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Solution 192.4 – Two boxes
You have an object of dimensions a× b× c and a hole of dimen-
sions A×B×C. The object fits in the hole. Make two boxes of
internal dimensions a1, b1, c1 and a2, b2, c2 out of materials with
thickness t1 and t2, respectively. Choose a1, b1, c1, t1, a2, b2, c2
and t2 at random, subject to the constraint that the object fits
in each box and each box fits in the hole. What’s the probability
that one box fits in the other box?

Robin Marks
Since the three-dimensional problem looks difficult, let us simplify things
by looking first at the one-dimensional case. We have an object of length a,
a hole of length A, a box of internal length a1 and thickness t1, and another
box of internal length a2 and thickness t2.

O A

Figure 1: One-dimensional object, hole and two boxes

t1
a1 t1

t2
a2 t2

a

Consider pairs of values (a1, a2) where a1 ∈ R and a2 ∈ R. These pairs
fill (span) R2. The constraints given in the problem are as follows.

Constraint 1a: a1 > a. Constraint 1b: a2 > a. That is, each box has
an internal length greater than a. Points satisfying both constraints 1a and
1b fill the intersection of two half-spaces of R2: the half-space to the right
of the line a1 = a and the half-space above the line a2 = a.

Constraint 2a: a1 < A − 2t1. Constraint 2b: a2 < A − 2t2. That is,
each box has an internal length less than the length of the hole minus twice
the thickness of the box.

Points satisfying all of the above constraints fill a rectangular region,
the intersection of the four half-spaces defined by those constraints. We will
call this region Ra0 . The area of Ra0 is (A− a− 2t1)(A− a− 2t2).

Constraint 3a: a1 > a2 +2t2. Constraint 3b: a2 > a1 +2t1. Constraints
3a and 3b cannot both be true; that is, either the internal length of box 1
must be more than the internal length of box 2 by at least twice the thickness
of box 2, or the internal length of box 2 must be more than the internal
length of box 1 by at least twice the thickness of box 1.
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Points satisfying constraints 1a, 1b, 2a, 2b and 3a fill a triangular region
of R2 which, because in this region a1 > a2, we will call Ra12 (short for
Ra1>a2). Similarly, points satisfying constraints 1a, 1b, 2a, 2b and 3b fill a
region which we will call Ra21. For one box to fit inside the other within
the hole, pairs of values (a1, a2) must either lie in region Ra12 or in region
Ra21. We can represent these variables on a diagram with axes a1 and a2.

O A

A

a

a

a1

a2

Ra12

Ra21

Figure 2: One-dimensional object, hole and two boxes

2t12t2

2t1

2t2

The number of ways in which both boxes fit in the hole together without
overlapping is the number of (a1, a2) pairs in regions Ra12 and Ra21. The
number of ways in which the boxes fit in the hole (overlapping or not) is
given by the number of (a1, a2) pairs in region Ra0. Thus the probability
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that both boxes fit in the hole without overlap is

area of Ra12 + area of Ra21
area of Ra0

=
(A− a− 2t1 − 2t2)2

(A− a− 2t1)(A− a− 2t2)
.

We can simplify the right-hand side of this expression by dividing top and
bottom by (A− a)2 to give(

1− 2t1
A− a

− 2t2
A− a

)2

(
1− 2t1

A− a

)(
1− 2t2

A− a

) .
We can substitute two new random variables, u1 for 2t1/(A− a) and u2 for
2t2/(A− a), giving the probability that one box fits inside the other is

h(u1, u2) :=
(1− u1 − u2)2

(1− u1)(1− u2)
,

a function of two variables.

If we let both u1 and u2 tend to zero, then h(u1, u2) tends to 1. In
other words, in the one-dimensional case, one box will fit inside the other if
the boxes are sufficiently thin and if internal sizes a1 and a2 are not exactly
equal. Figure 3 is a plot of h with parts cut away for a better view, and
with parts of the two planes u1 = 0 and u2 = 0 added for visual reference.

We can see that the horizontal cross-section of the function h looks like
an ellipse. In fact it is easy to show that the horizontal cross-section is an
ellipse when h(u1, u2) = K, where K is a constant such that 0 < K < 4.
I leave the proof as an exercise for the interested reader. If h(u1, u2) = 0,
then we have 1 − u1 − u2 = 0, which is the equation of the straight line
passing through (0, 1) and (1, 0). Parts of this line are visible in Figure 3.

In the two boxes problem h represents a probability, hence 0 ≤ h ≤ 1.
Also, because the thickness of each box is positive, u1 > 0 and u2 > 0, and
because each box fits in the hole, u1 < 1 and u2 < 1. In addition, if the
combined thicknesses are too great to fit in the hole, that is, u1 + u2 > 1,
then the probability is not h(u1, u2) but zero. We therefore define a new
function h2(u1, u2) = h(u1, u2) if u1 + u2 ≤ 1, h2(u1, u2) = 0 otherwise; see
Figure 4.
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Figure 3: h(u1, u2) =
(1− u1 − u2)2

(1− u1)(1− u2)
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The curved part of the surface in Figure 4 is a section of the surface
of Figure 3. To get the average probability we work out the volume under
the surface of the function h2 for relevant values (u1, u2), then divide the
volume by the area of the base to get an average height.

To do this we integrate h over the triangular region where u1 +
u2 ≤ 1, then divide the answer by the total base area, 1 × 1, giving∫ 1

0

∫ 1−u1

0
h(u1, u2) du2 du1 = (π2 − 9)/6. Hence the average probability of

success is (π2 − 9)/6. To check this I did a simulation by first picking a
pair of random values (t1, t2) such that 0 < t1 < 0.5 and 0 < t2 < 0.5, then
picking 10000 pairs of random values (a1, a2) such that 0 < a1 < 1 − 2t1
and 0 < a2 < 1− 2t2 (so that each box fits, separately, in the hole).
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Figure 4: h2(u1, u2) =
(1− u1 − u2)2

(1− u1)(1− u2)
if u1 + u2 ≤ 1, 0 otherwise
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For example, with random values t1 = 0.04383 and t2 = 0.2831, choos-
ing 10000 random (a1, a2) pairs gave a success rate for fitting two boxes
of 0.3029. The predicted success rate by the function h2 was 0.3028. The
simulation was repeated, using 10000 different (t1, t2) pairs, to a total of
10000 × 10000 sets of random selections. Overall, the average probability
of success was 0.144, close to the integrated value (π2 − 9)/6 = 0.145. So,
amazingly, we can get a reasonable estimate of the value of π by repeatedly
trying to fit two one-dimensional boxes into a one dimensional hole!

