rather was up to about the middle of the nineteenth
century—a brilliantly successful example of an empirically based discipline.
Very early on in life we perceive what is around us as a plurality of discrete
items which can be gathered together into groups—my toys, your brothers—
or on the contrary separated out again. Such experiences—not a priori
assumptions or ‘intuitions’—gave rise at a certain stage in human history
to the appropriately named natural numbers and to the basic operations of
arithmetic. ‘Continuity’ is not a numerical notion but a geometric one and it
was only at the end of the nineteenth century and with the greatest difficulty
that it was given adequate numerical expression. There is no doubt in my
eyes as to which of the two disciplines, geometry and arithmetic, is the more
fundamental; it is arithmetic, and by arithmetic I mean the manipulation
of whole numbers.

As for ‘infinity’, it is hardly something within our experience and ranks
at best as a wholly derived and essentially negative concept. Certainly it
is not a number and not a quantity, it is more a direction than anything
else meaning roughly ‘Keep on going as long as you wish’. We could do
mathematics without it—I have actually made the experiment—and just
use the arrow sign. When pointing to the right → instructs us to make
something as large as we see fit, and when pointing to the left← instructs us
to make something as small as we see fit: limn→ f(n) = 2, lim←n f(n) = 0.
Different colours or other distinguishing features could be used to indicate
positive and negative movements to a limit. But of course there is no harm
in using the infinity sign as long as one suspends disbelief. The trouble is,
in my experience, mathematicians through force of habit do tend to believe
that there is such a thing as infinity: I shall never forget the look of pure
horror on the face of the Oxford mathematician as he said, pointing at me,
‘Good God, this fellow does not even believe in ordinary infinity, let alone
the transfinite!’
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So, if as I claim, our basic apprehension of life and the world around
us is finite and discontinuous, why not state this in so many words and see
where it gets us? So here goes, the grand discontinuity postulate:

All processes/phenomena are discontinuous.
Because of the sweeping scope of the claim and complications such as the

Heisenberg Uncertainty Principle, such a postulate will presumably never
be proved in its entirety. However, it is a postulate which is in accord
with our instincts and sense-impressions and is supported by an enormous
amount of scientific data. All around me I see nothing but collections of
discrete entities, stones, trees, humans, &c. Fluids, it is true, appear to
be continuous but under the microscope reveal a molecular structure. The
emission of ‘light’, long thought to be continuous, is in fact not so: indeed
all energy exchanges are quantized, thus discontinuous, and since most of
what goes on in the physical world is some sort of an energy exchange this
covers rather a large field.

Furthermore, we have a strong psychological conviction of the postu-
late’s truth with respect to ourselves and our inner processes. If we, as
humans, really lived and felt ‘continuously’ all this anguish about growing
old would have no raison d’être, there would be no sense of ‘time passing’
and little fear of personal extinction. The higher religions, Christianity and
Buddhism in particular, may in fact be described as largely unsuccessful
attempts to shift human sensibility from a discontinuous to a continuous
mode. Only the saint feels with and for humanity as a whole, the rest of us
are islands and we do ask for whom the bell tolls.∗

Not only do we feel in spasms but we think discontinuously as well. The
thinking process is sequential, that is, we think step by step, not holistically,
‘all at once’. It is for this very reason that Benjamin Peirce made the
excellent observation that, though we can perhaps envisage a world without
‘space’, we cannot envisage one without time.

