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A Golconda of golden numbers
Dennis Morris
The nugget The number (1 +

√
5)/2 = 1.61803 . . . has from ancient

times been called the golden ratio. It is an irrational number that is usually
signified by φ and thus is called phi. It is a number with some remarkable
properties. Thus

φ =
1

φ
+ 1

from which (multiplying throughout by φ) we have

φ2 = 1 + φ, φ3 = φ+ φ2, φ4 = φ2 + φ3, . . . .

But φ has a brother; it is the number (1−
√

5)/2 = −0.61803 . . . , which is
signified by φbrother. Phi’s brother, like φ, is an irrational number. Phi’s
brother is also a number with some remarkable properties. Thus

φbrother =
1

φbrother
+ 1, φ2brother = 1 + φbrother,

φ3brother = φbrother + φ2brother, φ4brother = φ2brother + φ3brother, . . . .

The brothers often appear together:

φ · φbrother = − 1,
1 +
√

5

2
· 1−

√
5

2
= − 4

4
,

φ+ φbrother = 1,
1 +
√

5

2
+

1−
√

5

2
= 1.

Phi is a number which turns up all over the place. As a continued
fraction it is special:

φ = [1; 1, 1, 1, 1, 1, . . . ], φbrother = [0; 1, 1, 1, 1, 1, . . . ].

It is the ratio in which two diagonals of a regular pentagon cut each other.
It is also the ratio of the side length of a regular decagon to the radius
of the circumcircle of that regular decagon. It also occurs in the regular
pentagram (the secret sign of the Pythagoreans) in the forms φ3, φ2, φ1,
φ0, φ−1 and φ−2.

However, the most surprising thing about φ is its association with Fi-
bonacci type sequences. Take two numbers, any numbers will do, integers,
fractions, negative numbers, irrational numbers, even complex numbers; call
one of them the first number and the other the second number. Create a
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third number by adding the chosen two numbers together, then create a
fourth number by adding together the second chosen number and the newly
made third number, then create a fifth number by adding together the third
number and the newly made fourth number, and carry on to infinity. For
example: if we choose the first number to be 3 and the second number to
be 17, our Fibonacci type sequence is then

S = [3, 17, 20, 37, 57, 94, 151, 245, 396, 641, . . . ].

Let us refer to the first of these numbers as S1, to the second as S2,
etc. Now let us calculate the ratios of successive pairs of these numbers,
Sm+1/Sm. Starting with m = 1, the first fifteen such ratios are

5.66666666667, 1.17647058824, 1.85000000000,
1.54054054054, 1.64912280702, 1.60638297872,
1.62251655629, 1.61632653061, 1.61868686869,
1.61778471139, 1.61812921890, 1.61799761621,
1.61804788214, 1.61802868199, 1.61803601576.

The ratios converge towards the number φ. If we consider the ratio
Sm/Sm+1, these ratios converge to −φbrother.

Quite amazingly, the ratios converge towards φ no matter what initial
numbers are used. If complex numbers are initially chosen, then the ratios
converge towards φ+ 0i. That this happens for complex numbers is at first
quite shocking. However, when one considers a ratio of such a complex
number sequence, though still remarkable, it becomes clearer. Choose the
first number to be a + ib. Choose the second number to be c + id. The
Fibonacci type sequence is:

a+ ib, c+ id, (a+ c) + i(b+ d), (a+ 2c) + i(b+ 2d),

(2a+ 3c) + i(2b+ 3d), (3a+ 5c) + i(3b+ 5d),

(5a+ 8c) + i(5b+ 8d), (8a+ 13c) + i(8b+ 13d), . . . .

Now calculate the ratio of the last two of these terms:

(8a+ 13c) + i(8b+ 13d)

(5a+ 8c) + i(5b+ 8d)
.

The imaginary part of this is

−bc+ da

25a2 + 80ac+ 64c2 + 25b2 + 80bd+ 64d2
,

where a, b, c and d in this expression are, of course, the chosen initial num-
bers. The numbers in the denominator of this expression will increase as
successively later terms are used to calculate the ratio. Hence the denom-
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inator will increase without bound whereas the numerator is fixed by the
values of the initially chosen numbers. Thus the imaginary part will tend
to zero.

If we had taken the ratio of the 6th and 7th terms rather than the ratio
of the 7th and 8th terms, then we would have found the imaginary part to
be

− −bc+ da

9a2 + 30ac+ 25c2 + 9b2 + 30bd+ 25d2
.

Quite remarkable.

One of the properties of φ listed above is φ2 = 1 + φ; so φ is a root of
x2−x− 1 = 0. Solving this equation gives φ as one root and φbrother as the
other root.

The mother lode It might surprise readers to discover that φ has some
cousins; in fact, φ has an infinite number of cousins. Phi has a trivial cousin,
which we signify as φ1, defined as the solution of the equation x − 1 = 0.
So φ1 = 1. Phi itself is more properly signified as φ2 = (1 +

√
5)/2 and is

the largest positive root of the equation x2 − x− 1 = 0. Similarly, φ3 is the
largest positive root of the equation x3 − x2 − x − 1 = 0, φ4 is the largest
positive root of the equation x4 − x3 − x2 − x− 1 = 0, and so on up to φ∞.

φ3 The roots of x3 − x2 − x− 1 = 0 are

1

3
− ∆

6
− 2

3∆
− i
√

3

(
∆

6
− 2

3∆

)
,

1

3
− ∆

6
− 2

3∆
+ i
√

3

(
∆

6
− 2

3∆

)
and

1

3
+

∆

3
+

4

3∆
,

where ∆ = (19 +
√

33)1/3. The last of these can be rewritten as

1

3

(
(19 + 3

√
33)1/3 + (19− 3

√
33)1/3 + 1

)
.