Furthermore, (π2−9)/6 is also the probability in a special case in three
dimensions; the case when both boxes are cubes. This amounts to the
one-dimensional case being simultaneously replicated in the other two di-
mensions.
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Now let us look at the two-dimensional case. We have an object of
length a, a hole sized A × B, B > A, a box of internal size (a1, b1) and
thickness t1, and another box of internal size (a2, b2) and thickness t2. Each
box has to fit in the hole in the direction with the smallest gap, that is, the
A direction; so the maximum thickness of a box is (A− a)/2.

Suppose for now that the boxes have zero thickness. The new condition
for one box to fit inside the other in two dimensions is that if a1 > a2 then
b1 > b2 (Figure 5).

Figure 5: Two thin boxes in a hole sized A×B

O

x1

x2

y1 y2

A

B

The horizontal dashed lines are representative positions for a1 and a2;
that is, either a1 is at x1 and a2 is at x2 or vice versa; we will ignore the
case where a1 = a2. Similarly the vertical dashed lines are representative
positions for b1 and b2. Given that one vertex of a box is at O, the ‘opposite’
vertex is at one of the four intersections of the dashed lines.

The vertex of one box must be one of the two intersections on the line
x1. Having chosen this vertex, the vertex of the other box can only be in
one position on the line x2; that is, if one vertex is at (x1, y1), the other
must be at (x2, y2), and if one vertex is at (x1, y2), the other must be at
(x2, y1). Thus there are 2 × 1 = 2! configurations (ways of choosing pairs
of vertices). In only one of these configurations does one box fit inside the
other. So the probability of one box fitting inside the other is 1/2 when
t1 = t2 = 0.

What if t1 > 0 and t2 > 0? We will now consider the situation in
the direction of B. The B dimension is independent of the A dimension;
however, the maximum thickness of any box remains (A − a)/2. Now we
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argue as before. Consider pairs of values (b1, b2), where b1, b2 ∈ R. The
constraints given in the problem in direction B are as follows.

Constraint 1a: b1 > b. Constraint 1b: b2 > b. Constraint 2a: b1 < B −
2t1. Constraint 2b: b2 < B − 2t2. Points satisfying all of these constraints
fill a rectangular region. We will call this region Rb0 . The area of Rb0 is
(B − b− 2t1)(B − b− 2t2).

Constraint 3a: b1 > b2 + 2t2. Constraint 3b: b2 > b1 + 2t1. Constraints
3a and 3b cannot both be true.

Points satisfying all these constraints fill two triangular regions of R2,
which we will call Rb12 (short for Rb1>b2) and Rb21.

We can represent these variables on a diagram with axes a1 and a2
(Figure 6).

Figure 6: B direction: one-dimensional object, hole, two boxes

O
B

B

b

b

b1

b2

Rb12

Rb21

2t12t2

2t1

2t2

The probability that both boxes fit in the hole without overlap is

area of Rb12 + area of Rb21
area of Rb0

=
(B − b− 2t1 − 2t2)2

(B − b− 2t1)(B − b− 2t2)
.
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We can simplify the right-hand side of this expression by dividing top and
bottom by (B − b)2 to give(

1− 2t1
B − b

− 2t2
B − b

)2

(
1− 2t1

B − b

)(
1− 2t2

B − b

) =

(
1− 2rabt1

A− a
− 2rabt2
A− a

)2

(
1− 2rabt1

A− a

)(
1− 2rabt2

A− a

) ,
where rab = (A−a)/(B−b). We can write this expression as h(rabu1, rabu2).

Putting this all together, the probability 1
2 is reduced in the A direction

by a factor of h(u1, u2) and is also independently reduced by a factor of
h(rabu1, rabu2) in the B direction. So the probability of one box fitting
inside the other is

g(u1, u2, rab) =

{
1
2 h(u1, u2)h(rabu1, rabu2) if u1 + u2 ≤ 1,

0 otherwise.

Written out in full this becomes

g(u1, u2, rab) =


1

2

(1− u1 − u2)2

(1− u1)(1− u2)

(1− rabu1 − rabu2)2

(1− rabu1)(1− rabu2)

if u1 + u2 ≤ 1,

0 otherwise.

Given a particular value of rab, integrating g over the triangular re-
gion involving u1 and u2 gives the probability of both two-dimensional
boxes fitting in the hole together. Here is a table of probabilities∫ 1

0

∫ 1−u1

0
g(u1, u2, rab)du2du1 for selected values of rab = (A− a)/(B − b).

rab 0 1/4 1/2 1
Probability that both boxes fit 0.0725 0.0638 0.0548 0.0363

We obtain an average probability value for a randomly sized hole and
object by integrating g over the triangular region involving u1 and u2, and
from rab = 0 to 1, giving∫ 1

0

∫ 1

0

∫ 1−u1

0

g(u1, u2, rab) du2 du1 drab = 0.0547

by numerical integration. A simulation using 10000× 10000 sets of random
selections gave a success rate of fitting one box inside the other of 0.0538.
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Now for the three-dimensional case. Initially suppose t1 = t2 = 0.
Position the two boxes so that each has a vertex at O. As before, consider
positions of the two vertices opposite to O.

The vertex of one box must be one of the 2 × 2 intersections on the
plane x1. Having chosen this vertex, the vertex of the other box can only
be in one position on the plane x2. That is, if one vertex is at (x1, y1, z1),
the other is at (x2, y2, z2); if one vertex is at (x1, y1, z2), the other is at
(x2, y2, z1); if one vertex is at (x1, y2, z1), the other is at (x2, y1, z2); if one
vertex is at (x1, y2, z2), the other is at (x2, y1, z1). Thus there are (2!)2 = 4
configurations (ways of choosing pairs of vertices). In only one of these
configurations does one box fit inside the other. So the probability of one
box fitting inside the other is 1

4 when t1 = t2 = 0.

What if t1 > 0 and t2 > 0? The probability 1
4 is reduced by a factor of

h(u1, u2) the A direction and h(rabu1, rabu2) in the B direction, as in the
two-dimensional case above, and also by h(racu1, racu2) in the C direction,
where rac = (A − a)/(C − c). So the probability of one box fitting inside
the other is

f(u1, u2, rab, rac) =


1
4 h(u1, u2)h(rabu1, rabu2)h(racu1, racu2)

if u1 + u2 ≤ 1,

0 otherwise

or, when written out in full,

f(u1, u2, rab) =



1

4

(1− u1 − u2)2

(1− u1)(1− u2)

(1− rabu1 − rabu2)2

(1− rabu1)(1− rabu2)

× (1− racu1 − racu2)2

(1− racu1)(1− racu2)
if u1 + u2 ≤ 1,

0 otherwise.