Where does the discontinuity postulate take us? Well, if we are to rule
out infinite regress, which the postulate is framed precisely to avoid, there
must seemingly be certain ‘things’ which are entire, not divisible (i.e. if you
like ‘continuous’ though the term is misleading), which is why I used the
plural terms processes and phenomena in formulating the principle. What
are these irreducibles? Can anything be said about them? One way of
proceeding is to hold on to the notion of the event which, at least for the
purposes of this brief overview, I take to be ‘intuitively clear’. It is possi-
ble to view apparently solid objects in terms of ‘mini-events’ but it is not
really possible to view an event—say a ‘blow’ or a ‘bang’—in terms of mini-
objects. However, clearly not all events are irreducible so we must introduce
the notion of ultimate event which is an event which cannot be further de-
composed. Also, since an event, ultimate or not, seemingly must take place
somewhere, we must needs have a location of some sort, I call it the Local-
ity. An ultimate event may be defined as an event which has occurrence
at a single point (or within a single ‘square’) of the Locality. Objects can
now be defined as self-repeating patterns of ultimate events: they possess
persistence, a feature they share with human beings.
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As stated in my article ‘Why does calculus work?’ (M500 185), the
assumption of discontinuity resolves all of Zeno’s paradoxes. The door does
not have to traverse an infinite number of positions before it slams shut in
about two seconds, and Achilles is always able to overtake the tortoise since
the latter is only so many grid-points ahead of him. The arrow moves by
jerks towards its target even though we do not see the jerks: it is here, then
it is there. Motion turns out to be nothing more than ‘being at different
places at different times’ (Russell) and a collision is an attempt by two
competing event-clusters to share the same grid-points on the Locality.

How does the postulate tally with the assumptions of modern physics?
Within the limits of the terms used so far, there exist only sequences and
clusters of events spread out over the Locality, some self-repeating, some
not. There is no need to believe in wave–particle duality as such because
neither waves nor particles are absolutely fundamental items. An energy dis-
turbance is not propagated continuously across the Locality any more than
a stream of particles is projected continuously through a narrow slit, but in
the case of so-called wave energy propagation we are dealing with a much
finer mesh. Conceptually, I do not think this makes too much difference—
the real problem with quantum mechanics is whether it violates causality,
that is, whether there can be ‘space–time hopping’ which seemingly there
can be. The discontinuity postulate does not have anything specifically to
say on this point—further postulates are required—but it is surely easier
to conceive that ‘effects’ can be widely separated from their ‘causes’ in a
discontinuous model. (Causally related events can, in quantum mechan-
ics, be light years apart without there necessarily being any intermediate
events connecting them.) Indeed, one could argue that the very language
of causality implies a discontinuous model since otherwise it would not be
meaningful to distinguish a particular event, named the ‘cause’, from a dif-
ferent event, named the ‘effect’. If processes were truly continuous there
would be an imperceptible grading from one state to another—something
that is rarely if ever observed and is, for me at any rate, difficult to even
conceive of. For me change, like enlightenment, either occurs at once or
does not occur at all.

So far, so good. Although the assumption of discontinuity fits tolerably
well with quantum mechanics, at least on a cursory view, it clashes head
on with relativity. Why is this? According to the discontinuity postulate
and the innocuous sounding assumptions made about ultimate events, it
follows that every physical process is composed of a specific (thus finite)
number of ultimate events, not a variable (infinite) number. There is thus
in principle an event-number associated with every terminating physical
process though naturally this number (an integer) will not normally be
knowable. This is the event-chain number hypothesis. Now, I take it as
absurd to suppose that a bona fide event, say an explosion, takes place in
one person’s coordinate frame and not in that of someone else—a supernova
explosion or a heart beat either has occurrence on the Locality or it doesn’t,
full stop. Coordinate systems are mathematical conveniences, not things
that ‘really exist’—indeed, it was precisely this consideration which led
Einstein to attempt a generalization of his original theory of relativity.
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But the event-chain number hypothesis knocks out the so-called twins
paradox. If Jack the Nimble, travelling close to the speed of light, ever
returned to Earth—a big ‘if’—his heart would by that time (sic) have
thumped a specific number of times and this ‘heart-beat number’ would
have nothing whatever to do with his state of motion or that of his brother.
And all his other physical processes, being a discontinuous stream of phys-
ical events, would have event-chain numbers attached to them. So, if aging
depends on how many times your heart has beaten and suchlike matters,
Jack the Nimble wouldn’t be a day younger—contrary to what special rel-
ativity states and certain experiments apparently confirm.

