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A problem in geometric probability
Robin Marks
The following problem was considered and solved by H. G. Wendel in 1962
in a paper that was refereed by the famous geometer H. S. M. Coxeter.

Let N points be scattered at random on the surface of the unit
sphere in n-space. Evaluate pn,N , the probability that all the
points lie on some hemisphere.

Wendel showed (without using any calculus) that

pn,N = 2−N+1
n−1∑
k=0

(
N − 1

k

)
,

where
(
N−1
k

)
is the number of ways of choosing k objects from N−1 objects.

In other words, in general pn,N is the sum of n entries on a row of Pascal’s
triangle divided by a power of 2. For example, in the case of an ordinary
3-sphere with 5 random points scattered on the surface, the probability that
all the points lie on some hemisphere is (1 + 4 + 6)/16 = 11/16.

Wendel concluded his paper as follows: ‘. . . the form of the result shows
that pn,N equals the probability that in tossing an honest coin repeatedly,
the nth ‘head’ occurs on or after the Nth toss. But it does not seem possible
to find an isomorphism between coin-tossing and the given problem that
would make the result immediate.’

In this article we re-analyse the problem. We shall discover that there is
an isomorphism with coin-tossing, and that the result applies to more than
points on the surface of an n-sphere. In fact it applies to points almost
anywhere in n-space. We shall derive an alternative expression,

pn,N = 1−
N−1∑
i=n

2−i
(
i− 1

n− 1

)
.

Call the jth point on an n-dimensional sphere rn,j . First consider the 2-
dimensional cases, n = 2, with two points which are diametrically opposite
each other. Draw the tangents to the circle at these points (Figure 1).

This is a special case. Note that a semicircle with r2,1 as an endpoint
does not, quite, contain r2,2. Also, the tangent lines are parallel hence do
not meet in Euclidean space.
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Add a third point r2,3 and its tangent (Figure 2). Again the three points
do not (quite) fall on one semicircle. If we move the point r2,2 on Figure 2
clockwise a little round the circle, we find that (a) the three points still do
not fall on one semicircle and (b) the three tangents form a triangle which
encloses the origin (Figure 3).

On the other hand, if we move the point r2,2 anticlockwise a little, we
find that (a) the three points do fall on one semicircle and (b) the triangle
of tangents does not enclose the origin (Figure 4).

If we exclude cases such as in Figure 2, where tangent lines are parallel,
we can see that three points on a circle do not lie on one semicircle iff the
origin is enclosed by the triangle formed by the three tangents at those
points. Thus, counting the number of ways in which the origin can be
enclosed will give us the number of ways in which N points do not lie on
one hemisphere.

Call E(n,N) the probability that the origin of an n-sphere is enclosed
by N tangent lines (or tangent hyperplanes in higher-dimensional cases); (E
stands for ‘enclosed’). This is related to Pn,N by the equation E(n,N) =
1− Pn,N .

In n = 2 dimensions we exclude cases where tangent lines are parallel.
In technical terms we insist that the tangents to r2,j are linearly independent
in sets of two. In general, we insist that the tangent hyperplanes to rn,j are
linearly independent in sets of n. This means that each subset of n tangent
hyperplanes meet at a point.

The following illustrates the method we will use to choose surface points
rn,j . Suppose we are working in n = 2 dimensions with N = 3 points.
Step 1: choose the first tangent line. We call this the ‘baseline’ and will
portray it as a horizontal tangent line below the circle. Construct a first
line through the origin, parallel to the baseline. Choose, by any means, two
different lines through the origin (in two dimensions, different lines through
the origin will always be linearly independent). Step 2: Choose a second line
through the origin. Toss a coin to choose one of the two tangents parallel
to this second line. Label the chosen tangent where it touches the circle.
Step 3: As for step 2. Finally remove the construction lines through the
origin. Diagrams 5a to 5c show the four equally likely configurations. The
baseline is drawn as a thicker line and the non-chosen tangent lines are
shown as dashed lines.
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The two coin tosses give 2 · 2 = 4 equally likely outcomes. In only one
of these, diagram 5c, is the origin enclosed by the three tangents, giving
probability of enclosure E(2, 3) = 1/(2 · 2) = 1/4.

To see this in another way, start with the origin enclosed (Figure 5c).
There is one way to do this. Reverse both coin-toss decisions (one 1 way)
or reverse one decision (two ways). Each of these ‘releases’ the origin from
enclosure. Thus the probability of enclosure E(2, 3) = 1/(1 + 2 + 1) = 1/4.

We cannot enclose the origin with only one or two tangents; so E(2, 1) =
E(2, 2) = 0.

Case (2, 4): N = 4 points on a 2-sphere. Proceed as previously but
after Step 3 add ‘Step 4: Take a fourth line through the origin. Construct
the two parallel tangents. Toss a coin to choose one of these.’

Figure 6 shows an example in which steps 3 and 4 have been ‘successful’
in conjunction with step 1, in helping to enclose the origin. That is, coin
tosses 2 and 3 have been successful but not 1.

O
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r2, 2

r2, 3r2, 4

Figure 6



Page 6 M500 199

The crucial point is that any two tangent lines, together with the base-
line, will form a triangle, and if the coin tosses are favourable, this triangle
will enclose the origin. If we find for example that tangent lines 1, 2 and 4
enclose the origin, and tangent lines 1, 2 and 3 do not enclose it, we must
have tossed the coin three times to achieve enclosure. Thus this outcome
occurs with probability (1/2)3 = 1/8. Similarly tangent lines 1, 3 and 4
enclose the origin with probability 1/8. Tangent lines 1, 2 and 3 enclose
the origin in only two coin tosses, hence with probability (1/2)2 = 1/4
as already calculated. Thus the total chance of enclosing the origin is
E(2, 4) = (1/2)2 + 2 · (1/2)3 = 1/2. Hence P2,4 = 1− E(2, 4) = 1/2.

