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Report upon Fibonacci numbers and quaternions

Dennis Morris

The real numbers, the complex numbers, the quaternions and the octonions
(Cayley numbers), R, C, H and K, are the only normed algebras over the real
field; R has order, commutativity and associativity; C has commutativity
and associativity but not order; H has associativity but neither order nor
commutativity; K does not have order or commutativity or associativity.
A complex number is two real numbers, one of which is associated with
the square root of minus one. A quaternion number is four real numbers,
three of which are associated with three different square roots of minus one.
An octonion number is eight real numbers, seven of which are associated
with seven different square roots of minus one. One can view a quaternion
as being two complex numbers and an octonion as being two quaternion
numbers. Quaternions are used for calculating rotations of space ships and
appear in quantum mechanics. As far as I know, octonians are used for
nothing.

Fibonacci numbers are numbers generated by the iteration Fn+1 = Fn+
Fn−1. Traditionally, the first two Fibonacci numbers are taken to be F1 =
F2 = 1. The sequence of numbers generated by this iteration with these
two starting numbers is thus 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . We will
generalize the sequence by allowing that F1 and F2 can be any real numbers
other than zero. Remarkably, for any values of F1, F2 ∈ R \ {0}, the ratio
Fn/Fn−1 tends to the same limit as n→∞. That limit is the golden ratio:
φ = 1.6180339887 . . . . This much is well known among mathematicians,
and it is this aspect of Fibonacci numbers that we are going to consider in
the complex, quaternion, and octonion number systems. Quite surprisingly,
if F1, F2 ∈ C \ {0}, then the real part of Fn/Fn−1 tends to the golden ratio
and the imaginary part tends to zero as n → ∞. Taking Fn = a + ib and
Fn−1 = c+ id, we find

Fn
Fn−1

=
ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

.

With reflection, we see that lim
n→∞

(
a

c
+
b

d

)
= 2φ, and so lim

n→∞

ad+ bc

dc+ dc
= φ

and, in an operational sense, c ≡ d. Thus we might expect that the real
part tends to the golden ratio. Similarly, in an operational sense, a ≡ b.
Thus we might expect that the imaginary part tends to zero.
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Quaternions are of the form a + îb + ĵc + k̂d for a, b, c, d ∈ R. Sim-
ilarly to complex numbers, we have the multiplicative identities î2 = ĵ2 =
k̂2 = −1. However, quaternions are not commutative. We have the further
identities îĵ = k̂, ĵk̂ = î, k̂î = ĵ, ĵ î = −k̂, k̂ĵ = −î and îk̂ = −ĵ. Addition
and multiplication are as one would expect:

a+ îb+ ĵc+ k̂d+ e+ îf + ĵg + k̂h

= (a+ e) + î(b+ f) + ĵ(c+ g) + k̂(d+ h),

(a+ îb+ ĵc+ k̂d)(e+ îf + ĵg + k̂h)

= (ae− bf − cg − dh) + î(af + be+ ch− dg)

+ ĵ(ag − bh+ ce+ df) + k̂(ah+ bg − cf + de).

Division is done, as with complex numbers, by use of the conjugate of
a quaternion. The conjugate of a + îb + ĵc + k̂d is a − îb − ĵc − k̂d. The
product of a quaternion and its conjugate is a2 + b2 + c2 + d2 regardless of
the order of multiplication;

a+ îb+ ĵc+ k̂d

e+ îf + ĵg + k̂h
=



(a+ îb+ ĵc+ k̂d)(e− îf − ĵg − k̂h)

e2 + f2 + g2 + h2

or

(e− îf − ĵg − k̂h)(a+ îb+ ĵc+ k̂d)

e2 + f2 + g2 + h2
.