The above does not in itself dispose of the discontinuity postulate in my
eyes but the discrepancy is certainly troublesome. Indeed, I must confess
that, contrary to the majority of people, I find relativity more difficult to
swallow conceptually than quantum mechanics because it is more of a threat
to the idea of an objective reality.

Can I suggest any experiments that would confirm the discontinuity
postulate? Well, I cannot be expected to predict everything that is observed
on the basis of just a single postulate and one or two related assumptions,
but having adopted at the outset an empiricist approach I don’t intend to
duck this question completely. If motion is in reality a succession of stills,
rapid motion presumably means that a greater number of lattice-points
are missed out—this is at any rate one way of envisaging rapid motion as
compared with slow motion. This in turn means that a rapidly moving
projectile should be able to pass clean through an obstruction that is not
too thick—for the two event-chains would not need to clash in a desperate
attempt to share the same intermediary ‘space’. Has such a phenomenon
been observed? I have read that a neutrino can pass through the Earth
without leaving much trace if any. On the other hand, according to my
principles, a ray of light, simply because it travels so quickly, should, just
like a neutrino, be able to pass through any reasonably thin obstacle while
this is by no means the case.

Sheldon Attridge (M500 188, Letters, page 25) makes what is perhaps a
more serious, because more basic, objection to the discontinuity postulate.
He writes

If there really are ‘holes’ in space which a closing door does not
traverse—then whereabouts are these holes located? To para-
phrase Kant: it is impossible for the human mind to conceive of
‘no-space’, it is an a priori concept.

Well, for me there is no great conceptual problem. I envisage the Locality as
a sort of vast Solitaire board where each depression can receive an ultimate
event. In between depressions there is not enough room (i.e. space) for an
event, that’s all—what’s difficult about that? Physicists today do seemingly
manage to conceive of something which is ‘no-space’ or at least ‘pre-space’
since this is what the quantum vacuum is. According to certain versions
of the ‘great beginning’, e.g. that of the so-called Brussels School, the
universe itself including space–time is a runaway disturbance of this much
more basic entity, the quantum vacuum. So, to take up Sheldon Attridge’s
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query, ‘Where is the quantum vacuum situated?’
Is there any way of conceiving reality as both continuous and discontin-

uous without contradicting oneself? Perhaps there is on the analogy with
quantum mechanics. According to the usual interpretation of quantum me-
chanics, reality is two-tiered: there is a qualitative difference between what
pertains prior to an act of measurement and what happens subsequently.
Thus, if we have a ‘photon’ confined to a box, it is, prior to an act of mea-
surement ‘all over the place’ and does not have a precise location. However,
an act of measurement which inevitably involves interaction with the object
of the experiment pins the latter down to a specific position.

It would be possible to envisage the Locality, empty of ultimate events,
as being ‘all of a piece’, i.e. continuous if you like. Nonetheless, an ultimate
event, when and if it has occurrence, is precisely located: it carves out its
own spatial position as it takes place. This approach is very similar to that
taken by Bohm who makes a qualitative distinction between what he calls
the Implicate Order and the Explicate Order. According to Bohm, science
and mathematics deal only with what is measurable, and is therefore part of
the Explicate Order. But Bohm, originally a more or less orthodox quantum
mechanical physicist, became at one point in his life profoundly impressed
by the views of the Indian mystic Krishnamurti and considered that we have
an intuitive awareness of the more basic underlying reality which he called
the Implicate Order and which really is continuous.

This is a feasible approach but it must be stressed that it is not the
world-view that is implicit in calculus and analysis generally. As I under-
stand quantum mechanics, a ‘photon’ inside a box does not have an ‘infinity’
of positions which it occupies simultaneously prior to being observed: it has
strictly no fixed position, or none smaller than the total area of the box.
Now in analysis the definition of continuity∗∗ depends on the limit concept
and on the surely rather overdone image of ‘a line made up of points’, the
only difference being that we now have an unlimited amount of points to
any line. In fact what we obtain is not continuity as the word is generally
understood but rather an ‘infinite discontinuity’—for if a line or surface
really were entire, of a piece, i.e. continuous, it would not be composed of
points at all, it would be a single indissoluble entity. But then there would
be very little that could be said about it. For mathematical purposes we
need to have it both ways but that should not lead us to assume that this
is how things really are.