Case (2, 5): Five points on a 2-sphere. We proceed similarly but if the
origin is not enclosed after three tosses, we toss the coin a fourth time,
giving additional chances of enclosing the origin with sets of tangent planes
{1, y, 5} with a probability of (1/2)4 each, where y is chosen from {2, 3, 4}.
There are

(
3
1

)
extra ways to enclose O compared with the N = 4 case. Thus

the total chance is E(2, 5) = (1/2)2 +
(
2
1

)
· (1/2)3 +

(
3
1

)
· (1/2)4 = 11/16.

Hence P2,5 = 1− E(2, 5) = 5/16.

Case (2, N): N points on a 2-sphere. We proceed similarly but if the
origin is not enclosed after N − 2 tosses we toss the coin an (N − 1)th time,
giving an additional chance of enclosing the origin at step {1, y,N}, y ∈
{2, 3, 4, . . . , N − 1} with a probability of (1/2)N−1 each. Thus the total
chance is E(2, N) = (1/2)2 + 2 · (1/2)3 + · · ·+ (N − 2) · (1/2)N−1.

To summarize: The chance of enclosing the origin with N tangent lines,
E(2, N), is the same as the chance, in up to N − 1 coin-tosses, of making at
least n = 2 correct binary choices. This is the same chance as the chance
that n = 2 or more heads will occur in up to N−1 tosses. Thus 1−E(2, N)
is the chance that n = 2 or more heads will occur on or after the Nth toss.
That is, 1 − E(2, N) = P2,N is the chance that ‘the nth “head” occurs on
or after the Nth toss’ (quoting Wendel). So we have explained Wendel’s
statement about coin-tossing, at least in the 2-dimensional case.

Case n = 3: The 3-sphere. We use a similar argument. We cannot
enclose any 3-dimensional space with only one, two or three tangent planes,
so E(3, 1) = E(3, 2) = E(3, 3) = 0. We need n + 1 = 4 planes so that a
tetrahedron can be formed. To explain this, each plane can be represented
by an equation in three variables x1, x2 and x3, of the form a1,1x1+a1,2x2+
a1,3x3 = b1, where a1,i and b1 are constants. The a1,i give the slope of the
plane and b1 displaces the plane so that it does not pass through O. In a
set of three linearly independent equations the solution is a single point in
3-space. In a set of four such equations there is a solution point for each
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subset of three equations; so there are
(
4
3

)
= 4 solution points. These make

up the four vertices of a tetrahedron, which has the capability of enclosing
O.

First consider a case where n = 3 tangent planes are linearly dependent,
each of the three touching the sphere on the same great circle. We show the
‘baseplane’ at the lower pole in Figure 7.

In Figure 7, the baseplane and the two planes above it are three planes
that, if extended, would never meet at a point; they are linearly dependent.
(Only a circular patch of each plane is shown so as not to obscure the view.)
The origin is ‘not quite’ enclosed by the four planes. However, if we move
the second plane or the third plane so that the contact point with the sphere
moves away from the fourth plane, the origin becomes enclosed as shown in
Figure 8.

Apart from the baseplane, we can consider each of the three planes to
be one of a pair of equally likely parallel planes on either side of the sphere.
Out of the 2× 2× 2 combinations there is only one that encloses the origin.
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To put it another way, O is ‘released’ from enclosure by reversing the coin-
toss decision at any of the steps 1, 2 or 3 (three ways) or at any two of these
steps (three ways) or at all three steps (one way). Thus the probability of
enclosure E(3, 4) = 1/(1 + 3 + 3 + 1) = 1/8.

Case (3, 5): N = 5 points on a 3-sphere. We argue as before. Step
1: Make a baseplane and make a parallel copy passing through O. Choose
another N − 1 = 4 planes though O, all different and not parallel to the
baseplane. Step 2: Take the second plane through the origin. Construct
the two parallel tangent planes. Toss a coin to choose one of these. And so
on for steps 3, 4 and 5.

Now any three of the randomly chosen tangent planes, together with the
baseplane, will form a tetrahedron, and if the coin tosses are favourable this
tetrahedron will enclose O. If we find for example that the set of tangent
planes {1, 2, 3, 5} encloses O, and the set {1, 2, 3, 4} does not enclose it,
we must have tossed the coin four times to achieve enclosure. Thus this
outcome occurs with probability (1/2)4 = 1/16. Similarly, sets {1, 2, 4, 5}
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and {1, 3, 4, 5} encloseO with probability (1/2)4. The set {1, 2, 3, 4} encloses
O with probability (1/2)3. Thus the total chance of enclosing the origin is
E(3, 5) = (1/2)3 + 3 · (1/2)4 = 5/16. Hence P3,5 = 1− E(3, 5) = 11/16.

Case (n,N): N points on an n-sphere. Looking at the previous expres-
sion we can see that it can be written more generally as follows:

E(n,N) =

N−1∑
i=n

2−i
(
i− 1

n− 1

)
.

This is the general expression we have derived for the probability of enclosing
O with N tangent hyperplanes in n dimensions. The following table gives
some particular values of E(n,N). Subtract from 1 to get Pn,N .

n N

1 2 3 4 5 6 7 8

1 0 1/2 3/4 7/8 15/16 31/32 63/64 127/128
2 0 0 1/4 1/2 11/16 13/16 57/64 15/16
3 0 0 0 1/8 5/16 1/2 21/32 99/128
4 0 0 0 0 1/16 3/16 11/32 1/2
5 0 0 0 0 0 1/32 7/64 29/128

Now consider the (n = 1)-dimensional case; 1-space is just a line. Carry
out the procedure as before. The results are interesting. Each ‘hyperplane’
is just a point. Step 1: The ‘baseplane’ is a point, let us say the point −1.
Copy this point to the origin and put another N − 1 points at the origin.
Their equations (x = 0) satisfy ‘linear dependence in sets of 1’. Step 2:
Toss a coin to choose whether to copy the second point to the point +1 or
to −1. If +1 is chosen then O has been enclosed. If −1 is chosen it hasn’t.
And so on for steps 3, 4, 5, . . . , N .