Looking at these roots we see that there is one real root and two imaginary
roots. The imaginary roots are conjugates, as we would expect. The real
root is φ3, and the two imaginary roots are φ3’s brothers. Evaluating the
roots gives

φ3 ≈ 1.83928, φ3 brother1 ≈ −0.41964 + 0.60629i,

φ3 brother2 ≈ −0.41964− 0.60629i.
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Now, in the case of φ2 we found that φ · φbrother = −1 and φ+ φbrother = 1.
In the case of φ3 we have

φ3 · φ3 brother1 · φ3 brother2 = 1, φ3 + φ3 brother1 + φ3 brother2 = 1.

Similarly, from the basic equation, we get φ33 = φ23 + φ3 + 1 and all its
variations.

Remarkably, φ3 has a similar role to φ2 as the limit to which ratios of
successive numbers in Fibonacci type sequences converge. There is a differ-
ence. Instead of initially choosing two numbers and forming each successive
number by adding the previous two numbers, one forms a φ3-Fibonacci type
of sequence by initially choosing three numbers and forming each successive
number by adding the previous three numbers. For example: if we choose
our first number to be 2, our second number to be 2 and our third number
to be 1, our sequence is

S = [2, 2, 1, 5, 8, 14, 27, 49, 90, 166, 305, 561, 1032, . . . ].

With these numbers the first fifteen ratios Sm+1/Sm for successive m are

0.50000000000, 5.00000000000, 1.60000000000,
1.75000000000, 1.92857142857, 1.81481481481,
1.83673469388, 1.84444444444, 1.83734939759,
1.83934426230, 1.83957219251, 1.83914728682,
1.83930453109, 1.83930105987, 1.83927737113,

converging towards φ3. The ratios Sm/Sm+1 converge towards the product
of the two ‘brother’ numbers: φ3 brother1 · φ3 brother2 .

The number φ4 The roots of the equation x4 − x3 − x2 − x− 1 = 0 are

φ4 ≈ 1.92756, φ4 brother1 ≈ − 0.07637 + 0.81470i,

φ4 brother2 ≈ − 0.07637− 0.81470i, φ4 brother3 ≈ − 0.77480.

Again, we have

φ4 · φ4 brother1 · φ4 brother2 · φ4 brother3 = −1,

φ4 + φ4 brother1 + φ4 brother2 + φ4 brother3 = −1.

The number φ4 has a role similar to φ2 and φ3 as the limit to which
ratios of successive numbers in Fibonacci type sequences converge. In this
case, we form our φ4-Fibonacci sequence by initially choosing four numbers
and form each successive number by adding the previous four numbers. For
example, if we choose −2, 12, 1000 and 1.2, our sequence is

S = [−2, 12, 1000, 1.2, 1011.2, 2024.4, 4036.8, 7073.6, 14146, 27280.8, . . . ].
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With these numbers the first fifteen ratios Sm+1/Sm for successive m are

0.00120000000, 842.666666667, 2.00197784810,
1.99407231772, 1.75227903290, 1.99983035512,
1.92851689524, 1.92579396499, 1.92316301592,
1.92999041941, 1.92745700548, 1.92741711480,
1.92747823955, 1.92764060072, 1.92755239368,

converging towards φ4. The ratios Sm/Sm+1 converge towards the product
of the three ‘brother’ numbers: φ4 brother1 · φ4 brother2 · φ4 brother3 .

Higher φ s This type of behaviour continues as we consider φn for in-
creasing n. Our basic φn-equation is

xn − xn−1 − ...− x2 − x− 1 = 0.

Each equation has one positive real root, φn.

φ1 1 φ2 1.61803 φ3 1.83928
φ4 1.92756 φ5 1.96594 φ6 1.98358
φ7 1.99196 φ8 1.99603 φ9 1.99802
φ10 1.99901

For odd n, the other roots come in conjugate pairs. For even n, the other
roots come in conjugate pairs plus one other real root. This other real root
is always less than zero. Its values are as follows.

φ2 brother −0.61803 φ4 brother −0.77480 φ6 brother −0.84030
φ8 brother −0.87628 φ10 brother −0.89903 φ12 brother −0.91471
φ14 brother −0.92617 φ12 brother −0.93492 φ14 brother −0.94181
φ20 brother −0.94738

In all cases, the sum of all the roots is +1. In half the cases, the product of
the roots is +1. In the other half of the cases, the product of the roots is −1.
The +1 occurs for φn-equations with odd n; the −1 occurs for φn-equations
with even n. All the imaginary roots of all the equations have both real and
imaginary parts between −1 and +1.

The connection with φn-Fibonacci type sequences continues with φn
being the limit to which the ratios Sm+1/Sm converge and the modulus
of the product of all the other roots being the limit towards which the
ratios Sm/Sm+1 converge. We immediately notice that φn converges to-
wards 2 with increasing n. (φ20 ≈ 1.99999). We are inclined to think
that limn→∞ φn = 2. This is certainly true for φn considered as a root of
xn − ... − 1 = 0 because 2n − 2n−1 − ... − 22 − 2 − 1 = 1. It is also true
for φn considered as the limiting ratio of successive terms of a φn-Fibonacci
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sequence. For φ2-Fibonacci sequences we have un+1 = un+un−1. The ratio
is

un+1

un
=

un + un−1
un

= 1 +
un−1
un

= 1 +
un − un−2

un
= 2− un−2

un
.

So un+1/un = 2−un−2/un. But for large n, un−2/un is always less than 1,
and hence the ratio is always less than 2.

For φ3-Fibonacci sequences we have un+1 = un + un−1 + un−2. In a
similar manner it can be shown that un+1/un = 2−un−3/un. But for large
n, un−3/un is always less than 1, and so the ratio is always less than 2.