* ‘No man is an island intire of itselfe, every man is a piece of the Continent, a
part of the maine; if a clod bee washed away by the Sea, Europe is lesse, as well
as if a promontorie were, as well as if a mannor of thy friends or of thine owne
were; any man’s death diminishes me, because I am involved in Mankinde; and
therefore never send to know for whom the bell tolls; it tolls for thee.’ — John
Donne, Devotions XVII

** ‘A function is continuous at a point ξ if and only if f(x) → f(ξ) as x → ξ. A
function is continuous on an open interval I if and only if it is continuous at each
point of I.’ — K. Binmore, Mathematical Analysis
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Solution 190.7 – Four roots
Show that if a3 > 4b > 0, the polynomial x4 − ax3 + bx− b2/a2
has four real roots which are in a harmonic ratio.

David Porter
I first tried to do this assuming that the four roots being in harmonic ratio
meant that they formed a harmonic sequence; i.e. their reciprocals formed
an arithmetic sequence. Eventually this lead me to the conclusion that the
proposition was false so I belatedly looked up the definition in my Dictionary
of Mathematics and discovered that it really meant that the product of two
of the roots was minus the product of the other two.

The result then falls out because this particular form of quartic can be
factorized into two quadratics thus:

x4 − ax3 + bx− b2/a2 = (x2 − b/a)(x2 − ax+ b/a).

So the four roots are√
b

a
, −
√
b

a
,
a−

√
a2 − 4b/a

2
and

a+
√
a2 − 4b/a

2
,

and since a and b are real (implied by a3 > 0 and 4b > 0) and a3 > 4b > 0,
all the roots are real. Furthermore,

(+
√
b/a)(−

√
b/a) = − b

a
and

a−
√
a2 − 4b/a

2
·
a+

√
a2 − 4b/a

2
=

a2 − (a2 − 4b/a)

4
=

b

a
;

so these roots are in an harmonic ratio.

Dick Boardman
First the harmonic ratio. Choose four points on a line in order A, C, B,
D, where C is between A and B and is said to divide AB internally in the
ratio AC/BC, and D is not between A and B and is said to divide AB
externally in the ratio AD/BD. The ratio of these ratios is called the cross
ratio, {A,B,C,D}. Let A be a distance a from some arbitrary origin, and

similarly for B, C and D. Then the cross ratio is
(c− a)/(c− b)
(d− a)/(d− b)

. Note

that where C is between A and B and D is not, the number is negative. In
the special case where the cross ratio is −1, {A,B,C,D} are said to be in
harmonic ratio.

To find out the importance of all this we have to go back more than 500
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years. In the 15th century, artists could not draw realistic three-dimensional
pictures. They knew that things looked smaller, the further they were away,
but they did not know by how much. Then someone invented a device which
was equivalent to viewing the scene through a fixed eyehole and through a
sheet of glass and painting on the glass what he saw through it. In the
hands of a few artistic geniuses, this technique produced pictures that were
stunning in realism and in detail. To the modern eye, they look like high
quality colour photographs, but of course they pre-date colour photography
by 400 years. These pictures attracted mathematicians and the collabora-
tion between them was very fruitful. Artist got the rules of perspective that
they have used ever since and mathematics got a new form of geometry,
projective geometry. The well-known artist David Hockney thinks that,
before photography, many artists used similar optical devices to keep their
pictures in proportion. (Reference: D. Hockney, Secret Knowledge.)

Suppose in the scene being viewed there were four points in a straight
line. These four points would be painted on the glass as four points in a
line. One of the key theorems in projective geometry is that the cross ratios
of the two sets of points are the same; that is, cross ratio is invariant under
a projection.