Given particular values of rab and rac, we can integrate f over the
triangular region involving u1 and u2 to give the probability of both three-
dimensional boxes fitting in the hole together. Here is a table of probabilities∫ 1

0

∫ 1−u1

0
f(u1, u2, rab, rac) du2 du1 for selected values of rab = (A−a)/(B−b)

and rac = (A− a)/(C − c).

rac = 0 rac = 1/2 rac = 1

rab = 0 0.0362 0.0274 0.0181
rab = 1

2 0.0274 0.0212 0.0147
rab = 1 0.0181 0.0147 0.0110
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As before, we can obtain an average probability value for a randomly
sized hole and object by integrating f over the triangular region involving
u1 and u2, and from rab = 0 to 1 and from rac = 0 to 1. Thus∫ 1

0

∫ 1

0

∫ 1

0

∫ 1−u1

0

f(u1, u2, rab, rac) du2 du1 drab drac = 0.0211

by numerical integration. A simulation using 10000× 10000 sets of random
selections gave a success rate of fitting one box inside the other of 0.0208.

Solution 196.5 – Three more friends
I have three friends, Alan, Bert and Curt. I write an integer
greater than zero on the forehead of each of them and I tell
them that one of the numbers is the sum of the other two. They
take it in turns in alphabetical order to attempt to deduce their
own number. The conversation goes as follows.

Alan: “I cannot deduce my number.”

Bert: “I cannot deduce my number.”

Curt: “I cannot deduce my number.”

Alan: “My number is 50.”

What are Bert’s and Curt’s numbers?

David Kerr
Let the numbers be a, b, c with one equal to the sum of the other two and
all greater than 0. That A can’t deduce a means:

1. b 6= c (else A would be able to deduce that a = 2b).

That B can’t deduce b means:

2. a 6= c (else B would be able to deduce that b = 2a);

3. a 6= 2c (else B would know that b = c or 3c, but if b = c then A
would have been able to deduce that a = 2b, hence B would deduce that
b = 3c).

That C can’t deduce c means:

4. a 6= b (else C would deduce that c = 2a);

5. a 6= 2b (by similar reasoning to 3, above);

6. a 6= b/2 (else C would know that c = b/2 or 3b/2, but if c = b/2 then
B would have deduced that b = 2a, hence C would deduce that c = 3b/2;
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7. a 6= 2b/3 (if so, C would know that c = b/3 or 5b/3, but if c = b/3
then B would have seen that a = 2c and been able to deduce that b = 3c,
hence C would deduce that c = 5b/3).

To summarize: we can say that b 6= c and a 6∈ S = {c, 2c, b, 2b, b/2, 2b/3}
otherwise one of A, B or C would have been able to deduce his number.

If A is now able to deduce a, it means that one of b+ c or b− c is in the
set S. It is easy to see that b+ c ∈ S implies either b = c or b or c negative.
Hence we must have b− c ∈ S. Consider the various possibilities in turn:

b− c = c implies b = 2c and a = 3c, which gives the solution 3x, 2x, x;

c− b = c implies b = 0 and hence no solution;

b− c = 2c implies b = 3c and a = 4c, which gives the solution 4x, 3x, x;

c− b = 2c implies b = −c and hence no solution;

b− c = b implies c = 0 and hence no solution;

c− b = b implies c = 2b and a = 3b, which gives the solution 3x, x, 2x;

b− c = 2b implies c = −b and hence no solution;

c− b = 2b implies c = 3b and a = 4b, which gives the solution 4x, x, 3x;

b−c = b/2 implies b = 2c and a = 3c, which gives the solution 4x, x, 3x;

c − b = b/2 implies c = 3b/2 and a = 5b/2, which gives the solution
5x, 2x, 3x;

b−c = 2b/3 implies b = 3c and a = 4c, which gives the solution 4x, 3x, x;

c − b = 2b/3 implies c = 5b/3 and a = 8b/3, which gives the solution
8x, 3x, 5x.

We know that a = 50 and the only solution that gives integer answers is
5x, 2x, 3x, which gives b = 20 and c = 30.

ADF — If you alter the wording of the problem slightly,

‘I have three friends, Alan, Bert and Curt. I write a different
integer greater than zero on the forehead ...’,

the situation changes significantly. There are now two answers, 50, 10, 40
(David Porter, M500 192, p. 14) and 50, 40, 10 (Geoff Corris, M500 194,
p. 10).

Think of two words which have opposite meanings, such that if you add the
same letter to the front of each one you make two new words which also
have opposite meanings. Jeremy Humphries
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Solution 195.3 – Doublings
A positive integer N has the property that the number of digits
in 2iN is given by the sequence (2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6)
for i = 0, 1, . . . , 11. What is N?

Basil Thompson
To satisfy the case for i = 11, i.e. 6 digits, the number at this point must
lie in the interval [100000, 999999]. Using this and working backwards, we
repeatedly divide by 2 to obtain the following table.

i digits digits

11 100000 6 999999 6
10 50000 5 499999 6
9 25000 5 249999 6
8 12500 5 124999 6
7 6250 4 62499 5
6 3125 4 31249 5
5 1563 4 15624 5
4 782 3 7812 4
3 391 3 3906 4
2 196 3 1953 4
1 98 2 976 3
0 49 2 488 3

Thus N = 49 satisfies the original sequence; but is it unique? If N < 49,
the final term of the sequence is at most 5, and if N > 49, the second term
is at least 3.

Is it possible to find a method for forecasting the number of digits for
any value of N? For small N it is easy to see where these sequences become
unique.