But wait a minute! We need not restrict ourselves to placing points on
the ‘1-sphere’. That is, at +1 and −1. If the coin-toss result is a head we
can place the point anywhere on R+, or for a tail anywhere on R−. The
argument about enclosing the origin remains the same. So if we choose N
random points on R+ \ {0}, that is, any N random real numbers excluding
zero, the probability that there will be both positive and negative numbers
in the selection (thus ‘enclosing’ the origin) is

E(1, N) =

N−1∑
i=1

2−i
(
i− 1

0

)
=

N−1∑
i=1

2−i.
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In fact the distance from the origin does not alter the ‘enclosing’ argu-
ment in any number of dimensions n. We can choose a different radius for
each sphere at steps 1, 2, 3, ..., N . This means that the point of contact of
the tangent plane and the sphere can be anywhere in n-space (apart from
the origin), providing of course that the tangent planes are linearly inde-
pendent in sets of n. So, for example, in two dimensions if we choose N
random points in R2 \{O}, we can draw a circle and a tangent line through
each point. The probability of enclosing O by the lines will be E(2, N) as
already shown. If O is not enclosed, this must mean that all N points fall
on one side of some line passing through the origin. That is, all the points
are in a half-space of R2, with probability 1 − E(2, N) = P2,N . Figure 9
shows an example with N = 4, where all the points are in one half of R.

O
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r2, 2

r2, 3

r2, 4

Figure 9

We can now make the more general statement. For each of N random
points in R2 \ {O}, construct an n-sphere with the origin O as centre, such
that the point is on the surface. Construct the tangent (n− 1)-dimensional
hyperplane at the point. If the hyperplanes are linearly independent in sets
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of n, then the probability that O is enclosed by any subset of the hyperplanes
is E(n,N) =

∑N−1
i=n 2−i

(
i−1
n−1
)
. Furthermore, if O is not enclosed, all N

points fall in a half-space of R2 \ {O} (on one side of some hyperplane
passing through the origin), with probability 1− E(n,N) = Pn,N .

But hang on another minute! Instead of randomly choosing points from
anywhere in R2 \ {O}, we could choose them from a subset of this space,
provided that the subset is symmetrical, that is, for every point P there is
an opposite point −P . We can then choose between P and −P by tossing
a coin. So for example, in Rn, the result applies to a spherical shell of any
thickness centred on O and also to an elliptical shell centred on O. In R2

it applies to a square or hexagon or other symmetrical shape, or in R3 to a
cube or octahedron or dodecahedron or other symmetrical shape.

The equilateral triangle in R2 and regular tetrahedron in R3 lack across-
the-origin symmetry and I do not know what the expected answer would
be.

Applications

1. Select 8 non-synchronized satellites orbiting the earth, each in a
different orbit and with a different orbital period. Given that it is equally
likely that a satellite is at a point P or at an opposite point −P with respect
to the earth’s centre, what is the chance that at this moment the N satellites
are located directly over points on the earth’s surface covering more than
one hemisphere? Answer: E(3, 8) = 99/128.

2. Draw 7 points at random inside an ellipse. What is the probability
that all 7 will lie in one half of the ellipse (as delimited by some line drawn
through the centre)? Answer: 1− E(2, 7) = 7/64.

3. Draw 3 points at random inside a rectangle. Join the points to form
a triangle. What is the chance that the centre of the rectangle falls inside
the triangle? Answer: E(2, 3) = 1/4.

4. Draw 5 lines at random in R2. What is the chance that the origin
lies inside a bounded region? Answer: E(2, 5) = 11/16.

Reference: J. G. Wendel ‘A problem in geometric probability’, Math.
Scand. 11 (1962), 109–11. A transcript of this paper was recently
found at http://www.mathematik.uni-bielefeld.de/˜sillke/PUZZLES/random-
cyclic-polygons
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Division tests
Dennis Morris

Abstract This is an article in elementary number theory. It
is well known that in number base 10 we can test a number
for divisibility by 9 by adding together the digits of that number.
Similarly, we can test a number for divisibility by 5 by examining
only the final digit of that number. These two division tests in
number base 10 are but two aspects of one general division test
that is applicable to all integers in all number bases. This article
describes that general division test.

We begin with a statement of the theorem underlying division tests. This is
a standard theorem that can be found in any book on elementary number
theory. We then go on to demonstrate the theorem by using it to deduce
some particular division tests.

Theorem If P (x) is a polynomial with integral coefficients and
a is congruent to b modulo n, then P (a) is congruent to P (b)
modulo n.

The normal way of writing a number is to write it as an abbreviated
polynomial.1 For example: In number base 10, 1089 is an abbreviation of
1 ·103+0 ·102+8 ·101+9 ·100, and in number base 7, 2153 is an abbreviation
of 2 · 73 + 1 · 72 + 5 · 71 + 3 · 70. So numbers are represented as polynomials
and we can apply the theorem.

We begin in number base 10; this is the same as saying that we begin
by setting a = 10. We seek a test for divisibility by 9, and so we set n = 9.
The number we wish to test for divisibility by 9 we denote by αβγδ, where
each Greek letter represents a digit. In this case, we have chosen a 4-digit
number, but the procedure will easily generalize in an obvious way to all
numbers. So we have P (10) = α·103+β ·102+γ ·101+δ ·100. Thus we apply
the theorem with a = 10, n = 9 and P (10) = α ·103+β ·102+γ ·101+δ ·100.

Since 10 ≡ 1 (mod 9), we set b = 1.2

Thus, by the stated theorem, we have that P (10) ≡ P (1) (mod 9).

Therefore the remainder when α ·103 +β ·102 +γ ·101 +δ ·100 is divided
by 9 is the same as the remainder when α ·13 +β ·12 +γ ·11 +δ ·10 is divided
by 9. Now α · 13 + β · 12 + γ · 11 + δ · 10 = α+ β + γ + δ, and all we have to
do is test α+ β + γ + δ for divisibility by 9. This is the famous divisibility
by 9 test done by adding the digits. To put it obscurely, the division test
is: P (10) ≡ P (1) (mod 9).
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We demonstrate once more in number base 10. Since we are working
in number base 10, we have a = 10. We wish to test for divisibility by 8,
and so we set n = 8. The number we wish to test for divisibility by 8 is the
8-digit number αβγδεψπθ, and so we have P (10) = α · 107 + β · 106 + γ ·
105 + δ · 104 + ε · 103 + ψ · 102 + π · 101 + θ · 100.