Taking Fn = a + îb + ĵc + k̂d and Fn−1 = e + îf + ĵg + k̂h, we find two
expressions for Fn/Fn−1 from post-multiplying and from pre-multiplying:

(1)
Fn
Fn−1

=
ae+ fb+ gc+ hd

e2 + f2 + g2 + h2
+ î

eb− fa+ gd− hc
e2 + f2 + g2 + h2

+ĵ
hb− ga+ ec− fd
e2 + f2 + g2 + h2

+ k̂
fc+ ed− gb− ha
e2 + f2 + g2 + h2

,

(2)
Fn
Fn−1

=
ae+ fb+ gc+ hd

e2 + f2 + g2 + h2
+ î

eb− fa− gd+ hc

e2 + f2 + g2 + h2

+ĵ
−hb− ga+ ec+ fd

e2 + f2 + g2 + h2
+ k̂
−fc+ ed+ gb− ha
e2 + f2 + g2 + h2

.

The reader might like to reflect upon the symmetry of these answers,
in particular the correspondence between {a, e}, {b, f}, {c, g} and {d, h}.
Considering only the vector part of the quaternion (the i, j and k part), we
count the occurrences of positive and negative signs.
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a e b f c g d h

+ve 0 3 2 1 2 1 2 1
−ve 3 0 1 2 1 2 1 2

Bearing in mind that {a, b, c, d} > {e, f, g, h} because of the way the
sequence is constructed and that there is a correspondence between {a, e},
{b, f}, {c, g} and {d, h}, we see that the î, ĵ and k̂ parts of this quaternion
tend to zero as n tends to infinity (at different rates). The scalar part,
ae+ fb+ gc+ hd

e2 + f2 + g2 + h2
, tends to the golden ratio. As with complex numbers,

for quaternions, we have lim
n→∞

Fn/Fn−1 = φ, and this in spite of the non-

commutativity of quaternions.

Octonions are of the form

a+ b̂i0 + ĉi1 + dî2 + êi3 + f î4 + gî5 + hî6.

As with quaternions, there are multiplicative relations: î2m = −1, îmîn =
−înîm and {̂imîm+1 = îm+3, îm+3îm = îm+1, îm+1îm+3 = îm, where m
is modulo 7}. In the bracketed part of these relations, the îms form into

triads, {̂im, îm+1, îm+3}, that copy the triad î, ĵ, k̂ in quaternions. Addition
is as you would expect and, with regard to the above relations and to non-
commutativity, so is multiplication. The conjugate of a+ b̂i0 + ĉi1 + dî2 +
êi3 + f î4 + gî5 + hî6 is a− b̂i0 − ĉi1 − dî2 − êi3 − f î4 − gî5 − hî6, and this
is used to do division as with complex numbers and quaternions. Taking

Fn = a+ b̂i0 + ĉi1 + dî2 + êi3 + f î4 + gî5 + hî6

and
Fn−1 = z + yî0 + xî1 + wî2 + vî3 + uî4 + t̂i5 + ŝi6,

we seek expressions for Fn/Fn−1. The product of an octonion and its con-
jugate is

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

regardless of the order of multiplication. So

Fn
Fn−1

=
(a+ b̂i0 + ĉi1 + dî2 + êi3 + f î4 + gî5 + hî6)

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

× (z − yî0 − xî1 − wî2 − vî3 − uî4 − t̂i5 − ŝi6)
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=
az + by + cx+ dw + ev + fu+ gt+ hs

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î0
−ay + bz − cv − ds+ ex− ft+ gu+ hw

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î1
−ax+ bv + cz − du− ey + fw − gs+ ht

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î2
−aw + bs+ cu+ dz − et− fx+ gv − hy
z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î3
−av − bx+ cy + dt+ ez − fs− gw + hu

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î4
−au+ bt− cw + dx+ es+ fz − gy − hv
z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î5
−at− bu+ cs− dv + ew + fy + gz − hx
z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î6
−as− bw − ct+ dy − eu+ fv + gx+ hz

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

and

Fn
Fn−1

=
(z − yî0 − xî1 − wî2 − vî3 − uî4 − t̂i5 − ŝi6)