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14

i 3 3 5 5 24 24 7 50 50 63 63 23 56 56

digits 1 2 2 3 8 9 3 16 17 20 21 9 18 19
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ADF
It is tempting to extend this last table. Let f(n) denote the smallest i
such that the sequence (n, 2n, . . . , 2in) differs from (m, 2m, . . . , 2im) for all
m 6= n.

n f(n)

1 3
2 3
3 5
4 5
5 24
6 24
7 7
8 50
9 50

10 63
11 63
12 23
13 56
14 56
15 26
16 69
17 69
18 49
19 29
20 82
21 82
22 62
23 42
24 22
25 85
26 85
27 75
28 55
29 45
30 25

n f(n)

31 15
32 88
33 88
34 68
35 58
36 48
37 38
38 28
39 18
40 91
41 91
42 81
43 71
44 61
45 51
46 41
47 31
48 21
49 11
50 94
51 94
52 84
53 167
54 167
55 64
56 54
57 137
58 137
59 34
60 117

n f(n)

61 117
62 14
63 97
64 97
65 180
66 180
67 77
68 160
69 160
70 150
71 150
72 47
73 130
74 130
75 120
76 120
77 110
78 110
79 193
80 193
81 183
82 183
83 173
84 173
85 163
86 163
87 153
88 153
89 143
90 143

n f(n)

91 133
92 226
93 226
94 123
95 123
96 113
97 113
98 103
99 103

100 93
101 186
102 279
103 279
104 176
105 176
106 166
107 259
108 259
109 156
110 249
111 249
112 146
113 146
114 136
115 229
116 229
117 126
118 219
119 219
120 116

n f(n)

121 209
122 209
123 106
124 106
125 292
126 292
127 189
128 282
129 282
130 179
131 272
132 272
133 169
134 262
135 262
136 159
137 448
138 448
139 345
140 345
141 242
142 242
143 139
144 232
145 232
146 129
147 418
148 418
149 222
150 119

n f(n)

151 212
152 212
153 305
154 305
155 202
156 202
157 99
158 388
159 388
160 285
161 285
162 378
163 378
164 275
165 275
166 368
167 368
168 265
169 265
170 358
171 358
172 255
173 255
174 348
175 348
176 245
177 245
178 338
179 338
180 431

n f(n)

181 431
182 328
183 328
184 421
185 421
186 225
187 318
188 318
189 215
190 215
191 308
192 308
193 401
194 401
195 205
196 298
197 298
198 391
199 391
200 484
201 484
202 577
203 577
204 670
205 670
206 278
207 371
208 371
209 464
210 464

An observation that might be worth investigating: a local maximum of
f(n) occurs for a pair of consecutive values of n.
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Fibonacci and all that
Ron Potkin
Here are some ‘what comes next?’ sequences:

(a) 1, 1, 2, 3, 5, 8, 13, 21, ? (c) 1, 1, 3, 7, 17, 41, ?

(b) 1, 1, 1, 3, 5, 9, 17, 31, ? (d) 1, 1, 1, 6, 21, 76, 276, ?

Answers:

(a) 34. No points for guessing this; it is the Fibonacci sequence. It
begins with the numbers 1, 1 and subsequent numbers are the sum of the
preceding two. In other words, Sn = Sn−2 + Sn−1.

(b) 57. This is usually called the tribonacci sequence. It is the sum of
the preceding three numbers; Sn = Sn−3 + Sn−2 + Sn−1.

(c) 99. This starts with 1,1 but now we add twice the last number plus
the number before that; Sn = Sn−2 + 2Sn−1.

(d) 1001. Starts with 1,1,1 and sums three times the last number plus
twice the prior number plus the number before that; Sn = Sn−3 + 2Sn−2 +
3Sn−1.

The Fibonacci sequence is well known. It has the property that the value
of Sn divided by Sn−1 approaches the irrational number φ = 1.618033 . . . .
The numbers φ and 1−φ are the roots of the quadratic equation x2−x−1 =
0, which can be rearranged in a slightly different form as 1 + x = x2. The
sequence is usually given by Sn−2 + Sn−1 = Sn but it could equally be
expressed as aSn−2 + bSn−1 = Sn, where a = 1 and b = 1.

By introducing variables a and b, we can generate many more Fibonacci-
like sequences. For example, if a = 1 and b = 2 then we have Sn−2+2Sn−1 =
Sn, giving the sequence 1, 1, 3, 7, 17, 41, . . . , and Sn divided by Sn−1
approaches 2.41421 . . . . This is one root of the quadratic 1 + 2x = x2.

And, if a = 2 and b = 2 then 2Sn−2 +2Sn−1 = Sn, giving 1, 1, 4, 10, 28,
76, . . . , and the ratio approaches 2.732 . . . , which is a root of x2−2x−2 = 0.

So it appears that there may be a relationship between the sequence
and the associated quadratic which can be expressed in terms of a and b;
i.e. a+ bx = x2. The rule is not ‘add’ but ‘multiply and add.’ Can this rule
be extended to all such equations; i.e. a+ bx+ cx2 + dx3 + · · · = xn? (The
coefficient of xn must be 1.)

I checked out a few reference books and discovered that some start the
Fibonacci sequence with 0, 1 while others start 1, 1 and relate it to the rabbit
population. Personally, I find the former more satisfying knowing that the
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sequences were created from a single seed, although I don’t think the rabbits
would agree. The Fibonacci sequence will be the same whichever is used,
but other sequences will give different results. For example, the tribonacci
sequence will vary depending on whether it starts with 0, 0, 1 or 1, 1, 1.

The 0, 1 sequence will be used in the following text. We also define
a sequence by Sm,n, where m is the order of the sequence (Fibonacci is
of order 2, tribonacci is of order 3) and n is the index of an item in the
sequence.

The quadratic equation x2 − (p+ q)x+ pq = 0 has the real roots p and
q which, rearranged, is −pq + (p + q)x = x2. The equivalent sequence is
−pqS2,n−2 + (p+ q)S2,n−1 = S2,n, as follows:

S2,0 = 0,

S2,1 = 1,

S2,2 = − p · q · 0 + (p+ q) · 1 = p+ q,

S2,3 = p2 + pq + q2,

S2,4 = p3 + p2q + pq2 + q3,

. . . ,

S2,n = pn−1 + pn−2q + pn−3q2 + · · ·+ p2qn−3 + pqn−2 + qn−1,

S2,n+1 = pn + pn−1q + pn−2q2 + · · ·+ p2qn−2 + pqn−1 + qn.

Remarkably, no term contains a coefficient, otherwise it is similar to a
binomial expression and its symmetry enables us to sum S2,n in two ways:
S2,n+1− pS2,n = qn and S2,n+1− qS2,n = pn, so that, provided |p| 6= |q|, we
have S2,n = (pn − qn)(p− q). It follows that

S2,n+1

S2,n
=
pn+1 − qn+1

pn − qn

and so, as n approaches infinity, the expression approaches the greater of
|p| and |q|.