In general, for φk-Fibonacci sequences, un+1/un = 2− un−k/un. Also,
regarding φn as a root of xn − · · · − 1 = 0, we have

(−1)n − 1 = (−1)n−1 + (−1)n−2 + · · ·+ (−1)2 + (−1) + 1.

Rearranging,

(−1)n − (−1)n−1 − (−1)n−2 − · · · − (−1)2 − (−1)− 1 = 1.

For even n, our equation is

xn − xn−1 − xn−2 − · · · − x2 − x− 1 = 0.

Obscurely, φn brother is bounded below by −1.

The connection with φn-Fibonacci type sequences Consider the
φ2-Fibonacci sequence associated with φ2. We have the definition of the
φ2-Fibonacci sequence un+1 + un = un+2. We consider the case as un
approaches infinity because, strictly speaking, it is only at infinity that the
ratios of φ2-Fibonacci sequences are associated with φ2. As un approaches
infinity, un/un−1 ∼ un+2/un+1. So

un+1 + un ∼ un+1
un
un−1

,

un−1(un+1 + un) ∼ un+1un,

(un+1 − un)(un+1 + un) ∼ un+1un,

u2n+1 − u2n
unun+1

∼ 1.

We can therefore write our polynomial as

x2 − x
(
u2n+1 − u2n
unun+1

)
− 1 ∼ 0,
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which can be rearranged as(
x− un+1

un

)(
x+

un
un+1

)
∼ 0.

As un approaches infinity, this last equation approaches

(x− φ2)(x+ 1/φ2) = 0, (x− φ2)(x− φ2 brother) = 0, x2 − x− 1 = 0.

Similar algebra deals with the other φn-Fibonacci sequences.

Finally, we compute the series expansion about x = 1 of
1

x2 − x− 1
:

−1− (x− 1)− 2 (x− 1)
2 − 3 (x− 1)

3 − 5 (x− 1)
4 − 8 (x− 1)

5

− 13 (x− 1)
6 − 21 (x− 1)

7 − 34 (x− 1)
8 − 55 (x− 1)

9 − 89 (x− 1)
10

− 144 (x− 1)
11 − 233 (x− 1)

12 − 377 (x− 1)
13 − 610 (x− 1)

14

− 987 (x− 1)
15 − 1597 (x− 1)

16 − 2584 (x− 1)
17 − 4181 (x− 1)

18

− 6765 (x− 1)
19

+O(x− 1)20.

Notice the coefficients.

The sequence of φns closely fits the curve y = 2− exp(1−x). The limit
as x tends to infinity of this expression is 2. Its value at x = 1 is 1.

2 4 6 8 10

0.8

1.2

1.4

1.6

1.8

2.0

References The Divine Proportion by H. E. Huntley; The Golden
Ratio and Fibonacci Numbers by Richard A. Dunlap.
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Problem 198.1 – Two knights
David Hughes
What is the probability that two knights attack each other on an n × n
board?

Solution 195.1 – Two queens
Two queens are placed on different squares of an n × n chess-
board. What is the probability they ‘attack’ each other?

David Hughes
It is sufficient to consider the number of cells attacked by one queen.

A single rook placed anywhere attacks 2(n−1) cells out of n2−1 empty
cells. The probability that an empty cell is attacked is therefore

R =
2(n− 1)

n2 − 1
=

2

n+ 1
.

A single bishop attacks the num-
ber of cells illustrated on this 4 × 4
board. For example, a bishop in the
top left cell attacks 4 + 1 − 2 = 3
cells, along the diagonal. The pat-
tern is evident. The numbers in all
cells sum to

4 + 1
− 2

3 + 2
− 2

2 + 3
− 2

1 + 4
− 2

3 + 2
− 2

4 + 3
− 2

3 + 4
− 2

2 + 3
− 2

2 + 3
− 2

3 + 4
− 2

4 + 3
− 2

3 + 2
− 2

1 + 4
− 2

2 + 3
− 2

3 + 2
− 2

4 + 1
− 2

2

(
n2 + 2

n−1∑
i=1

i2

)
− 2n2 =

2

3
(n− 1)n(2n− 1)

for n2 possible locations of the bishop. The probability that an empty cell
is attacked by a randomly placed bishop is therefore

B =
2

3

(n− 1)n(2n− 1)

n2(n2 − 1)
=

2

3

2n− 1

n(n+ 1)
.

Note that B < R.

For a queen, the required probability is

Q = R+B =
2(5n− 1)

3n(n+ 1)
.

When n = 8, R = 2/9, B = 5/36, Q = 13/36.
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David Kerr
The method is to take each square in turn and calculate how many other
squares a queen attacks. Call this function Qx, where x defines the square.
Given that the first queen is on square x, the probability that the second
queen attacks the first (and of course vice versa) is just Qx/(n

2 − 1). We
simply need to ‘sum’ these probabilities as x ranges over the whole board.
Hence the required probability is given by P =

∑
Qx/(n

2(n2 − 1)).

What we need, therefore, is to express
∑
Qx as a function of n. It is

easy to see that Qx = Rx + Bx, where Rx is the number of the squares
attacked by a rook, and Bx is the number of squares attacked by a bishop.

The first is easy;
∑
Rx = 2(n − 1)n2. The Bx term is a bit more

difficult. One way is to break the board into a series of concentric square
rings. Clearly Bx is the same for all squares in a given ring. Number the
rings starting with 1 at the outside ring. If n is even, the central ring will
contain 4 squares and will be numbered n/2. If n is odd, the central ring
will contain one square and will be numbered (n+ 1)/2.

Let Sr be the number of squares in ring r and let Br be number of
possible bishop moves that can be made from a square in ring r. Then∑
Bx =

∑n/2
r=1 SrBr for even n and

∑
Bx =

∑(n+1)/2
r=1 SrBr for odd n.