Now for the problem itself. The polynomial can be factored into two
quadratics and the roots of these quadratics are the roots of the quartic.
They are

a3/2 −
√
a3 − 4b

2
√
a

,
a3/2 +

√
a3 − 4b

2
√
a

, −
√
b

a
and

√
b

a
.

Label these values c, d, a, b and put them into the formula for cross ratio.
This gives (after some algebra) a value−1 so that the roots are in a harmonic
ratio. This seems easy enough here but I would hate to be given that
question in an exam.

Problem 193.5 – Dissect a triangle
Dick Boardman
Dissect an equilateral triangle into three triangles such that

(1) Their areas are in the ratio 3:3:2.

(2) All the sides of all the triangles are integers.

‘Damien Hirst tends to use everyday objects such as a shark in
formaldehyde.’—Fashion commentator, R4 [EK]
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Solution 190.3 – Goat

A field contains
a barn occupy-
ing a space in
the form of a
regular polygon
with 2n sides of
length 1 metre.
A goat is teth-
ered to a corner
of the barn by
a rope of length
n metres. What
is the area of
grass that the
goat can reach?

Basil Thompson
It is possible to calculate individual cases, 7π/2 for four sides, 23π/3 for six
sides, 27π/2 for eight sides, 21π for ten sides, ..., but what we want is a
general formula.

The goat’s rope wraps around the polygon on both sides to the point
opposite to where it is tethered. The area of the sector grazed with radius
n is given by

πn2
π + π/n

2π
=

π

2
n2
(

1 +
1

n

)
.

The area of two sectors with radius n− 1 is

2π(n− 1)2
π/n

2π
=

π

n
(n− 1)2,

the area of two sectors with radius n− 2 is

2π(n− 2)2
π/n

2π
=

π

n
(n− 2)2,

and so on. Hence the total area is

π

2
n2
(

1 +
1

n

)
+
π

n
(n− 1)2 +

π

n
(n− 2)2 + · · ·+ π

n

=
π

2
n(n+ 1) +

π

n

n−1∑
k=1

k2.
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Using the formula m(m+ 1)(2m+ 1)/6 for the sum of the first m squares,
this simplifies to

π

2
n(n+ 1) +

π

6
(n− 1)(2n− 1) =

π

6
(5n2 + 1).

Checking this formula against the values quoted at the start shows full
agreement. However, I am not happy with the statement that the ratio
(goat area) / (barn radius) tends to 5π3/6 as n→∞. The ratio must have
an n in it and it will go to infinity with n.

A more interesting ratio is (goat area) / (barn area). It is easily seen
that for large n the area of the polygon is of order n2/π. Hence as n→∞
the ratio tends to 5π2/6.

ADF writes—It looks like ADF has goofed. What he possibly meant
was that the goat area divided by the square of the barn radius tends to
5π3/6. This is indeed the case, as you can verify from Basil’s analysis.

Also I remember asking for a simple proof that the area is 5π3/6 when
the barn is a circle of radius 1 metre. John Spencer showed that it can be
tackled as a traditional A-level integration problem. You let the angle of the
rope increase by dθ, work out the corresponding increase in the area grazed,
and integrate. The required answer comes out quite easily. However, this
is not necessary; as we have seen, we can actually dispense with calculus
altogether!

Problem 193.6 – Fair coin
Tony Forbes
I have always been puzzled as to why authors of probability / statistics text
books often and persistently insist that the coins in their examples be fair.
Then one day I actually looked at a typical British 2p piece and it occurred
to me that if the fairness is supposed to be strict, this attribute cannot
possibly apply to any of the coins that make up the world’s currencies.

I understand that casino operators are obliged by law to have their
various randomizing devices tested for bias. So I ask: How would you esti-
mate the bias to heads or tails in a freshly minted 2p coin? Approximately
how many tosses would you need? My gut feeling is that the answer is
many—1012, 1015, whatever—but I might be wrong.