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

× (a+ b̂i0 + ĉi1 + dî2 + êi3 + f î4 + gî5 + hî6)

=
az + by + cx+ dw + ev + fu+ gt+ hs

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î0
−ay + bz + cv + ds− ex+ ft− gu− hw
z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î1
−ax− bv + cz + du+ ey − fw + gs− ht
z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î2
−aw − bs− cu+ dz + et+ fx− gv + hy

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î3
−av + bx− cy − dt+ ez + fs+ gw − hu
z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î4
−au− bt+ cw − dx− es+ fz + gy + hv

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î5
−at+ bu− cs+ dv − ew − fy + gz + hx

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2

+ î6
−as+ bw + ct− dy + eu− fv − gx+ hz

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2
.
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The în parts of this octonion tend to zero as n tends to infinity (at
different rates). The scalar part,

az + by + cx+ dw + ev + fu+ gt+ hs

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2
,

tends to the golden ratio. As with complex numbers and quaternions, for
octonions we have lim

n→∞
Fn/Fn−1 = φ.

For the convenience of the reader, we reproduce the scalar parts of
Fn/Fn−1 for complex numbers, quaternions and octonions. All of these
expressions tend to φ:

ac+ bd

c2 + d2
,

ae+ fb+ gc+ hd

e2 + f2 + g2 + h2
,

az + by + cx+ dw + ev + fu+ gt+ hs

z2 + y2 + x2 + w2 + v2 + u2 + t2 + s2
.

They rather look like normalized inner products, don’t they? So what have
inner products got to do with φ?

The above is but a small part of quaternion/octonion arithmetic. As
with the real numbers, you can do number theory, geometry and group
theory with quaternions and octonions. People wanting to know more are
referred to the following books.

J. P. Ward, Quaternions and Cayley Numbers, Kluwer, ISBN: 0-7923-
4513-4.

John H. Conway and Derek A. Smith, On Quaternions and Octonions,
A. K. Peters, ISBN:1-56881-134-9.

What’s next?
Chris Jones
In one of his intriguing books Douglas Hofstadter gives the beginning of a
sequence:

0, 1, 2, . . . .

And asks – What comes next? M500 readers will quickly see that the answer
is (approximately) 2.601× 101746. Which leaves two questions—how is the
sequence derived, and can readers give any better examples of surprising
sequences produced from simple rules?
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Generalized Fibonacci numbers
Tony Forbes
Let us start with a set of d different numbers

R = {r1, r2, . . . , rd}

and form the polynomial

(x− r1)(x− r2) . . . (x− rd). (1)

Write ck for the coefficient of xk in (1), so that ck is (−1)d−k times the sum
of all possible products of the ri taken d − k at a time. Define the d × d
matrix A by

A =



0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0

. . .
0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1
−c0 −c1 −c2 −c3 . . . −cd−2 −cd−1


.

Given R, we can now define a sort of d-dimensional generalized Fibonacci
sequence whose nth term is given by

F (n) = F (n,R) = [An]1,d,

i.e. the top right-hand element of An. The corresponding linear recurrence
formula is encoded in the last row of A,

F (n+ d) = [A]d · (F (n), F (n+ 1), . . . , F (n+ d− 1)).

For example, if we put R = {φ, φ̃}, where φ = (1 +
√

5)/2 and φ̃ =
(1−

√
5)/2, we have

(x− φ)(x− φ̃) = x2 − x− 1.

The coefficients are c0 = −1 and c1 = −1; so

A =

[
0 1
1 1

]
,

the familiar matrix that generates the Fibonacci numbers, 0, 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, . . . .
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If R consists of a single number, R = {α} say, then A = [α] and ob-
viously F (n, {α}) = αn. With a little more effort we can generalize the
two-dimensional case,

F (n, {α, β}) =
αn − βn

α− β
,

and immediately this gives a closed formula for the nth Fibonaccci number:

F (n, {φ, φ̃}) =
φn − φ̃n

φ− φ̃
=

(
1 +
√

5
)n − (1−√5

)n
√

5 2n
.