First consider even n. It can be seen that Sr = 4n + 4 − 8r and Br =
n− 3 + 2r for r in the range from 1 to n/2. Hence

n/2∑
r=1

Bx =

n/2∑
r=1

(4n+ 4− 8r)(n− 3 + 2r) =
2n(2n− 1)(n− 1)

3
.

Now suppose n is odd. If r is in the range from 1 to (n−1)/2, Sr = 4n+4−8r
and Br = n− 3 + 2r, as before. However, when r = (n+ 1)/2, Sr = 1 and
Br = 2n− 2. Therefore

(n+1)/2∑
r=1

Bx = 2n−2+

(n−1)/2∑
r=1

(4n+4−8r)(n−3+2r) =
2n(2n− 1)(n− 1)

3
.

The final values are the same. Hence for all n ≥ 2,∑
Qx = 2(n− 1)n2 +

2n(2n− 1)(n− 1)

3
=

2n(5n− 1)(n− 1)

3
,

P =
2n(5n− 1)(n− 1)

3n2(n2 − 1)
=

2(5n− 1)

3n(n+ 1)
.
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Problem 198.2 – Two students
David Hughes
Take a random group of 23 or more people, and the odds are better than
evens that two of them share a birthday. A few years ago, in a tutorial
group of about this size, two students found that they shared the same first
name and family name. About how likely is this?

Problem 198.3 – Primes
Bryan Orman
One of the questions I posed in last year’s Staff–Student Xmas Quiz was:

What’s special about the three consecutive primes 953, 967, 971?

One answer, ‘all start with a 9’, was of no significance; ‘delete the 9s and
you’re left with primes’ was more interesting. I was actually looking for the
fact that reversing the digits, giving 359, 769, 179, produces primes.

I have two posers; the first is as follows.

Is there a longest sequence of consecutive primes with this rever-
sal property?

In my list of primes up to 12919 there is one decuplet, starting with 1193.

Observing that 7, 47, 347, 2347, 12347, 812347 are all prime, the second
poser is:

Is there a longest sequence with this construction?

[This is a kind of reversal of something we did involving the sequence
of primes 3, 37, 373, 3733, 37337, 373379, 3733799, 37337999 (Eddie Kent,
‘Prime primes’, M500 194). — ADF]

Problem 198.4 – Determinant
ADF
Determine the determinant of the matrix

1 x x2 . . . xn−2 0
0 1 x x2 . . . xn−2

xn−2 0 1 x x2 . . .
. . . . . . . . . . . . . . . . . .
x2 . . . xn−2 0 1 x
x x2 . . . xn−2 0 1

.
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Problem 198.5 – Divided polygon
ADF
Look at the diagram. Twelve special points are marked by black blobs.
There are 12 lines, each containing three special points. The lines are di-
vided in the same ratio by the interior point.

What is this ratio? Devise a ruler-and-compasses construction for the
diagram. Generalize to an n-sided regular polygon.

Problem 198.6 – Snap
What is the probability that a game of snap will be played without a snap
occurring.

To play the game, you inspect two randomly sequenced decks of cards.
In each deck there are n = rs cards, designated by ordered pairs (X,Y ),
X = 1, 2, . . . , r, Y = 1, 2, . . . , s. A snap occurs if for some i, 1 ≤ i ≤ n, the
ith card in one deck has the same value of X as the ith card in the other
deck. Traditionally r = 13 and s = 4. But note that if s = 1 the answer is

1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!
,

which for large n is approximately 1/e; see Nick Pollock, ‘Hats’, M500 178.
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Relativity
Sebastian Hayes
Galileo first proposed the principle that there was no way of distinguishing
(from inside) whether an ‘inertial system’ was at rest or in constant straight
line motion. In a more careful formulation this becomes

The laws of physics take the same form in all inertial frames.

Newton assumed the principle, which is why he speaks of a particle being
‘at rest or in constant straight line motion’ in his first law of motion.

A striking feature of the behaviour of bodies within an inertial frame is
that they automatically partake of the motion of the frame. Thus, if I roll a
marble on the floor in a train, it will have the motion of the train as well as
its own motion and thus the resultant speed of the marble will be (speed of
train + speed of marble), which will be greater than the speed of the train
and/or speed of marble when at rest relative to the train. However, this
will not show up if I carry out measurements inside the train. Supposing I
have a toy gun which fires off rubber balls and I stand at the back of the
last compartment. I fire off the rubber ball and we suppose it rebounds
from a wall at the other end and comes back to me. The time it takes to
go down the compartment will be the same as the time it takes to come
back—allowing for some small deduction for air resistance.

Now, however, suppose there is a window at the back of the train and
that as the train goes through the station I (from the platform) manage to
fire off a rubber bullet into the back window which we can assume to be
made of very thin glass or plastic. The rubber bullet has the speed with
which it left the gun (muzzle velocity) and according to Newton’s laws will
retain this velocity unchanged unless some outside force intervenes. In such
a case the time taken for the rubber bullet to go down the length of the
compartment will not be the same as the time it takes when it rebounds—
the first time will be greater than the time taken when firing from the inside,
the rebound time will be less. If the muzzle velocity is exactly the same as
that of the train the rubber bullet will not penetrate the glass but remain
apparently glued to it for a time, while if the muzzle velocity is less than
that of the train it has no chance of breaking the glass.

When speaking of an object inside the train, if our viewpoint is that
of the train, we say it is at rest and we feel at rest if the train does not
suddenly accelerate. However, if pushed we would concede that this ‘state
of rest’ is not absolute but relative—relative to the Earth, which we never
observe or feel to be other than motionless. The Earth thus functions as an
‘absolute’ frame of reference for earthbound persons. However, since Galileo
we believe the Earth is not at rest in an absolute sense. On the analogy
with vehicles and the Earth, we might wonder whether there is not some
absolute reference frame with regard to which planets and heavenly bodies
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are in motion. Newton seemed to think that there was such a thing as a
state of ‘absolute rest’, the appropriate frame of reference being the ‘fixed
stars’ — at his time practically everyone assumed the stars did not move.
So, according to Newton, states of rest and constant straight line motion
were not completely identical since in principle at least some experiments
could distinguish between the two.