Since 10 ≡ 2 (mod 8), we set b = 2.

Thus, by the stated theorem, we have that P (10) ≡ P (2) (mod 8).

Therefore the remainder when α · 107 + β · 106 + γ · 105 + δ · 104 + ε ·
103 + ψ · 102 + π · 101 + θ · 100 is divided by 8 is the same as the remainder
when α · 27 + β · 26 + γ · 25 + δ · 24 + ε · 23 + ψ · 22 + π · 21 + θ · 20 is
divided by 8. But all powers of 2 greater than 22 are divisible by 8. Hence
we only have to consider ψ · 22 + π · 21 + θ · 20. By the stated theorem,
ψ · 22 +π · 21 + θ · 20 ≡ ψ · 102 +π · 101 + θ · 100 (mod 8). And so: if the last
three digits of a number (written in number base 10) are divisible by 8, then
the number is divisible by 8. (If the last three digits leave remainder k when
divided by 8, then the number will leave remainder k when divided by 8.)
This is the well known division test for divisibility by 8 done by inspection
of the last three digits.

If we wish to test for divisibility by 5 in number base 10, we set n = 5,
a = 10, and, since 10 ≡ 0 (mod 5), we immediately have b = 0. By the
stated theorem, we have that P (10) ≡ P (0) (mod 5) and the only digit
we have to consider for divisibility by 5 is the 00 digit – the final digit.
(Of course 00 = 1 as does 0!.) A similar situation applies in the case of
divisibility by 10. If we wish to test for divisibility by 11 in number-base 10,
we set n = 11, a = 10, and, since 10 ≡ −1 (mod 11), we immediately have
b = −1. By the stated theorem, we have that P (10) ≡ P (−1) (mod 11);
this is the well known add and subtract alternate digits test for divisibility
by 11. Similar tests for division by numbers higher than 11 in number-base
10 obviously exist.

Divisibility tests in number bases other than 10 are found by setting
a = B where B is the number base. In general, in all number bases:

Analogous to divisibility by 9 in number base 10, there is a
divisibility by B − 1 test based on adding digits because B ≡
1 (mod B − 1).

Analogous to divisibility by 11 in number base 10, there is a di-
visibility by B+1 test based on adding and subtracting alternate
digits because B ≡ −1 (mod B + 1).
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And in all even number bases:

Analogous to divisibility by 5 in number base 10, there is a
divisibility by B/2 based on inspection of the final digit because
B ≡ 0 (mod B/2).

In number base 12, since 12 is congruent to 0 in moduli 2, 3, 4 & 6,
divisibility by 2, 3, 4 & 6 can all be tested by inspection of the final digit.
Doubtless, the reader could add to this list—prime number bases perhaps.

1 Purists would say that a polynomial is nothing more than the coefficient
numbers.
2 We could have chosen b = −8, 10, 19 or any other number to which 10 is

congruent mod 9, but such choices are of no practical value.

Reference: David M. Burton, Elementary Number Theory.

Problem 199.1 – Ellipsoid again
ADF
As we have seen from M500 197, it appears that there is no elementary
formula for the surface area of the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1.

Instead we now ask: Is it possible to find a specific set of parameters {a, b, c},
0 < a < b < c <∞, for which the surface area is computable exactly?

Problem 199.2 – 30 matches
ADF
(i) Use thirty matches to make a polygon of area 8 square matches.

(ii) Do (i) again but this time with the additional condition that the
vertices of the polygon must have integer match coordinates. That is, if
there is a vertex at (x, y), then x and y must be integer multiples of a
match length.

Some time ago I was listening to a discussion of infinity in Melvyn Bragg’s
Radio 4 programme In our time. One of the contributors said that before
the introduction of complex numbers only half the quadratic equations could
be solved. Is this statement true? — David Wild
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A class of arctangent identities
Bryan Orman
One technique for generating examination questions that many examiners
employ is illustrated through the following examples.

Establish the identity

arctan
1

1
= arctan

1

2
+ arctan

1

3
.

This is straightforward.

Now convert this into the following question. Find the positive integers
B and C such that

arctan 1 = arctan
1

B
+ arctan

1

C
.

This is a little more difficult although the answer is unique, B = 2 and
C = 3.

We now move on to the next generalization: Find all the positive integer
triples {A,B,C} such that

arctan
1

A
= arctan

1

B
+ arctan

1

C
.

Some triples are {2, 3, 7}, {3, 4, 13}, {3, 5, 8}, . . . , {20, 21, 421}. Are there a
finite or infinite number of such triples?

My attempt at generating these triples proceeded thus: Elementary
manipulation produces B = A+ (1 + A2)/(C − A); so if we’re given A, we
need to find C such that C − A divides 1 + A2. Let C = A + K then the
triples are {A,A + (1 + A2)/K,A + K} and are generated by finding the
factors of 1 +A2. So there are an infinite number of such triples.

Now consider

arctan
1

A
= arctan

1

B
+ arctan

1

C
+ arctan

1

D
.

Evidently we can take pairs of connected triples like {1, 2, 3} and {3, 4, 13}
and produce {1, 2, 4, 13}. So an infinite number of solutions here. Finally,
what about

arctan
1

A
= N arctan

1

B
+M arctan

1

C
,

where N and M are positive integers? This is where I stop to let others
investigate!
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Weighing tarts
Norman Graham
When I expressed an interest in joining the M500 Society, I was sent a copy
of magazine number 193. I was very interested to read the two references to
the ‘Twelve tarts’ problem because in 1994 I had published a version of this
puzzle in The Actuary. My proof that (3n − 3)/2 tarts can be resolved in
n weighings [below] is not nearly so elegant as that quoted in Ron Potkin’s
letter.

I demonstrated that that the theoretical maximum of (3n−1)/2 cannot
be achieved. If it could, the maximum that could be set aside at the first
weighing would be (3n−1− 1)/2 for the other n− 1 weighings, leaving 3n−1

for the first weighing, which (being odd) is impossible.