The higher orders are not so easy. The equation pqr− (pq+pr+ qr)x+
(p+ q+ r)x2 = x3 has the real roots p, q and r. The equivalent sequence is

pqrS3,n−3 − (pq + pr + qr)S3,n−2 + (p+ q + r)S3,n−1 = S3,n

of which the first few lines are

S3,0 = 0,

S3,1 = 0,

S3,2 = 1,
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S3,3 = p+ q + r,

S3,4 = p2 + pq + q2 + qr + r2 + pr,

S3,5 = p3 + p2q + pq2 + q3 + q2r + qr2 + r3 + p2r + pr2 + pqr.

This time, when we try to sum S3,4, we obtain S3,5 − pS3,4 = q3 +
q2r+ qr2 + r3. But this is equal to S2,4! Is there a relationship between the
tribonacci and the Fibonacci sequences?

In the general case, Sm,n =
∑
xn1
1 xn2

2 . . . xnm
m (taken over all non-

negative integers n1, n2, . . . , nm such that n1 + n2 + · · ·+ nm = n−m+ 1).

There is a strong relationship between Sm,n − xiSm,n−1 = Sm−1,n−1
and the identity p+1Ck+1 = pCk+1 + pCk which is the basis for Pascal’s
triangle. The number of terms in Sm,n is equal to nCm−1 and the number
of terms containing each variable in Sm,n is equal to the number of terms
in Sm,n−1.

If we multiply Sm,n−1 by xi and deduct this from Sm,n, we remove all
terms containing xi; thus

Sm,n − xiSm,n−1 =
∑

xn1
1 . . . x

nm−1

m−1 = Sm−1,n−1

(the order of the sequence is reduced by one), and so

Sm,n
Sm,n−1

= xi +
Sm−1,n−1
Sm,n−1

.

If |xi| is the greatest root then, since it has been removed from Sm−1,n−1,
the expression will approach xi as n approaches infinity.

Solving equations using this method, however, is not recommended.
First, it will only return one root. Secondly, it may take several iterations
to reach an accurate answer; the closer the roots, the longer it will take.
Finally, and more importantly, it cannot solve for complex roots.

Imagine a string containing an infinite number of cells each containing
zero with a single 1 in the middle of the string at position x. You require
two real variables, a and b. A read/write head is placed at position x−1. It
multiplies the number at this position in the string by a, then moves forward
one cell and multiplies the new number by b, adding the two products
together. Now you may continue in one of two ways:

Method F writes the sum on the string at x+ 1 and repeats the opera-
tion, this time adding the number at x times a to the number at x+1 times
b and writing the sum at x+ 2, and so on.
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Method P writes the sum at x on a second string of zeros placed under
the first one and starts again. This time it adds the number at x times a to
the number at x+1 times b and writes the sum at x+1 in the second string
and so on. It will repeat the loop until the sum of the products is zero,
when it jumps down to the second string at position x − 1 and continues
the operation.

If a = 1 and b = 1, what are the results of method F and method P?
They are as follows.

Method F : 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Method P : 0, 1, 0, 0, 0, 0, 0
0, 1, 1, 0, 0, 0, 0
0, 1, 2, 1, 0, 0, 0
0, 1, 3, 3, 1, 0, 0
0, 1, 4, 6, 4, 1, 0

Method F will give us the Fibonacci sequence. Method P gives the
Pascal triangle although in this case it will be a right-angled triangle rather
than the more familiar isosceles.

Of course, we are not limited to two variables; we could start with three
variables and place the read/write head at x − 2, or n variables and start
at x− n+ 1.

With such a strong similarity in the two methods, you will not be sur-
prised to learn that there is a strong relationship between them; best de-
scribed by a slight rearrangement of the results above.

n 0, 1, 2, 3, 4, 5, 6, . . .
Method F : 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .
Method P : 0 0, 1, 0, 0, 0, 0, 0

1. 0, 1, 1, 0, 0, 0, 0
2. 0, 1, 2, 1, 0, 0, 0
3. 0, 1, 3, 3, 1, 0, 0
4. 0, 1, 4, 6, 4, 1, 0
5. 0, 1, . . .

The Fibonacci numbers are derived by summing the diagonals. For
example, 5 = 1 + 3 + 1 and 8 = 3 + 4 + 1, or

Fn =
∑
i≤n/2

(
n− i
i

)
aibn−2i, a > 0, b > 0.
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Solution 196.4 – Snub cube
Compute the following parameters for the snub cube:

δ1: the square–triangle dihedral angle,
δ2: the triangle–triangle dihedral angle,
ds: the distance between opposite squares,

and α, the angle through which the square faces have been
turned from their cube orientation.

Dick Boardman
Imagine a snub cube placed on a plane with a square face downward. Label
the bottom left corner of the square O, the origin, and label the vertices
clockwise OABC so that OC is the x-axis and OA the y-axis. The z-axis
is vertically upward. The edge OC is the intersection of the square and
an equilateral triangle. Call the third vertex of the triangle D. There is a
second equilateral triangle touching OD. Call its third vertex E. Choose
the lengths of all edges to be 1. Consider the point D. Its coordinates are
( 1
2 ,−h cos θ1, h sin θ1), where h = sin 60◦ =

√
3/2. The angle θ1 is 180◦−δ1.

O
A

B
C

D

E
Q

x
y

z

Consider the point E. By symmetry, its x and y coordinates will be
equal. Let OE make an angle θ2 with the plane. Then the coordinates of E
will be (−w cos θ2,−w cos θ2, sin θ2), where w = 1/

√
2. The angle between

OD and OE is 60 degrees, so that

OD ·OE = cos 60◦ = 1
2 . (1)

The bounding sphere of the snub cube will go through all of O, A, B,
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C, D and E. The coordinates of its centre will be Q = ( 1
2 ,

1
2 , r), where r is

to be determined. (Note that r is not the radius.) Thus

(OE −OQ) · (OE −OQ) = OQ ·OQ, (2)

(OD −OQ) · (OD −OQ) = OQ ·OQ. (3)

Equations (2) and (3) make all the radii the same.

Equations (1)–(3) may be solved numerically to yield θ1 ≈ 37.0166◦,
θ2 ≈ 53.5967◦ and r ≈ 1.14261. For an exact solution, it seems best to start
by solving (2) and (3) for θ1 and θ2 in terms of r. Thus

θ1 = arccos

(
2r
√

12r2 + 2− 1√
3 (4r2 + 1)

)
, (4)

θ2 = arccos

(
2r
√

4r2 + 1−
√

2

4r2 + 2

)
.