‘Pi, the number which represents the circumference of a circle divided by
its radius.’—A History of Human Folly, BBC R4, 4 June 2003. [JRH]



Page 24 M500 193

Letters to the Editor

Cyclones
Dear Tony,

Re: M500 188, page 18, in which you ask why dust at the bottom of a
tall cylindrical container goes into a rapid swirling motion whilst it is being
vacuum-cleaned.

An interesting experiment; ask a fluid dynamics expert about turbulent
flow. Had you done this experiment a few years ago you would have been
rich and James Dyson could now be editing M500!

Ken Greatrix

ADF replies—Of course! As owner of one of his root cyclone devices I
should have realized immediately what was going on. In fact it is even more
amazing. Something which starts as a whirlwind inside the Dyson becomes
a linear flow through the length of the hose and, in turn, induces another
whirlwind inside the spaghetti jar. Interesting Question: Are the angular
velocities of the two cyclones related?

Re: Amazing object
Dear Tony,

I cannot agree with the sentiments in the letter of Ralph Hancock in
M500 192 (page 27), where he says, ‘... the problem becomes trivial because
an ordinary sphere will do the job and any [fool] can calculate its volume.’

The first person to calculate the volume of a sphere in terms of simpler
solids was Archimedes. The people before him were not fools, merely not
as good as one of the greatest geniuses of all time.

Dick Boardman

Roots
Dear Tony,

Just a comment on Problem 190.2 – Nested roots. You can use the well
known result that +

√
x = −

√
x, proved as follows:

y =
√
x =

√
(−1)2x = (−1)

√
x = −

√
x,

which gives the (wrong) answer of 3.

John Bull
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Twelve tarts
Dear Tony,

I thought you might be interested in the following. I read about it in The
Woodworker magazine in around 1960 but it first appeared in 1945. Martin
Gardner’s Sixth Book of Mathematical Games contains a good description.
Warning: I have described this to friends on a number of occasions but few
managed to stay awake until the end. But here goes anyway.

Row 1: Write down the numbers 1 to 12 in a row. Row 2: Underneath
write the ternary value of row 1. Row 4: Enter the value of 222 less the
value in row 2. Imagine the face of a clock with the digits 0, 1, 2. Going
clockwise, we have 01, 12 and 20; anticlockwise, we have 02, 21, 10. Row
3: Look for the first change in digit in row 2. If it’s clockwise, write C;
otherwise write A. For example, 010 is C and 110 is A. Row 5: Repeat the
procedure in row 3, using row 4. You should obtain the following table:

Row 1 1 2 3 4 5 6 7 8 9 10 11 12
Row 2 001 002 010 011 012 020 021 022 100 101 102 110
Row 3 C A C C C A A A A A A A
Row 4 221 220 212 211 210 202 201 200 122 121 120 112
Row 5 A C A A A C C C C C C C

Using Rows 2 and 4, write down the numbers containing 0 in the first
digit of the number and separate them into clockwise and anticlockwise.
Repeat for the second and third digits:

Clockwise Anticlockwise
First weighing 1, 3, 4, 5 2, 6, 7, 8
Second weighing 1, 6, 7, 8 2, 9, 10, 11
Third weighing 2, 3, 8, 11 5, 6, 9, 12

Using your description of the left-hand pan, 0 equates to down, 2 is up
and 1 is balanced. Also, we will recognize C as heavy and A as light. So,
if the three weighings are carried out and you obtain 010, then 3 is heavy
and if you obtain 101 then 10 is light.

It can be seen that the maximum number of tarts can be determined by
(3W −3)/2, where W is the number of weighings. So the heavy or light tart
among 39 could be found with 4 weighings or among 120 with 5 weighings
and so on.

With practice the table is unnecessary. Thus, if the result is 201, this
must be tart 7 and we can see that 201 is C, so 7 is heavy.