This appeared academic at the time. However, by the end of the 19th
century it looked as if there was a way of distinguishing between absolute
rest and straight line constant motion. Most physicists at this time still
envisaged light as a disturbance propagated within a medium and they sug-
gested that there was an invisible ‘substance’ permeating the whole of space,
the so-called luminiferous ether. If this were so, it should be possible to dis-
tinguish between rest and motion by an optical experiment even though it
was agreed that the distinction could not be made by a mechanical exper-
iment. Although a bullet fired from inside a moving train already has the
velocity of the train as it were, it was assumed that this would not happen
with respect to a light beam. Light would propagate at a constant speed
relative to the ether whether or not the beam was produced from inside the
train or from the outside. The ether itself was viewed as ‘absolutely at rest’
— there was nothing more basic with which to compare its motion.

The argument was that the Earth, though following an elliptical orbit,
could be considered to be in constant straight line motion over (astronomi-
cally) small distances. We had thus a moving inertial reference frame ready-
made. On the analogy with the train, if a beam were directed down the train
exactly in the direction of motion and then reflected back up again, there
should be a discrepancy between the times taken, there and back. But given
the colossal speed of light this would be undetectable. However, what could
be done was to compare the time taken when sending a light beam down
a square room and back again with the time taken when beaming a torch
across the same square room. If the room—inertial frame—were in motion,
the effective distances traversed by the ray of light would not be the same.

For the purposes of illustration, suppose the speed of light to be very
much less than it actually is, e.g. 10 metres per second. If the square room
is just 10 metres long, the light beam will take 1 second to cross the room
and so take 2 seconds to go down and back, or across and back. However,
now suppose the room to be moving at the rate of 5 metres per second.
Assuming the light ray does not participate in the motion of the room, the
distance down is now rather more than 10 metres. The ray will thus take 2
seconds to reach the mirror, but in compensation it will only take 2/3 second
on the way back. The total time taken will be 2.667 seconds approximately.

The time T , say, taken to cross the room is rather different, however,
and requires Pythagoras’ theorem. By the time the light ray has crossed the
room, the point on the opposite wall has moved on 5T m. So the distance
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is somewhat greater,
√

102 + (5T )2 m. But this distance is also equal to

10T m. Hence T = 2/
√

3 s, or 1.1547 s approximately. Since the light ray
is travelling at 10 m/s, the distance will be 11.547 m. This will be the same
as on the return journey since there is no ‘compensation’ if you are going
across the current. The total time taken going across there and back will
thus be 2.309 seconds—somewhat less than the 2.667 seconds taken there
and back in the other direction.

The details of the Michelson–Morley experiment need not concern us.
Basically what they did was to ‘divide light from an extended source into
two beams by partial reflection. These beams are sent in different directions
(at right angles to each other), reflected against mirrors and brought back
again . . . ’. Once they have returned the beams form an ‘interference fringe’
— analogous to the interference of two sets of water waves coming from
different directions. If the distances traversed are exactly equal, the times
taken will be the same and a known fringe pattern will result. However, if
this is not the case there will be a noticeable shift in the pattern.

The experiment was done in order to prove the ether theory, since if the
experiment showed a noted discrepancy this would be due to the motion
of the Earth through the ether. Of course, one could not be sure that the
way the laboratory mirrors were placed would really be exactly ‘down’ and
‘across’ with respect to the Earth’s motion, but there would in any case be
some discrepancy, or so it was believed. In fact no difference was found and
the same null result was obtained six months later.

This surprised everyone and various explanations were offered, one being
that the Earth ‘carried its own ether’ along with it—though there were
serious difficulties about this interpretation. In 1905 Einstein proposed to
simply drop the ether altogether—or more specifically he suggested that the
‘ether had no physical properties, only geometric ones’. He propounded two
basic principles which are, in essence, the Special Theory of Relativity.

1. The laws of physics take the same form in all inertial
frames (and so there is no way of distinguishing between a state
of rest and constant straight line motion).

2. The speed of light in a vacuum is strictly constant.

The latter may appear obvious or banal but it is not. It means for
example that the measured speed of light would be the same if a spaceship
travelling with a headlamp were travelling right towards us, were motionless
relative to us, or receding (tail-lamp in this case). This is not speculation
today—though it was when Einstein wrote his paper—since the speed of
radiation from particles travelling at very high speeds (relative to the ob-
serving apparatus) has been measured and compared with radiation from
stationary particles, with no appreciable difference recorded.

Various consequences follow from Einstein’s two principles. It follows
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for example that the description of motion of two or more ‘inertial’ frames is
optional; it depends on the one you are situated in. If I am in a spaceship,
I consider the one going past me to be in motion, but then so does the
person in the other one. Normally, we would assume that we are not both
right—either we are ‘really’ both of us in motion, or one of the two is in
motion and the other is not. Special Relativity says that, provided we are
talking about inertial frames and straight line motion, either description is
correct—we are at liberty to consider ourselves at rest or in any state of
motion provided it is unaccelerated. As someone said, ‘there is no truth of
the matter’ — if you accept Einstein. On the other hand it must be stressed
that whatever observations are made by a single observer in his own frame,
the observations will be perfectly consistent to him. Trouble only comes
when we confront one set of observations with another set from a different
reference frame.

Einstein seems to have viewed the speed of light as a sort of all-time
absolute—nothing can exceed it. At any rate, there is no way of sending
a signal or otherwise influencing another person or object. (This is in fact
why he didn’t like Quantum Mechanics.) The speed of light thus placed
a boundary on the operation of cause and effect, not only actual cause
and effect but possible cause and effect, because to influence someone or
something else you have to do or send something to them and you can’t
go faster than light. Thus certain galaxies will remain forever out of reach:
they can’t interact with us or us with them.