However, it can be done if an extra normal tart is available. Using
Ron Potkin’s notation [M500 193 25], call the extra normal tart N, with
values 222C and 000A, and suppose there is an extra unknown tart O with
values 000C and 222A. Then in every weighing the unknown tart and the
normal tart are added to the left and right hand pans, respectively. Of the
27 3-figure numbers in ternary notation, this method would use all except
111, which of course is useless because it represents equal balances at every
weighing.

Theorem. There are X tarts which look identical, but one has a slightly
different weight. Determine the odd tart and whether heavy or light using a
simple balance.

(i) The maximum value of X for n weighings is (3n − 3)/2.

(ii) If an extra normal tart is available, The maximum value for X is
(3n − 1)/2.

Lemma 1. If the odd tart is known to be heavy, X is 3n, and similarly
if the odd tart is known to be light.

Proof. Split the tarts into three groups of 3n−1, then weigh one group
against the other to determine which group contains the odd tart: split
that group into three and so on. After n− 1 weighings a group of three will
remain, and one more weighing identifies the tart required.

Lemma 2. Given a supply of normal tarts, X is (3n − 1)/2.

Proof. Weigh 3n−1 of the tarts against normal tarts. If heavy or light,
Lemma 1 applies for n − 1. If equal, the number of tarts remaining is
(3n − 1)/2 − 3n−1 = (3n−1 − 1)/2. Hence if true for n − 1 it is true for n.
Clearly it is true for n = 1, and so by induction is true for all n.
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Lemma 3. Given that the odd tart is either heavy amongst X/2 of the
tarts (group A) or light amongst the other X/2 (group B), and given a supply
of ordinary tarts, X = 3n − 1.

Proof. On the left of the balance put 3n−1 of A and (3n−1 − 1)/2 of B;
on the right, put the remaining (3n−1 − 1)/2 of A and 3n−1 ordinary tarts.
If equal, Lemma 1 applies to the omitted 3n−1 B tarts. If the left pan is
heavy, Lemma 1 applies to the 3n−1 A tarts on that side. If the right pan
is heavy, the odd tart is either heavy amongst (3n−1 − 1)/2 A tarts or light
amongst (3n−1 − 1)/2 B tarts, so that the problem is this lemma for n− 1.
Hence if true for n− 1, it is true for n. Clearly it is true for n = 1, and so
by induction for all n.

Proof of the theorem. Split the (3n − 3)/2 tarts into three groups of
(3n−1 − 1)/2 and weigh one group against another. If equal then Lemma 2
for n − 1 can be applied to the third group; otherwise, Lemma 3 for n − 1
can be applied to the two groups weighed.

Clearly, n weighings (each light, heavy or equal) gives 3n items of in-
formation. With X tarts (one light or heavy) there are 2X possibilities.
Hence the theoretical maximum value for X is (3n − 1)/2, since 3n is odd.
This is one more than (3n − 3)/2 proved above. However, (3n − 1)/2 can
be achieved with a supply of ordinary tarts (Lemma 2) but not otherwise.

If heavy or light at the first weighing, there are 2 · 3n−1 items of in-
formation, which in theory can be used to determine the answer for 3n−1

tarts. This is reduced to 3n−1 − 1 because the first weighing must be done
with an even number of tarts. Addition of (3n−1 − 1)/2 set aside (Lemma
2) gives X = (3n − 3)/2.

ADF writes — I wonder if anyone can offer a solution to that other
family of tart weighing problems. This is where you have n tarts but some
jam has been transferred from one tart to another, so that there is one light
tart, one heavy tart and n − 2 normal tarts. For instance, in M500 188 I
asked about 16 tarts in five weighings. Dick Boardman and I can do it,
but not with easily described weighing instructions, and hence our solution
is far too complicated to justify publication. We would be interested if you
can solve ‘Problem 188.4 – Sixteen tarts’ in not too many pages.

And while we’re on the subject, you may be amused to learn about
M500’s fifteen seconds of fame. The filler below the ‘Thirteen tarts’ article
in issue 197 was broadcast by The News Quiz (Radio 4) on 4th/5th June
2004.



Page 18 M500 199

Getting dressed again
ADF
Some further thoughts about Problem 194.4. Recall that you were asked to
calculate the number of ways of putting on a set of clothes chosen from h
hats, b bras, p panties, d dresses, s pairs of socks and f pairs of shoes, subject
to the following restrictions: (i) you wear one of each type of clothing; (ii)
underwear goes on before dress, and sock before shoe; (iii) socks and shoes
are paired; (iv) chirality is relevant for shoes (but not socks).

Recall also that at one point in the offered solution (M500 197) I
asked, ‘How many ways are there of splicing together the ordered sets B =
(bra,panties,dress) and F = (left sock, right sock, left shoe, right shoe).’
The answer I gave went like this.

There are three items in B and five slots created by the elements of F .
We could choose to put the bra, panties and dress into three different slots,
say, for example, (bra, left sock, right sock, panties, left shoe, dress, right
shoe). There are

(
5
3

)
ways of doing this. Or we could put the bra into one

slot and the panties and dress into a second slot, or the bra and panties into
one slot and the dress into another; that’s 2

(
5
2

)
. Or we could put all three

into the same slot:
(
5
1

)
. Adding them together makes

(
5
3

)
+ 2

(
5
2

)
+
(
5
1

)
= 35.

More generally, let S(a, b) denote the number of ways of splicing a se-
quence of b things into a sequence of a things. Then we have

S(a, b) =

b∑
k=1

(
b− 1

k − 1

)(
a+ 1

k

)
and in particular S(4, 3) = 35.

However, if we do the computation the other way round, by splicing
H into F , we obtain S(3, 4), and when you carry out the summation you
should get the same answer, 35. Indeed, generally we ought to have S(a, b) =
S(b, a), or, when you express it in terms of binomial coefficients,

b∑
k=1

(
b− 1

k − 1

)(
a+ 1

k

)
=

a∑
k=1

(
a− 1

k − 1

)(
b+ 1

k

)
. (1)

I admit that I could not see immediately why (1) should hold. So I fired
up Mathematica and it took only a few seconds to respond with

S(a, b) =

(
a+ b

a

)
=

(a+ b)!

a! b!
=

(
a+ b

b

)
= S(b, a). (2)
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If we include the hat, then the number of ways of ordering the eight
items of clothing is given by S(4, 3)S(7, 1) = 35 · 8 = 280, and, indeed, it
seems that we can look at the original problem in an entirely different way.
The number of orderings of the eight items is the same as the number of
ways of selecting 1, 3 and 4 things from 8 things, 8!/(1! 3! 4!) = 280. The
two ways of looking at the problem give the same answer.