Ron Potkin

Message on a jar of mincemeat: ‘The contents are sufficient for a pie for six
persons or 12 small tarts.’ [EK]
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Special offer
Dear Tony,

Whilst on holiday in the far northern reaches of Europe, I happened to
come across the following sign:

Special offer: Knitwear from

Dale of Norway ÷20− 40% off

Being puzzled by the apparent mathematical nonsense in the last line, I
showed the advertisement to a Norwegian lady whom I know locally. She
said that in Norway the sign that the English use for division means sub-
traction, and the sign that the Norwegians use for division is ‘:’; that is,
two dots with no line between. A horizontal line with no dots, ‘−’, is a
hyphen; ‘+’ for addition, and ‘×’ for multiplication are the same in Norway
and England.

I said that I found that very hard to believe. Surely the four principal
arithmetical signs must be international. However, she insisted that she had
been to school in Norway until she was 18, and that was how things were
there. She said that she was not saying that it was like that in Sweden or
Finland or anywhere else, but that was definitely how it is in Norway.

So to her the advertisement makes total sense. Read it as ‘Minus 20 to 40
per cent off’, though she commented that the word ‘off’ was grammatically
wrong if not a tautology. The sign should read, she says, ‘Special offer:
Knitwear from Dale of Norway ÷20%− 40%’.

I know that the Europeans swap commas and full stops for marking
thousands and decimal points, but this division/subtraction confusion is
quite new to me. I don’t know any more Norwegians to ask, but I think
someone in M500 must be able to comment.

Colin Davies

What’s next?
Dear Tony,

I haven’t had a go at the problem [191.4 – What’s next?] as such but I
would like to make the following point.

Wittgenstein once poured scorn on the concept of there being a ‘right
answer’ to problems involving guessing the next number in a sequence of
numbers, and indeed on the whole concept of there being a ‘correct answer’
in any endeavour.

For instance, take the sequence 1, 4, 9, 16, ....
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One would hope that the next term would be 25, using the familiar
squares. However, an equally valid answer would be ‘32’, where the formula
for the nth term is given by n2 + [n!/29−n], where [ ] means take the integer
part (my example). He then argued that the same sort of problem could
occur with a sequence of any length.

Out of interest, how many different answers (with formula) can people
find for this problem (or the harder sequence given in problem 191.4)? I
would be particularly interested in finding a simpler alternative, as I can’t
remember Wittgenstein’s example, which was remarkably simple.

Cheers,

Sheldon Attridge

Forty-two revisited
Eddie Kent
In late May Tony Forbes and I enjoyed a meeting of the Lewis Carroll
Society, where David Singmaster gave an entertaining talk about ‘some of
the 42 ways in which Carroll was involved in recreational mathematics’, and
described topics ‘where his work was or may have been original, where the
history is exceptionally interesting, or where there are unsolved problems’.

This reminded me that I once wrote about Lewis Carroll and the number
42 in M500. After some searching I found it, in no. 131.

The impetus was a short piece in The Times in 1992 announcing that the
dimensions for a boat to take part in the America’s Cup had been changed,
from the old 12 metre rule that had been standard since World War II, to a
new, tighter formula. This had become necessary because boatmakers were
beginning to exploit loopholes in the old conditions and producing some
curious structures.

In fact The Times got the formula wrong and a student had to correct
it for us. It now looks like

L+ 1.25 +
√
S − 9.8× 3

√
D

0.388
= 42,

where L is the length of the boat at the waterline in feet, S is the sail
area in square feet and D is displacement in pounds (constant times volume
displaced in cubic feet). The potential speed of a boat is proportional to
the square root of its waterline length, while its ability to attain that speed
depends on its area of sail. So the longer you can make the deck of the boat
in relation to its length in the water, the more sail you can cram on without
increasing L.

The Times went on ‘If you wonder where the 42 came from, it is ru-
moured that one of the committee members, Derek Clark, is a fan of The
Hitch Hiker’s Guide’. Our correspondent pointed out that 42 is arbitrary,
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and was probably chosen as about one metre more than the old 12 metre
rule when measured in feet.