Then, substituting θ1 and θ2 in (1), we obtain(
1−
√

2 r
√

1 + 4 r2
) (

1 + 2 r2 − r
√

2 + 12 r2
)

+
√

1 + 6 r2 + 2 r
√

2 + 8 r2
√

1 + 8 r2 + 2 r
√

2 + 12 r2

=
(
1 + 2 r2

) (
1 + 4 r2

)
.

This is a complicated equation involving square roots of square roots. How-
ever, we can transform it to a polynomial by repeatedly rearranging so that
the equation takes the form A −

√
B = 0 and squaring to get A2 − B = 0.

The final result is that r satisfies

16384 r16 + 73728 r14 − 109568 r12 − 25600 r10

+ 7680 r8 + 1216 r6 − 160 r4 − 16 r2 + 1 = 0.

Amongst the 16 solutions is the only one that is relevant to our problem:

r =

√
3
√

199− 3
√

33

12
+

3
√

199 + 3
√

33

12
+

1

3

= 1.142613508925962093479484 . . . .

Substituting r in (4) gives a complicated expression for θ1 and hence for
δ1 = 180◦ − θ1. And, of course, ds = 2r. I leave δ2 and α for someone else.
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John Smith

By encasing a snub cube in
a cube of side 2, with ver-
tices at (±1,±1,±1) we can
write down the vertices of
the snub cube in the form
(a, b, 1), (−b, a, 1), (−a,−b, 1),
(b,−a, 1) and similar expres-
sions on the other five faces.
If we have a > b, then some
algebra shows that b satisfies
the cubic

b3 + b2 + 3b− 1 = 0

Ha, b, 1L

H-b, a, 1L

H-a, -b, 1L

Hb, -a, 1L

and a =
√
b. Formulae exist for solving cubics, so a dash to the M433 course

book (Ian Stewart, Galois Theory) provides the result:

b =
3
√

6
√

33 + 26− 3
√

6
√

33− 26− 1

3

and a =
√
b or, numerically,

a = 0.54368901269207, b = 0.29559774252208.

In principle it is then straightforward to generate expressions for the
normals to the faces and the dihedral angles. In practice, my manipulations
have little hope of simplifying the expressions to something reasonable. On
the other hand, it is easily seen that the ratio of snub cube edge length to
cube edge length is

1

ds
=

√
(a+ b)2 + (a− b)2

2
=

√
b2 + b√

2
.

Furthermore, tan(α) is given by (a− b)/(a+ b) or, by using a =
√
b,

α = arctan
1− a
1 + a

= arctan b ≈ 16.46756040038636◦.

Perhaps there is a simpler worthwhile question: if we label the triangular
faces as either octahedral faces or snub faces, then why is the dihedral angle
between two snub faces the same as the dihedral angle between a snub face
and an octahedral face? There may be a simple symmetry argument, but I
cannot see it. However, it is sort of responsible for the a =

√
b result above.
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Solution 197.5 – Toilet paper
Find a formula that relates the radius of a toilet roll (R), the
total length (L), the paper thickness (t) and the radius of the
cylindrical cardboard thing at the centre (r).

Simon Geard
If we consider the toilet roll to be an Archimedean spiral then in polar
coordinates (s, θ)

Θ =
2π

t
(s− r) .

The length of the paper can then be expressed by the integral

L =

∫ R

r

√
1 + s2

(
2π

t

)2

ds =

[
s

2

√
1 +

( s
a

)2
+
a

2
sinh−1

s

a

]R
r

,

where a = t/2π.

For toilet paper the sheet thickness is very small compared with the roll
thickness; so the messiness of the above can be simplified:

L =
π

t

(
R2 − r2

)
+

t

4π
log

R

r
.

According to the packet there are ∼ 240 sheets per roll, and each sheet is
125 mm long; so L ≈ 30000 mm. I measured r = 20 mm and R = 60 mm;
so

30000 =
3200π

t
+

log 3

4π
t,

giving t ≈ 0.335 mm, which seems to be about the right value.

Years ago I did a related calculation which had a practical application
that readers might like to try. I wanted to know how much recording time
I had left on a tape, given the value displayed by the tape counter. The
counter is connected to the left hand tape spool and is set to zero at the
beginning of the tape. Since the tape is transported at a constant velocity
v the counter’s speed increases as the tape is used up. The tape manufac-
turers supplied the length of the tape and the above calculation was used
to estimate the thickness—the radii can be measured sufficiently accurately
with a ruler. Also the value of the counter when the tape has been used
up, N , is easily determined. So the question is: given a value n on the tape
counter, what is the time remaining τ as a function of L, N , R, r, t and v?

Stuart Cresswell and Ralph Hancock found the minus-oneth order
approximation to L by dividing the cross-section area, π(R2 − r2), by t.
Curiously, there is no zeroth order term. — ADF
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Problem 200.1 – Well spaced
There are n slots, numbered 1 to n, arranged in a circle. They are to be
occupied by n objects, one by one, such that at all times the objects are as
well spaced as possible. The first object can go anywhere. Thereafter, when
an object is added to the system it must be placed such that the minimum
distance to its two neighbours is as large as possible. In how many ways
can this be achieved?

By rotational symmetry we can always
choose slot 1 first and then multiply the
answer by n. With this observation in
mind, let us look in detail at a small
but non-trivial case, n = 9. We start
with 1. The next choice is between 5
and 6, each of which is at least 4 away
from 1. After 15, we can choose between
3, 7 and 8, as illustrated on the right.
We now have 153, 157 and 158. Then

1

2

3
4

5

6

7
8

9

153 extends to 1537 or 1538, 157 to 1573, and 158 to 1583. Similarly we
also have 1638, 1648, 1683 and 1684. Thereafter, all permutations of the
remaining five numbers are valid. Thus, after including the rotations, the
answer is 8 · 5! · 9 = 8640.

Can you find a general formula?

Problem 200.2 – Square with corner missing
Take two integers, 0 < m < n. Take an n × n square of suitable sheet
material. Cut out an m×m square from a corner. Then make two straight-
line cuts and rearrange the pieces to make a perfect square. For what values
of m and n is this possible?

+ sn
ip + sn
ip =
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Conversion factors
ADF
As a follow-up to the list of conversion factors in M500 198, I would like to
offer some novel and interesting ideas for converting time to temperature.