Similarly,

F (n, {α, β, γ}) =
αn

(α− β)(α− γ)
+

βn

(β − α)(β − γ)
+

γn

(γ − α)(γ − β)
,

F (n, {α, β, γ, δ}) =
αn

(α− β) (α− γ) (α− δ)
+

βn

(β − α) (β − γ) (β − δ)

+
γn

(γ − α) (γ − β) (γ − δ)
+

δn

(δ − α) (δ − β) (δ − γ)

and so on. The pattern is clear.

It is possible to obtain these formulae because by its construction the
matrix A has eigenvalues R, and therefore A can be diagonalized by a
suitable linear transformation. Indeed,

D =


r1 0 . . . 0
0 r2 . . . 0

. . .
0 0 . . . rd

 = Q−1 ·A ·Q,

where

Q =


r
−(d−1)
1 r

−(d−1)
2 . . . r

−(d−1)
d

r
−(d−2)
1 r

−(d−2)
2 . . . r

−(d−2)
d

. . .
r−11 r−12 . . . r−1d
1 1 . . . 1

 .
Since Dn is just a diagonal matrix with elements [Dn]i,i = rni , we can obtain
an explicit formula for An = Q ·Dn ·Q−1 and hence for [An]1,d,

F (n, {r1, r2, . . . , rd}) =

d∑
i=1

rni
(ri − r1) . . . (ri − ri−1)(ri − ri+1) . . . (ri − rd)

.
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Recall that in the theory of the Fibonacci sequence the ratio of successive
terms tends to a certain limit. In the general case we can use the formula
to compute this limit. Suppose for the time being that there is a unique
element α of R with maximum absolute value. Then the formula for F (n,R)
is dominated by a term of the form αn/((α− β)(α− γ) . . . ). Hence

lim
n→∞

F (n,R)

F (n− 1, R)
= α.

For the ordinary Fibonacci numbers, α = φ, the golden ratio.

Things get more complicated if there are two elements of R with the
same largest absolute value, α and −α, say. We assume that R has other
elements besides α and −α (if not, F (n,R) is identically zero). Call them
β1, β2, . . . , βd−2, so that R = {α,−α, β1, β2, . . . , βd−2}, and let

χ = (−1)d
(α− β1)(α− β2) . . . (α− βd−2)

(α+ β1)(α+ β2) . . . (α+ βd−2)
.

Since now F (n,R) is dominated by the terms involving αn and (−α)n, we
have

F (n,R) =
αn

(α+ α)(α− β1)(α− β2) . . . (α− βd−2)

+
(−α)n

(−α− α)(−α− β1)(−α− β2) . . . (α− βd−2)
+ . . . ,

and therefore
F (n,R)

F (n− 1, R)
→ α

1− (−1)nχ

1 + (−1)nχ
;

that is, the ratio doesn’t tend to anything. As you can see, it tends to
oscillate between the values α(1+χ)/(1−χ) and α(1−χ)/(1+χ). However,
if we consider instead two successive-plus-one terms, we do get a definite
limit,

F (n,R)

F (n− 2, R)
→ α2.

For example, put S = {0, 1,−2, 2}. Then d = 4, α = 2, χ = 1/3, the
two limits are 1 and 4, the general term of the sequence is

F (n, S) =
3 · 2n − (−2)n − 8 + 6 · 0n

24

and the recurrence is

F (n+ 4, S) = F (n+ 3, S) + 4F (n+ 2, S)− 4F (n+ 1, S),
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which is obtained by expanding the polynomial

x (x− 1)(x+ 2)(x− 2) = x4 − x3 − 4x2 + 4x

and then replacing xk by F (n+ k, S) in the equation

x4 − x3 − 4x2 + 4x = 0.