In general, we can make repeated use of (2) to obtain

S(a, b)S(a+ b, c) =

(
a+ b

b

)(
a+ b+ c

c

)
=

(a+ b+ c)!

a! b! c!
,

and, even more generally,

S(a1, a2)S(a1 + a2, a3) . . . S(a1 + a2 + · · ·+ an−1, an)

=
(a1 + a2 + . . . an)!

a1! a2! . . . an!
.

I suspect that it should be possible to prove (2) directly but (at risk of
advertising my stupidity) it is not obvious to me how to do it easily. Does
anyone have any ideas?

Problem 199.3 – Two tangents

John Reade

Lines AB and BC
are tangents to the
circle. The centre
of the circle, O, lies
on AC. If BC = 9
and AD = 3, what
is the value of r, the
radius of the circle?

I am told this
problem appeared
in the Daily Mail. I
thought it deserved
a wider audience.

�
�
�
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S
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S
S
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S
S
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S
S
S
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r

E
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Solution 196.2 – Quadrilateral

In any quadrilateral
ABCD, draw squares
on its sides. Join the
centres of the squares
of opposite sides with
PQ and RS. Prove
that PQ is perpendic-
ular to RS and that
PQ and RS are equal
in length.

A
B

C
D

P
Q

R

S

Dick Boardman
Barbara Lee’s problem has a very simple solution using complex numbers.
There is another similar problem. If you erect an equilateral triangle on the
sides of a general triangle, the centres form an equilateral triangle.

The solution to Barbara’s problem is as follows.

Let the four vertices in a complex plane be

a = ax + iay, b = bx + iby, c = cx + icy, d = dx + idy.

Let ρ = (1 + i)/2. Multiplying a complex number by ρ will rotate it by 45
degrees and multiply its length by 1/

√
2. We have

r = a+ ρ(b− a), q = b+ ρ(c− b),

s = c+ ρ(d− c), p = d+ ρ(a− d).

Then p− q − i(r − s) = 0.

There is a similar solution to the triangle problem.

I often wonder if there is a general result here.

Bryan Orman
Just received my copy of 196 and I’d like to point out that Barbara Lee’s
Quadrilateral Problem is in fact Aubel’s theorem. See page 11 of David
Wells, The Penguin Dictionary of Curious and Interesting Geometry.
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John Spencer
This problem can be approached as a matter of linear algebra, as follows.

Form the points P,R, S, T by rotating each of A,B,C,D through π/2
about the midpoint of the adjacent line, by the linear transformation

F (A,B) =

[
0 −1
1 0

]
· B −A

2
+
A+B

2
,

so that

R = F (A,B), Q = F (B,C), S = F (C,D) and P = F (D,A).

If for ease of notation we designate

[
0 −1
1 0

]
·X as X ′, we can write

R = F (A,B) =
B′ −A′ +A+B

2

and

Q =
C ′ −B′ +B + C

2
, S =

D′ − C ′ + C +D

2
, P =

A′ −D′ +A+D

2
.

Lines PQ and RS are mutually perpendicular and the same length if
one can be rotated onto the other, that is, if

P −Q =

[
0 −1
1 0

]
· (R− S).

Expanded,[
0 −1
1 0

]
· (R− S) =

1

2

[
0 −1
1 0

]
· (B′ + C ′ −A′ −D′ +A+B − C −D).

But

[
0 −1
1 0

]
·X ′ = −X, so that

[
0 −1
1 0

]
· (R− S) =

−B − C +A+D +A′ +B′ − C ′ −D′

2
= P −Q.

So PQ ⊥ RS and ‖PQ‖ = ‖RS‖ as required.
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Solution 196.6 – Pendulum
Show that θ(t) = 4 arctan e

√
g/L t − π is a solution of the differ-

ential equation d2θ/dt2 = −g sin θ/L,

Jim James
The particle equation of motion is given as d2θ/dt2 = −g sin θ/L, so when-
ever θ = 0, d2θ/dt2 = 0.

The proposed solution function is θ = 4 arctan ekt − π, where k =√
g/L > 0. Using the chain rule with u = ekt, we have

dθ

dt
=

4

1 + u2
du

dt
=

4kekt

1 + e2kt
.

Then

d2θ

dt2
=

4k2ekt(1 + e2kt)− 4kekt · 2ke2kt

(1 + e2kt)2
=

4k2ekt(1− e2kt)
(1 + e2kt)2

.

The proposed solution function may be written in the form ekt = tan(θ+
π)/4; so for θ = 0, ekt = 1 and since k 6= 0, t must be zero, indicating that
this situation corresponds to a single instantaneous occurrence.

But at time t = 0, 1 − e2kt = 0 too, so d2θ/dt2 = 0, which is precisely
the value given by the equation of motion at t = 0. We conclude, therefore,
that the proposed function is, indeed, a solution to the equation of motion,
as required. Note too, that dθ/dt = 2k = 2

√
g/L 6= 0.

Comment In the standard analysis of the simple pendulum, as fre-
quently covered in differential equations textbooks, the equation of motion
is shown to have no general solution that can be expressed in terms of ele-
mentary functions. But the proposed solution function analysed here is so
expressed. It cannot, therefore, be a particular solution derived from the
general solution for the simple pendulum case.

This fits in nicely with traditional theory, which recognizes the existence
of certain differential equations that have rogue solutions, which, like this,
have no connection with the general solution. Such anomalous solutions are
called singular solutions.