What happens if something travels faster and faster? Mass, viewed by
Newton as the quantity of matter possessed by an object, is today viewed
more abstractly: it is merely a ‘property’ by means of which a body resists
any attempt to change its state of rest or straight line motion. In principle,
Newtonian mass won’t change with increasing speed: if you pump more
and more energy into an object with a small mass you will make it take
on fantastic speeds, exceeding the speed of light. But this can’t happen in
Special Relativity because the so-called ‘relativistic mass’ increases rapidly
after a certain point and acts as a sort of in-built brake. It would require
an ‘infinite’ amount of energy to accelerate a body to the speed of light. All
experiments have confirmed this particular prediction of Einstein’s.

Of course, this elementary account of Special Relativity is intended to
appeal to persons who are meeting this sort of material more-or-less for the
first time. To take the next step in understanding this fascinating subject,
we suggest Albert Einstein, Relativity: The Special & the General Theory,
and perhaps Joseph Schwartz, Einstein for Beginners.
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Problem 198.7 – Sums of powers
ADF
Let

Sk(n) =

n∑
i=1

ik,

the sum of the kth powers of the positive integers up to and including n.
For the first few values of k we have

S1(n) =
1

2
n(n+ 1),

S2(n) =
1

6
n(n+ 1)(2n+ 1),

S3(n) =
1

4
n2(n+ 1)2,

S4(n) =
1

30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1),

S5(n) =
1

12
n2(n+ 1)2(2n2 + 2n− 1),

S6(n) =
1

42
n(n+ 1)(2n+ 1)(3n4 + 6n3 − 3n+ 1),

S7(n) =
1

24
n2(n+ 1)2(3n4 + 6n3 − n2 − 4n+ 2),

S8(n) =
1

90
n(n+ 1)(2n+ 1)(5n6 + 15n5 + 5n4 − 15n3 − n2 + 9n− 3),

S9(n) =
1

20
n2(n+ 1)2(n2 + n− 1)(2n4 + 4n3 − n2 − 3n+ 3).

It is clear from the above that S3(n) = S1(n)2, and with a modicum of
computation we find the interesting formula

2S5(n) = 3S2(n)2 − S3(n).

Motivated by this observation, our first question is: (i) Are there any other
similar equalities involving powers of Sk(n)?

Also we see that Sk(n) contains the product n(n+ 1)(2n+ 1) for even
k and n2(n+ 1)2 when k is odd and greater than 1. No doubt this follows
immediately from the general formula for Sk(n) (involving Bernoulli num-
bers). However, it is not a trivial exercise to obtain this formula. So instead
we ask: (ii) Is there an easy proof that Sk(n) is a rational multiple of S2(n)
for even n ≥ 2 and Sk(n) is a rational multiple of S1(n)2 for odd n ≥ 3.
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Solution 195.2 – Six tans
If θ = π/13, prove that

tan θ tan 2θ tan 3θ tan 4θ tan 5θ tan 6θ =
√

13.

John Reade
The solutions of the equation sin 13x = 0 are x = nπ/13, where n is an
integer. If we write S = sinx, C = cosx, then we can get an expansion of
sin 13x in terms of S,C as follows:

sin 13x = = e13ix = = (C + iS)13

= 13C12S − 286C10S3 + 1287C8S5 − 1716C6S7

+ 715C4S9 − 78C2S11 + S13.

Therefore sin 13x = 0 gives

S13 − 78C2S11 + · · ·+ 13C12S = 0,

which on dividing by C13 and putting T = tanx = S/C gives

T 13 − 78T 11 + · · ·+ 13T = 0.

The 13 roots of this equation are

T = 0, tan
π

13
, tan

2π

13
, . . . , tan

12π

13
= 0,± tan

π

13
,± tan

2π

13
, . . . ,± tan

6π

13
.

Therefore the 12 roots of the equation T 12 − 78T 10 + · · ·+ 13 = 0 are

T = ± tan
π

13
,± tan

2π

13
, . . . ,± tan

6π

13
.

It follows that the six roots of the equation

U6 − 78U5 + · · ·+ 13 = 0

must be tan2 π/13, tan2 2π/13, . . . , tan2 6π/13.

Hence, using the formula for the product of the roots of a polynomial
equation, we get

tan2 π

13
tan2 2π

13
. . . tan2 6π

13
= 13

as required.
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Platonic solids
Chris Pile
Further to my letter and the Editor’s query in M500 195, I have spent many
evenings trying unsuccessfully to fit the cube inside the icosahedron!

I do not have Mathematica but I do have a cardboard model and a
calculator. Let φ = (

√
5 + 1)/2. For polyhedra with a unit edge length,

the cube has a circumradius of
√

3/2 (≈ 0.8660) and the icosahedron has a
circumradius of (2 − 2/

√
5)−1/2 (≈ 0.9511) and an inradius (radius of the

sphere that touches the faces) of φ2/(2
√

3) (≈ 0.7557); so the vertices of the
cube cannot be fitted between the faces of the icosahedron. The vertices
of the icosahedron are at the corners of three mutually orthogonal golden
section rectangles; so the diagonal plane of the cube can be aligned along
one of these with four vertices inside (as

√
2 < φ). Unfortunately the other

four vertices of the cube protrude through the faces of the icosahedron.

I have tried other symmetrical arrangements but the cube refuses to fit!
It is frustratingly close and it seems that a small shift or twist might bring
the vertices of the cube closer to the vertices of the icosahedron. I find it
difficult to believe that God or Plato would have designed these polyhedra
to be incompatible in this way! I have just about convinced myself that it
is not possible to find even a non-symmetric solution but I would be very
pleased if someone could fit the cube inside. (A slightly squashed cube of
unit volume with two opposite rhombic faces having diagonals 2/φ and φ
could be accommodated).