The first few terms are 0, 0, 0, 1, 1, 5, 5, 21, 21, 85, 85, 341, 341, 1365,
1365, 5461, 5461, 21845, 21845, 87381, 87381, . . . from which it is evident
that the two limits really are 1 and 4 and that

lim
n→∞

F (n, S)

F (n− 2, S)
= α2 = 4.

For another familiar sequence, let T = {t1, t2, t3},

t1 =
1 + u+ v

3
, t2 =

1 + ρ u+ ρ̄ v

3
, t3 =

1 + ρ̄ u+ ρ v

3
,

where

u =
3

√
19 + 3

√
33, v =

3

√
19− 3

√
33,

and

ρ =
−1 +

√
3 i

2
and ρ̄ =

−1−
√

3 i

2

are the two non-real cube roots of 1. After some elementary algebra during
which it helps to note that 1 + ρ + ρ̄ = 0, ρρ̄ = 1, ρ2 = ρ̄, ρ̄2 = ρ, uv = 4
and u3 + v3 = 38, we obtain

(x− t1)(x− t2)(x− t3) = x3 − x2 − x− 1.

The recurrence relation is therefore

F (n+ 3, T ) = F (n+ 2, T ) + F (n+ 1, T ) + F (n, T ),

which is just like Fibonacci except that each term is the sum of the preceding
three. The sequence begins 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274,
504, 927, 1705, 3136, 5768, 10609, 19513, 35890, . . . , and the ratio of two
consecutive terms tends to t1 ≈ 1.83929, the element of T with the largest
absolute value.
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How the other half thinks – Part I
Dennis Morris
When we view the real number line we see a left–right symmetry about
the number 0. The number 0 is the additive identity, and it occupies the
position at the symmetrical centre of the real number line. While ever we
do nothing more than add real numbers, the symmetry is preserved, but as
soon as we introduce multiplication we break that symmetry because the
multiplicative identity is +1. By symmetrical considerations, −1 ought to
be a multiplicative identity also. It does not take long to realize that any
multiplicative identities must be the same number, and so we cannot have
both +1 and −1 as multiplicative identities in the same algebra. But still,
−1 ought to be a multiplicative identity.

With +1 as the multiplicative identity, we have:

(+1)× (+1) = +1 because any number times the multiplicative
identity equals itself;

(+1)× (−1) = −1 because any number times the multiplicative
identity equals itself;

(−1)× (+1) = −1 because any number times the multiplicative
identity equals itself;

(−1)× (−1) = +1 because (−1)× (−1) = −1⇒ (−1) = (+1).

All the above means that positive numbers have two square roots within
the real number line but that the square roots of negative numbers are not
within the real number line. Because of this, we call the square roots of
negative numbers imaginary numbers. Anyone familiar with the complex
number plane will be aware that multiplication by

√
−1 corresponds to an

anti-clockwise rotation.

Now let us try it with −1 as the multiplicative identity; we have:

(−1)× (−1) = −1 because any number times the multiplicative
identity equals itself;

(+1)× (−1) = +1 because any number times the multiplicative
identity equals itself;

(−1)× (+1) = +1 because any number times the multiplicative
identity equals itself;

(+1)× (+1) = −1 because (+1)× (+1) = +1⇒ (−1) = (+1).
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All the above means that negative numbers have two square roots within
the real number line but that the square roots of positive numbers are not
within the real number line. Because of this, we call the square roots of
positive numbers imaginary numbers. Anyone familiar with the complex
number plane will be aware that multiplication by

√
+1 corresponds to a

clockwise rotation.

With a little consideration, we see that the whole structure of math-
ematics will work just as well with −1 as the multiplicative identity as it
does with +1 as the multiplicative identity. Thus, the symmetry that once
was broken is now reforged.

How the other half thinks – Part II

Part I is a bit of a swizz in that the same can be achieved by running the
number-line from right to left rather than from left to right and using minus
to mean plus. In essence, +1 is a rotation by 360◦ and −1 is a rotation by
180◦ and these are fundamentally different.