It took very little effort to discover that Douglas Adams, the author of
The Hitch Hiker’s Guide to the Galaxy in which 42 plays an important part,
was an admirer of Lewis Carroll. And Carroll was strangely fascinated by
the number. In The Hunting of the Snark the Baker arrived with 42 boxes,
which were all left behind on the beach. Henry Holiday’s illustration for
the first edition shows the pathetic pile of boxes, some clearly numbered.
The box next to box 42 has the number 27, which is 3 cubed and thus the
number of cells in a magic cube. The magic constant of the smallest such
cube is 42.

Nor is this all. Lewis Carroll was 42 when he began writing The Snark.
The poem Phantasmagoria was written while he was in his thirties yet he
claimed to be 42. The Baker skipped forty years in telling his story, having
described his parents as honest, though poor, so he was probably 42. The
King says, in Chapter 12 of Alice’s Adventure in Wonderland: ‘Rule Forty-
two. All persons more than a mile high to leave the court’. The preface to
The Snark mentions yet another Rule 42.

This rule is of some importance. The Bellman had the bowsprit removed
for revarnishing once or twice a week and when it came back the crew
couldn’t remember which end of the ship it belonged to. There was no
point in asking the helmsman because of Rule 42 of the Naval Code, ‘No
one shall speak to the Man at the Helm’. This rule had been completed by
the Bellman with the words ‘and the Man at the Helm shall speak to no
one’. So he was unable to tell them when they got it wrong, as they did
from time to time, and the bowsprit got mixed with the rudder sometimes,
as well it might, and no further sailing could be done till next varnishing
day.

Where does 42 come from? Carroll was born in 1832 so that doesn’t
help. There might be a clue in the Admiralty Code: did he know of Rule
42, or did his liking for the number cause him to look it up? Or did he just
make it all up? These are questions that might repay some serious research
so I leave them for the consideration of the committed reader.

As a final thought, a sailor once told me that one of the more useful
naval rules is Rule 13a, which insists that when overtaking a slower vessel
you should avoid running into it. One hopes that the author of this rule
received his just promotion.

References, in addition to those cited in the text: The Times 2.5.1992;
EK M500 129 16; Stuart Cresswell M500 131 12; EK M500 131 13; His
Honour Commander Derek Inman, RN Rtd, QC (personal communication).
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Jäpperivokki
Colin Davies

Rillikki oli, ja lipiäset toopeet
Pyörivät ja kaksoisivat vaapeessa.
Ihan mimsiä olivat porokroopit
Ja muumiraatit rotkosesta pois.

“Varo Jäpperivokki, poikani!
Purevat leuat, tarttuvat kynnet!
Varo Jupjuplintu ja karta
Rumionen Panterisieppaja!”

Hän otti vorpaalen miekansa käteen.
Kauan etsii mankkomaa vihollista.
Siis lepäsi Tumtumpuun alla
Ja hetkeks seisoi miettien.

Ja uppilaisess tuumimassaan
Jäpperivokki, liekehtivine silmineen,
Tuli vippiläen tulken metsän läpi
Ja pulppui tulessaan!

Ykskaks ykskaks! Ja ihan läpi
Vorpaali veitsi puukkoili.
Jätti sen kuolleena, ja päänsä kanssa
Hän paloi kallumpain.

“Ja oletko tappanut Jäpperivoken?”
“Tule syyliini säteilevä poikani!”
Hei räpjyysi päivä! Kaluu! Kalei!
Hihitti ilossaan

Rillikki oli, ja lipiäset toopeet
Pyörivät ja kaksoisivat vaapeessa.
Ihan mimsiä olivat porokroopit
Ja muumiraatit rotkosesta pois.

Problem 193.7 – Binomial coefficients
ADF

Which binomial coefficients

(
2n

n

)
=

(2n)!

(n!)2
are not divisible by the square

of an odd prime?
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