In the diagram on the next page, the heavy black lines are the six
icosahedron edges which coincide with the short sides of the three golden
rectangles. The dashed lines are the other 24 edges of the icosahedron.
The thick grey lines show the cube as it appears after truncation by the
icosahedron.

A typical icosahedron face is
illustrated on the right. The ver-
tices of a centrally placed cube
will protrude through the icosa-
hedral face in the unshaded re-
gion. The distance along the
side between permitted regions is
1/φ. The radius of the forbid-
den region is

√
3/4− φ4/12 ≈

0.4229.

1�Φ = 0.618
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Solution 189.4 – 100 members
I have a list of 100 names, all different and in random order. I
read them out one by one. You can stop me at any time, and
your objective is to stop me immediately after I have read out
the longest name. What is the probability of success, assuming
best strategy?

The best strategy (I think) is to sample the first 100/e names and then stop
as soon as you hear a name that is longer than the longest name in the
sample. But if there is anyone out there who knows why, please tell us! All
I did was notice a similar problem in Chez Angelique by John Jaworski et
al. At a time when political correctness was irrelevant they were concerned
with a kind of beauty contest involving 10 ‘fair ladies’. The idea was that
you had just one chance to select the fairest lady as the 10 fair ladies were
paraded past you one by one. The recommended sample size was 10/e but
Chez Angelique did not provide any explanation. — ADF
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Problem 198.8 – Four colours
Roger Winstanley
The map shown below is the one that Martin Gardner reported in the April
1975 issue of Scientific American as a counter-example to the four colour
conjecture. That April Fool hoax and some of its amusing consequences are
also printed in Gardner’s Time Travel and Other Mathematical Recreations
(New York 1987). Of course, the conjecture became a theorem, proved by
Appell & Haken in 1977 (see, for example, Four Colours Suffice by Robin
Wilson); so the map must be four-colourable.

(i) Four-colour the map. The usual rule applies: two areas that share a
common boundary must receive different colours. As you can see, we have
given you a start by colouring one of the areas grey.

(ii) Is it possible to colour the centre square something other than grey?

‘The astonishing truth is that the average person is at greater risk of
being killed by an asteroid than dying in a plane crash.’ — Sir Martin Rees,
the Astronomer Royal.

(You find it is true, if you calculate with reasonable figures for event
probability and associated deaths. — JRH)

(I can see why, but I don’t have access to any reasonable figures. Perhaps
someone can oblige? — ADF)
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Letters to the Editor

Highest common factor
Dick Boardman writes on page 8 of M500 195, ‘We were never told an
algorithm to calculate LCM’. I am not entirely clear what he means by
an algorithm in this case. I suppose you could call the system below an
algorithm, but I was taught it as a method for calculating both LCM and
HCF. It’s easiest to show the method using an example.

Find the HCF and LCM of 2376, 1980 and 1728. Find all the prime
factors of each number. Put each prime in a column:

2376 = 23 · 33 · 11
1980 = 22 · 32 · 5 · 11
1728 = 26 · 33

For the HCF, take the lowest power of the primes in the complete columns:
22 and 32. Multiply them to get 4 · 9 = 36 as the HCF.

For the LCM, take the highest power of the primes in all the columns,
not just the complete columns. Multiply them to get 26 · 33 · 5 · 11 = 95040
as the LCM.

Colin Davies

ADF writes — The above method does seem to be the most natu-
ral way to get the HCF of two numbers. Unfortunately it can become
totally useless if the numbers are large. There is a much faster method,
due to Euclid, which is very easy to explain. Suppose we want the HCF
of a and b. What you do is repeatedly replace (a, b) by (b, a mod b) until
you end up with a zero. The HCF is the other number. A simple ex-
ample: (360015, 36015) → (36015, 35880) → (35880, 135) → (135, 105) →
(105, 30)→ (30, 15)→ (15, 0); the HCF is 15.

I find it quite intriguing that this method usually gives no information
about the prime factors of the numbers. To illustrate what I mean, let a = 3
94020 06196 39447 92330 46804 46811 60078 93398 29458 92387 22475 04307
08947 55507 64181 30273 08398 62936 98852 77753 11113 49458 02497, b = 3
94020 06196 39447 92330 46804 48005 17655 67233 17400 56861 65122 75841
35826 02387 09158 68013 02250 74049 82336 01099 13554 78053 53497. Then
one can easily compute HCF(a, b) = 627 71017 35386 68076 54900 37295
02911 46996 07048 84196 92145 15621 but I challenge you to obtain the
prime factors of a and b.
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A little heresy
I am very suspicious of assertions like those made by Colin Davies in his
article ‘Under the skin’ [M500 197]. These assertions apply statistical argu-
ments to groups of people and make assumptions like ‘uniform mixing’ and
‘average behaviour’. I am suspicious because people actively try to avoid
uniform mixing and average behaviour.

As a very simple example, one could try to work out the probability of
someone’s car number being the same as their initials but the result you
would get would be wildly inaccurate because some people go to a lot of
trouble and expense to get a car number matching their initials. Again
the chance of a person having two cars with consecutive numbers would be
wrong for precisely the same reason.

Choice of marriage partners is an area where people actively avoid uni-
form mixing. Class distinctions strongly affect choice of marriage partner
and I think it is most unlikely that I am a legitimate descendant of William
the Conqueror. I would be very proud to believe that I was a descendant
of Isaac Newton but unfortunately he died childless.