Some academics, however, do not recognize singular solutions; they
claim that all solutions that contain no arbitrary constants are particu-
lar solutions and that a true general solution must embrace all solutions,
including those that were once viewed as being singular (see Tennenbaum
& Pollard, Ordinary Differential Equations (Harper, 1964), for example).
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But this view does not help at all in this instance; the proposed solution
function does satisfy the equation of motion at time t = 0. But that seems
to be all that one can deduce from the data provided. With initial conditions
θ = 0, dθ/dt 6= 0, d2θ/dt2 = 0, which we have seen must apply for it to
be a solution at all, it does not appear to relate to any reasonable physical
system either, as implied by Tony’s comments. One thing is clear, however,
apart from sharing a common equation of motion, it definitely has nothing
to do with the classical simple pendulum.

Simon Geard
From the given solution, θ(t) = 4 arctan ekt − π, where k =

√
g/L, divide

by 4 and take tangents, so that

tan
θ

4
=

ekt − 1

ekt + 1
= tanh

kt

2
.

Now differentiate and rearrange:

1

4
sec2

(
θ

4

)
dθ

dt
=

k

2
sech2 kt

2
,

dθ

dt
= 2k cos2

(
θ

4

)(
1− tanh2 kt

2

)
= 2k cos

θ

2
.

So differentiating again gives

d2θ

dt2
= − k sin

θ

2

dθ

dt
= − k2 sin θ.

Tony Forbes writes — We had similar answers from Basil Thompson
and Dick Boardman. There is a brief discussion of the general solution
in Henry McKean & Victor Moll, Elliptic Curves (CUP). Alternatively, it
is possible to get a general solution by developing θ(t) as a power series.
Write θn(t) = a0 +a1t+a2t

2 + · · ·+ant
n and equate coefficients of tn−2 for

n ≥ 2. Thus

an = − k2

n!

dn−2 sin θn−2(t)

dtn−2

∣∣∣∣
t=0

from which a solution of θ′′(t) = −k2 sin θ(t) with given a0 = θ(0) and
a1 = θ′(0) may be obtained. For example, θ(0) = 0 and θ′(0) = k yields

k t− (kt)3

6
+

(kt)5

60
− 13 (kt)7

5040
+

23 (kt)9

51840
− 221 (kt)11

2851200
+

12539 (kt)13

889574400
− . . . .
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A paradoxical dice problem
David Singmaster

Problem proposal. Consider throwing a k-sided die (k ≥ 2) until a
particular pair comes up in order on consecutive throws. It would seem that
all pairs would have the same expected time to appear and that for any two
pairs, betting on which will appear first should be a fair bet. Paradoxically,
this is not true. Find the probability that (1, 2) will occur sooner than
(2, 2). Our proof does not make the result intuitively obvious—is there a
proof which makes the result seem obvious?

Solution. Let P denote the probability that (1, 2) occurs before (2, 2), and
let Pi be the probability of this occurring when we have just thrown an i.
Since throwing a value other than 1 or 2 just leaves us where we were, we
have P = P3 = P4 = . . . . Considering the starting postion, we have

P =
(k − 2)P

k
+
P1

k
+
P2

k
. (1)

If we throw a 1, we have

P1 =
(k − 2)P

k
+
P1

k
+

1

k
; (2)

and if we throw a 2, we have

P2 =
(k − 2)P

k
+
P1

k
+ 0. (3)

Equations (1)–(3) are readily solved to obtain

P =
(k + 1)

2k
=

1

2
+

1

2k
.

Similar reasoning shows that the expected time to obtain a (1, 2) is k2

while the expected time to obtain a (2, 2) is k(k+1) = k2+k. The expected
time to get either (1, 2) or (2, 2) is k(k + 1)/2. Is there any connection
between these expected times and the probability P? Is there any way
to make these results more obvious? The above argument is considerably
simpler than my initial proof, but is not as elementary as we would like.

When k = 2, the process simplifies considerably and one can obtain
P = 3/4 easily. I presented this on Puzzle Panel last year and Chris
Maslanka realized that the idea could be applied to dice—and has found
that most people do not believe it!
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Problem 199.4 – Three integers
Find all positive integer triples (a, b, c) such that

f(a, b, c) =
a2

abc2 − c3 + 1

is an integer.

According to a cutting from The Hemel Hempstead and Berkhamsted
Gazette sent to me (ADF) by Colin Davies, if you can solve this problem
under examination conditions, you should find the International Mathemat-
ics Olympiad a doddle; and if you happen to satisfy the entry requirements
(under 20 years old and still at school), you could seriously consider becom-
ing a contestant. The special case b = 2 appeared in the 2003 Olympiad,
held in Japan.

To get started, notice that f(a, b, 1) = a/b and f(a, b, ab) = a2. Then
a useful strategy is to try out various a, b, c and see if there is a pattern of
some sort. The difficult part seems to be proving that you have got all the
solutions.

The article, by the way, was mainly about Berkhamsted student Paul
Jeffreys, 17, who won a gold medal—Britain’s first since 1997. The British
team came tenth out of the 82 countries which participated. Bulgaria won.

Problem 199.5 – Inscribed ellipse
ADF

(i) Take any triangle and mark
a point on each side. When is it
possible to draw an ellipse that
is tangent to the three sides at
the marked points?

(ii) What is the formula
for the ellipse when the points
are at the bases of the al-
titudes of a triangle with
vertices (±1/2,−

√
2/4) and

(0,
√

2/4)?

From the diagram, you can see that I have at least an approximate
answer for (ii). However, I am not sure I got it exactly right—a second
opinion would be appreciated.
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What’s next?
Jeremy Humphries
I don’t know what the genuine terms are, but by analogy from Latin, devi-
ating slightly from Ralph Hancock [M500 197 28], I’d say,

11 – undecuplets (from undecim) 16 – sedecuplets
12 – d[u]odecuplets 17 – septendecuplets
13 – tredecuplets 18 – duodevigintuplets
14 – quattuordecuplets 19 – undevigintuplets
15 – quindecuplets 20 – vigintuplets

Next I’m not sure. Twenty-one is unus et viginti, 22 is duo et viginti, etc.,
so unus-et-vigintuplets, etc? Then ...

28 – duodetrigintuplets (from triginta)
29 – undetrigintuplets
30 – trigintuplets
31 – unus-et-trigintuplets [?]
38 – duodequadragintuplets (from quadraginta)
40 – quadragintuplets
50 – quinquagintuplets (from quinquaginta)
60 – sexagintuplets (from sexaginta)
70 – septuagintuplets (from septuaginta)
80 – octogintuplets (from octoginta)
90 – nonagintuplets (from nonaginta)
100 – centuplets (from centum)

That’s enough. No doubt there exists an expert who will put us right.