You may be aware of John Cage’s 4′33 ′′, four minutes and thirty-three
seconds of musical silence. Whilst I am happy to leave it for the experts
to judge the work, I was amused to learn that 4′33 ′′ was rather neatly
discredited by the composer himself! ‘Why 4′33 ′′?’ Cage was asked. Ap-
parently his answer was that 4:33 = 273 seconds, and minus 273 degrees
Celsius is the temperature of absolute zero. So any deep significance there
might have been in the title amounts to nothing more than a meaningless
numerical coincidence.

Thermodynamically speaking, the number 273 is significant only be-
cause water happens to freeze at about 273◦K. It has nothing to do with
absolute zero. Nevertheless, if you really want to construct a scientifi-
cally respectable time interval corresponding to the freezing point of water,
surely a good place to start is Boltzmann’s constant k, which has units en-
ergy/temperature. This is not quite what we want, but if we throw in c, the
velocity of light and G, the gravitational constant, we can obtain a suitable
factor for converting temperature to time, namely

Γ = G k/c5.

Using the values k = 1.38062 · 10−23 J/◦K, c = 299792459 m/s and G =
6.673 · 10−11 N m2/kg2, we have

Γ = 3.804 · 10−76 s/◦K.

Therefore 273◦K becomes 1.038 · 10−73 seconds. Of course, adopting this
suggestion would have produced a considerably shorter composition.

Similar crackpot numerology appears to have been the inspiration for
the title of Michael Moore’s film, Fahrenheit 9/11: The temperature where
freedom burns. The idea, I think, is that the date of the terrorist attack
against the USA is transformed as follows.

September 11th 2001→ 11/9/2001→ 9-11-2001→ 9-11→ nine
eleven → nine hundred and eleven → 911 → 911◦F.

Clearly this extends to a general method for converting dates to tempera-
tures. On the same scale, New Year’s Day works out at a chilly −11 2

3

◦
C.

According to Eric Blake of the National Hurricane Centre in Miami, sea tempera-

tures are now 5◦C (41◦F) higher than recent averages and these have been directly

responsible for spawning Hurricanes Ivan, Frances and Charley this summer. —

Observer, 12 September 2004. [Spotted by John Bull]
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What prime is even?
Tony Forbes
Jeremy Humphries informs me that the following was once a £32,000
question on the television quiz show Who Wants to be a Millionaire?.

What is the only even prime number? A: 2, B: 4, C: 10, D: 12.

The contestant didn’t have a clue, so he asked the audience, who voted:

A: 62%, B: 10%, C: 18%, D: 10%.

Of course, this proves nothing—except that in a particular group of
people 38 per cent (plus perhaps as many as 10 per cent who accidentally
guessed A) are unconcerned with that obscure branch of pure mathematics
which deals with the classification of numbers into various types. I imagine
a similar frequency distribution would occur if B, C and D were odd.

Anyway, in case you happen to be a contestant and a similar question
comes up again, here are some definitions of P, the set of primes. Choose
whichever one you feel comfortable with.

(i) P is the set of integers p > 1 for which p is not divisible by any
positive integer other than 1 and p.

(ii) P is the set of positive integers with precisely two positive integer
divisors.

(iii) P is a multiplicative basis for the positive integers. Furthermore, P
is the only set with this property. Thus every positive integer has a unique
representation as a product of elements of P. This includes 1, which is the
empty product:

1 =
∏
p∈{}

p.

(iv) P is the unique set of positive integers for which∏
p∈P

(
1− 1

ps

)−1
= ζ(s) =

∞∑
n=1

1

ns

for all complex values of s with < s > 1.

To see how it works, we use this last definition to prove the question
setter’s assertion. Put s = 2. Then we have∏

p∈P

(
1− 1

p2

)−1
= ζ(2) =

π2

6
. (1)
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Clearly 1 cannot be in P, for otherwise the left-hand side of (1) would have
a zero in the denominator. Suppose 2 6∈ P. Then∏

p∈P

(
1− 1

p2

)−1
≤

∞∏
n=3

(
1− 1

n2

)−1
=

3

2
<

π2

6
.

So without including the factor for p = 2 the product in (1) can never
achieve its true value, π2/6 ≈ 1.644934. Hence 2 must be included in P,
and therefore 2 is prime.

Equation (1) also provides a very simple proof that there are infinitely
many primes. Since π2 is irrational, the product on the left of (1) has more
than a finite number of factors.

Problem 200.3 – An arithmetic geometric mean
Traditionally the arithmetic–geometric mean of a pair of numbers {a, b} is
the common limit of the process {a, b} → {(a+ b)/2,

√
ab}. Here we adopt

a slightly skewed definition.

Let a1 = (a+ b)/2, b1 =
√
a1b, and for n > 1 let an = (an−1 + bn−1)/2,

bn =
√
anbn−1. Show that

a∞ = b∞ =

√
b2 − a2

arccos a/b
.

Problem 200.4 – Circle in a box
What is the locus of the centre of a unit-radius circle placed such that the
circumference is in contact with the positive (x, y)-plane, the positive (x, z)-
plane and the positive (y, z)-plane? (I’m sorry, this is too difficult to draw
convincingly. To get a better understanding of the problem, drop a 2p piece
into the corner of a box and move it about whilst ensuring that it remains
touching the three sides of the box which meet there.)

Problem 200.5 – Bouncing ball
There are two fixed spheres of radius 1; sphere A is at position (−10, 0, 0)
and B is at (10, 0, 0). A third ball, C, also of radius 1, bounces back and
forth with perfect elasticity along the x-axis between A and B. Then, just
as it is bouncing off A, the trajectory of C changes by 10−100 radians. How
many further bounces does C experience before it leaves the system?

Question. Where do no badgers live? Answer. The empty set.
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Doctor Dave
Eddie Kent
Earlier this year David Bradley retired from IBM after 28 years toiling in the
bowels of the PC. Always known as ‘Dr Dave’ on the IBM campus in North
Carolina, he was one of the original 12 creators of the personal computer.

Now 55, he was in the team that delivered a prototype of the IBM PC
to a small company in December 1980. That company, with fewer than 40
employees, was called Microsoft.

The rudimentary PC was a crude bundle of cables wired by hand in a
rack board. It was so secret that Bradley had to smuggle it into a back
room.

Why am I bothering you with this? Well. For one thing Bradley was
once a clue in the television quiz show Jeopardy. He said, ‘If I can be a clue
in the New York Times crossword puzzle I will have met all my life’s goals.’