Colin Davies’s conclusions are quite uncheckable and also harmless but
there have been cases where statistics have been used to cause severe injus-
tice. A leading specialist in cot deaths claimed that the probability of two
cot deaths in one family was the square of the probability of a single cot
death in the whole population. This is completely invalid because you can
only multiply probabilities of events like this when the events are completely
independent whereas two babies in the same family share a lot of genes in
common and if the first cot death was caused by a genetic defect there is a
much higher than average probability the second baby would inherit it as
well. Furthermore, the babies have been looked after by the same people
and in the same environment so that if the first death was the result of an
infection or a poison in the environment, that would be common as well.
Even then, to convince the court, some mothers have had to show a family
history of cot deaths!

I personally believe that the current system of drug testing for athletes
will produce significant injustices. When the authorities believe that a given
substance confers an advantage on an athlete who takes it, they try to devise
a test for it. These tests involve feeding the substance to a group of ordinary
people (they must be non-athletes because any athlete who took it would
be cheating) and then look for unusual levels of various related substances.
But of course the whole point of top athletes is that they are not ordinary
people and they use their bodies in most unusual ways. To compare them
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with a group of ordinary people who do not indulge in hard physical exercise
is not to compare like with like at all. Pity the unfortunate athlete who is
outstanding precisely because his body produces unusual levels of certain
chemicals which give him an advantage.

Were I a member of a jury (which won’t happen because I am over
65) I would be very reluctant to convict someone purely on DNA evidence.
We are told that the DNA of close relatives, brothers, half brothers, first
cousins show similarities, sufficient similarities for unknown relatives to be
identified. To quote very large numbers as probabilities against two samples
being from different people when you haven’t checked all the close relatives
of the accused seems to me an abuse of statistics.

When I was at college, I specialized in mathematical statistics and I
came to the conclusion that to apply these theorems to the real world of
awkward people was next to impossible because you could never be certain
that the assumptions on which these theorems were based were satisfied.
The whole thing was a bit like applying Pythagoras’ theorem to all triangles
that looked as though they might have a right angle in them. Lies, damned
lies and . . . .

Dick Boardman

Re: Problem 195.3 – Doublings

Given a positive integer n, let Df (n) denote the sequence
(d0(n), d1(n), . . . , df (n)), where di(n) is the number of digits in
2in. How big must f be such that n is uniquely identified by
Df (n)?

We seek f(n), where Df (n) differs from Df (m) for all m 6= n and Df−1(n) =
Df−1(m) for some m 6= n.

But di(n) = [1+i log10 2+log10 n]. So di+1(n)−di(n) = 0 or 1 (because
log10 2 < 1, and di(n+1)−di(n) = 0 or 1 (because log10(n+1)− log10(n) =
log10(1 + 1/n) < 1).

Now consider a table of di(n). We seek f(n) = max(i, j), where i is the
smallest k such that [k log10 2 + log10 n] > [k log10 2 + log10(n− 1)] and j is
the smallest l such that [l log10 2 + log10 n] < [l log10 2 + log10(n+ 1)].

Can the problem be further analyzed?

Ian Adamson
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What’s missing?
Dear Tony,

In part (iii) of the ‘What’s Missing?’ question on page 29 of M500 194
there is a group of numbers which bear an uncanny resemblance to a list of
prime numbers except for the ‘missing’ number between 337 and 347:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
281, 283, 293, 307, 311, 313, 317, 331, 337, ?, 347, 349, 353, 359.

Since no prime number exists between those two numbers the only conclu-
sion that I can draw is that it is a trick question.

Keith Drever

ADF writes — I see what you mean! I realize that our past conduct
might have generated a reputation for trickery. However this is perfectly
genuine. There is a simply defined mathematical function which yields
primes almost all the time. The only exception < 360 is the question mark.
It is in fact the sequence of numbers n ≥ 2 which satisfy

2n ≡ 2 (mod n). (1)

According to Fermat’s Little Theorem, (1) holds for prime n. The
converse is not true, however, but composite solutions of (1) seem to be
rare, the only cases up to 50000 being

341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821,
3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911,
10261, 10585, 11305, 12801, 13741, 13747, 13981, 14491, 15709,
15841, 16705, 18705, 18721, 19951, 23001, 23377, 25761, 29341,
30121, 30889, 31417, 31609, 31621, 33153, 34945, 35333, 39865,
41041, 41665, 42799, 46657, 49141, 49981.

We can quickly verify by hand that 2341 ≡ 2 (mod 341). Observe that
210 = 1024 = 3·341+1; so 210 ≡ 1 (mod 341). Therefore 2341 ≡ (210)34 ·2 ≡
2 (mod 341).

A question. Let π(n) denote the number of primes not exceeding n,
and let η(n) denote the number of composite integers ≤ n satisfying (1). Is
it the case that η(n)/π(n)→ 0 as n→∞?
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Conversion factors
Tony Forbes
Conversion factors are always useful for converting things from one unit to
another. Here’s a selection of easy-to-remember examples. But beware of
using them for precision work—most are only approximate. Any more?

To convert to multiply by

pounds kilograms log π/2

miles feet e
√
67π/3

years seconds 107 π

gallons litres π +
√

2

ounces Planck masses (
√
hc/G) 219

guineas farthings 103 + 23

price without VAT price including VAT sinh 1

Mathematics Revision Weekend 2004

The 30th M500 Society Mathematics Revision Weekend will be held
at Aston University, Birmingham over 10–12 September 2004.

Tutorial sessions start at 19.30 on the Friday and finish at 17.00 on
the Sunday. We plan to present most OU maths courses. The Weekend is
designed to help with revision and exam preparation, and is open to all OU
students.

On the Saturday night we have a mathematical guest lecture. After the
lecture Charles Alder is hosting a disco, and for the less energetic we plan
to organize a ceilidh to which you are especially invited to contribute if you
can sing or play a musical instrument.

See the Society’s web page, www.m500.org.uk, for full details and an
application form, or send a stamped, addressed envelope to

Jeremy Humphries, M500 Weekend 2004.
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