Then there’s this inflected poem de motore bo by A. D. Godley. From
the references (Corn and High) he was an Oxford man, I assume.

What is it that roareth thus? Whither shall thy victims flee?
Can it be a Motor Bus? Spare us, spare us, Motor Be!
Yes, the smell and hideous hum Thus I sang; and still anigh
Indicat Motorem Bum! Came in hordes Motores Bi,
Implet in the Corn and High Et complebat omne forum
Terror me Motoris Bi: Copia Motorum Borum.
Bo Motori clamitabo How shall wretched lives like us
Ne Motore caedar a Bo— Cincti Bis Motoribus?
Dative be or Ablative Domine, defende nos
So thou only let us live: Contra hos Motores Bos!
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Letters to the Editor

Under the skin
I found Colin Davies’s article (‘Under the skin’, M500 197) interesting but
a couple of points struck me. Firstly, there may be people who share many
chromosomes who are not related closely by recent common ancestors. This
is relevant to his third question.

The other point was as to whether there could exist something approach-
ing closed subgroups of the population from which there is little or much
reduced genetic exchange. He mentioned geographic separation but one
wonders about personality, social niches, familiarity with family behaviour
patterns. These might constrain the choice of partner to some extent, even
indirectly through parental influence. I think that the only way to answer
these questions is through empirical study.

One then has to consider if some genes function synergistically together
and that in such cases there would be a considerable advantage if they were
in close proximity. To my mind the genetic and family structure could be
more interesting although much more difficult to quantify.

Yours sincerely,

David Robertson

Dear Tony,

The proof that I am descended from William I is very interesting. The
proof that I am also descended from his second son, Richard (1054–1075
— died without issue in a hunting accident) is even more interesting. I am
always prepared to put my fortune on odds of 1099 to one in my favour.

The model has a major flaw—many die childless or the line dies out.
Families with ten or more children seen to have been fairly common in
the past. There was no population explosion so there must have been an
appropriate number of childless individuals to keep everything in balance.
Nothing like sending a few children off to war or to become priests to keep
the population down.

Assuming that on average from ten births, eight are childless while two
marry (if necessary) and have ten children, what is the probability of the
line continuing after n generations?

On a similar topic we are all descended from ‘Eve’, a common female
ancestor. The proof is simple—each generation has more daughters than
mothers. DNA tests show that we are all the same strain.

Best wishes,

John Seldon
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Balls
I got the following from Jeremy Humphries.

There’s an article in my local paper about the local golf club.
The club has bought a load of new golf balls for use on its driving
range. There’s a photo of a square pyramid built with some of
the new balls, and readers are invited to guess how many balls
there are in the pyramid. The entry is 50p, all proceeds to go
to the local hospice. The photo clearly shows that the pyramid
is 33 layers tall.

Our initial reaction was to avoid guesswork altogether and simply plug 33
into the formula n(n + 1)(2n + 1)/6. But this of course works only if the
pyramid is solid—that is, nobody has removed any balls from the interior.

This leads to a very interesting question. What is the minimum number
of spheres that you need to build a stable structure which looks from the
outside like a square pyramid on a base of dimensions n × n? Assume
that bottom layer is complete and its spheres are securely anchored to the
ground, as would be the case if you were stacking cannon balls on a flat
patch of soft earth. For instance, the answer for n = 4, the first non-trivial
case, is 29 because you don’t need to fill the central slot in the second layer
from the bottom.

Later we discovered that the golf club was not as devious as we had
thought. Its pyramid turned out to be complete. Furthermore, Jeremy did
indeed submit the sum-of-squares value, 12529, plus 50p and was somewhat
embarrassed when the club awarded him the first prize of one hour’s tuition
with the club pro!

Problem 199.6 – Change
The British currency system has the property that you can always use the so-
called greedy algorithm to make up an amount of money with the minimum
number of currency units (notes or coins). To make £n, select the largest
currency unit £m such that m ≤ n and, if necessary, repeat the process
with the remaining £(n−m). For example, £16 = £10 + £5 + £1.

But it doesn’t work for all imaginable currency systems. For instance,
if the units are $10, $8 and $1, it is clear that $16 can be done with two
units, $8 + $8, whereas the greedy algorithm insists on seven units, $10 +
$1 + $1 + $1 + $1 + $1 + $1.

What characterizes those systems where the greedy algorithm always
minimizes the number of currency units?
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Twenty-five years ago
From M500 60

Steve Murphy — On an M101 programme they showed us that we can tell
if a clock with no figures is upside down by examining the relative positions
of the hour and minute hands.

Would this still be true if the clock were reflected in a mirror?

What is the effect of identical hour and minute hands, either in the
mirror case or the upside down case?

Angus Macdonald — When Bert was just one year younger than Bill
was when Ben was half as old as Bill will be three years from now, Ben was
twice as old as Bill was when Ben was one third as old as Bert was three
years ago. But when Bill was twice as old as Bert, Ben was one quarter as
old as Bill was one year ago. If Bert is over fifty, how old are they all.

M500 Winter Weekend 2005
Preliminary announcement

The twenty-fourth M500 Society Winter Weekend will be held on Friday
7th to Sunday 9th January 2005.

This is an annual residential weekend to dispel the withdrawal symptoms
due to courses finishing in October and not starting again until February.
It’s an excellent opportunity to get together with friends, old and new, and
do some interesting mathematics in a leisurely and congenial atmosphere.

We have a different venue this year:

Trevelyan College, Durham.

As this may be a little further afield for some regular attenders, there will
also be the option of staying over on Sunday night, and we have a choice of
standard or en-suite rooms, with some twin rooms available.

We don’t know the theme yet, but we hope to announce that by the
time of the September Revision Weekend. Further details will be available
with the next magazine, or after September 12th you can send a stamped,
addressed envelope for a booking form to Norma Rosier. A booking form
will also be available at www.m500.org.uk after that date, with details of
costs and options available.
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