One other thing. He was the man who once spent five minutes writing
a code to restart a recalcitrant computer. This was intended for engineers,
to save them having to wait through a reboot. But somehow the news
leaked out, and Ctrl-Alt-Del is now universally recognized as the command
of last resource. He was looking for keys that are far apart and originally
contemplated Ctrl-Alt-+, but thought Del made more sense.

On the 20th anniversary of the IBM PC he appeared on a panel with
Bill Gates and said, referring to the well-known bug-infested nature of the
PC, ‘I may have invented it but Bill made it famous.’ On another occasion
he said, ‘I didn’t know it was going to be a cultural icon. I did a lot of other
things than Ctrl-Alt-Del but I’m famous for that.’

He intends to lecture at North Carolina State University. For more on
Bradley, visit http://www.fastcompany.com/articles/archive/pc bday.html.

A golden rule for computer experts: The customer is always a block-head.

Two computer experts will never agree on anything except that the
other computer expert is an arsehole.

How does a computer expert deal with a flat tyre? He gets the spare
wheel out and tries replacing each wheel in turn with it until the car drives
normally.

How to trash all your computer data: Lend your computer to a computer
expert.
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Solution 198.1 – Two knights
What is the probability that two knights attack each other on
an n× n board?

Ian Bruce Adamson
Let m(r) be number of cells attacked from the rth cell and let f(q) be the
number of cells attacking q squares. We have at once

n2∑
r=1

m(r) =

8∑
q=2

qf(q),

where
∑
f(q) = n2.

An arbitrarily placed knight attacks m(r) cells out of n2 − 1 and its
probability of being placed there is 1/n2. Thus the required probability is∑
qf(q)/(n2(n2− 1)), where f(q) and qf(q) are computed according to the

following table.

q 2 3 4 6 8

f(q) 4 8 4(n− 3) 4(n− 4) (n− 4)2

qf(q) 8 24 16(n− 3) 24(n− 4) 8(n− 4)2

(Note that
∑
f(q) = n2, as we would hope.) Thus∑
qf(q) = 16− 24n+ 8n2 = 8(n− 1)(n− 2).

So the required probability is

8(n− 1)(n− 2)

n2(n2 − 1)
=

8(n− 2)

n2(n+ 1)
,

the limit of which as n tends to infinity being 8/n2.

We have considered only a board where n > 4. If n = 1 or 2, the
probability is zero; if n = 3 or 4, it can be easily calculated.

Anne Robinson – What ‘A’ is the term for the arithmetic mean of a set of
numbers?

Contestant – Algebra. [The Weakest Link, BBC 2]
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Letters to the Editor
Paradoxical dice
Consider David Singmaster’s paradoxical dice problem in M500 199, where
we throw a k-sided die (k ≥ 2) until a particular pair comes up in order on
consecutive throws and we ask ourselves why it is counterintuitive that not
all pairs have the same expected time to appear.

There is a simple example which shows what is going on. Imagine a
3-sided die (!), i.e. let k = 3 and all throws give 1, 2 or 3. The probability
of getting (1, 2) in two throws is 1/9, and similarly for (2, 2). However the
probability of the bet ending in exactly 3 throws is different.

Case 1: Probability of getting (x, 1, 2). There are 27 possible results for
three throws. Three of the results (1, 2, x) end after two throws, so delete
them. There are three results (x, 1, 2), so the probability of getting (x, 1, 2)
is 3/24.

Case 2: Probability of getting (x, 2, 2). Again, there are 27 possible
results. Three of the results, including (2, 2, 2) end after 2 throws, so delete
them. Now there are only two ways of getting (x, 2, 2), since (2, 2, 2) has
been deleted, so the probability of getting (x, 2, 2) is only 2/24.

This discrepancy carries on with the probability of (x, x, . . . , 2, 2) always
being less than that of (x, x, . . . , 1, 2).

Dick Boardman

Re: M500 198
I was puzzled by the What’s missing? problem in the same way as Keith
Drever, after I had earnestly examined the numbers 339–343 for primeness.
But I would never have suspected Tony of having put in such a trivial trick.
Now all is revealed, but it is a rather sad glimpse into the tatty undergrowth
of number theory, like seeing the Gap in the Matrix in that silly film.

Tony’s conversion factors had a macabre interest, and henceforward I

shall certainly convert miles into feet with e
√
67π/3, rather than boringly

multiplying by 5280. This reminds me of the furlong-firkin-fortnight sys-
tem of measurements (instead of metre-kilogram-second), an attractive but
flawed arrangement as a firkin is a measure of capacity rather than mass.
Probably a firkin of ale is intended, but this can be between 8 and 9 imperial
gallons, weighing 82 lb to 102 lb 8 oz multiplied by the specific gravity of
the ale. I suppose one excludes the barrel. Well, worse things are done in
cosmology.

Ralph Hancock
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M500 Special Issue
Eddie Kent
There will be no Special Issue this year, or next. The number of contribu-
tions is too small to justify a separate mailing, so from now on all comments
on courses will be on the Net. They will be anonymous unless the authors
give permission for their names to be used.

This publication has been running for some time now. It was an
idea dreamed up by the OU Mathematics Faculty; the name Bob Mar-
golis springs to mind. Early labourers included Marion Stubbs and Michael
Gregory, and of course I have always been hovering around.

Now it is over. It has been slain before and dragged itself back into con-
sciousness. But there are now too many competing sources of information
for the Special Issue to be justified.

In the future your views are still wanted. Contributions will be
edited in exactly the way they have always been, but instead of being
printed and sent out by our gallant Post Office, they will be lodged at
http://www.m500.org.uk/.

M500 Winter Weekend 2005
The twenty-fourth M500 Society Winter Weekend will be held on Friday
7th to Sunday 9th January 2005 at

Trevelyan College, Durham University.

This is an annual residential weekend to dispel the withdrawal symptoms
due to courses finishing in October and not starting again until February.
It’s an excellent opportunity to get together with friends, new and old, and
do some interesting mathematics in a leisurely and congenial atmosphere.

Ian Harrison is running the event and this year’s theme will be an-
nounced on the M500 web site nearer the time. Cost: £170.00 for M500
members. This includes accommodation and all meals from dinner on Fri-
day to lunch on Sunday. Add £30.00 for en suite accommodation. For full
details and a booking form, send a stamped, addressed envelope to

Norma Rosier.

Enquiries by email to norma@m500.org.uk. A booking form is also available
at www.m500.org.uk.

‘These are our permanent prices until further notice.’ — Takeaway menu.
[EK]
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