How the other half thinks – Part III

Scratch Part II for hyperbolic rotations.

Solution 199.2 – 30 matches
Use thirty matches to make a polygon of area 8 square matches
such that the vertices of the polygon have integer match coor-
dinates.

In the only reply we have, the offered solution (consisting of six 1×1 squares
and a 2×1 rectangle) was stretching the meaning of the word ‘polygon’ much
too far. Assuming it is not without interest, we give an answer involving
a legitimate (but non-convex) polygon—and to make it a little more of a
challenge we do not provide a picture of any kind.

Place thirteen matches pointing north
(
180
π arctan 5

12

)◦
west in a straight

line from (5, 0) to (0, 12), twelve matches pointing north at (4, 0), (4, 1),
(3, 2), (3, 3), (2, 4), (2, 5), (2, 6), (1, 7), (1, 8), (0, 9), (0, 10) and (0, 11), and
five matches pointing west at (1, 9), (2, 7), (3, 4), (4, 2) and (5, 0). The result
is a 5× 12× 13 right-angled triangle with some bits missing. The area is

1
2 · 5 · 12− 9− 7− 4− 2 = 8.

Always keep matches away from children.
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Solution 200.4 – Bouncing ball
There are two fixed spheres of radius 1; sphere A is at position
(−10, 0, 0) and B is at (10, 0, 0). A third ball, C, also of radius
1, bounces back and forth with perfect elasticity along the x-
axis between A and B. Then, just as it is bouncing off A, the
trajectory of C changes by 10−100 radians. How many further
bounces does C experience before it leaves the system?

Steve Moon

The basic set-up is shown in the upper diagram, opposite. The centre of
sphere C travels ≈ 16 before the collision with B. On colliding with B, the
vertical displacement is h1 ≈ 16θ1, where θ1 = 10−100.

Now consider the nth collision, as illustrated by the lower diagram for
C colliding with B. In this case Σhn is the combined vertical displacement,
|BC| = 2,

ψn = arcsin
Σhn

2
≈ Σhn

2
,

and for angle of incidence θn, the rebound angle is 2ψn + θn. We compute
the first few values of θn and Σhn.

Horizontal Vertical Aggregate Ratio

deviation displacement
∑n
k=1 hk

∑n
k=1 hk /

∑n−1
k=1 hk

θn hn

θ1 16θ1 16θ1 –

θ1 + 16θ1
= 17θ1

16 · 17θ1
= 272θ1

272θ1 + 16θ1
= 288θ1

18

17θ1 + 288θ1
= 305θ1

16 · 305θ1
= 4880θ1

5168θ1 17.94444 . . .

5473θ1 87568θ1 92736θ1 17.94427 . . .

98209θ1 1571344θ1 1664080θ1 17.94427 . . .

Thus, after the first three bounces we have h1 + h2 + h3 ≈ 5168θ1 and then
the ratios seem to settle at about 17.94427. Ball C leaves the system when
Σhk ≈ 2. Therefore we need to solve the equation

5168θ1 + 5168θ1(17.94427)n−3 = 2 (1)
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for n. Ignoring 5168θ1, which is small compared with 2, (1) simplifies to

(17.94427)n−3 =
2 · 10100

5168
≈ 3.86997 · 1096

or, on taking logs and rearranging,

n− 3 ≈ log(3.86997 · 1096)

log 17.94427
≈ 77.028.

Therefore the ball will have left the system after the 80th bounce.

Θ n

Ψ n

Ψ n

Ψ n+Θ n

B

C

S hk
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Tony Forbes
Actually the problem was inspired by a practical application.

If you ever watch the National Lottery draw on a Wednesday or Sat-
urday evening, you will notice that the randomizing device involves table-
tennis balls bouncing off each other in a manner that can be modelled by
something along the lines of the preceding analysis. As we have seen, it took
only the minutest nudge to knock the system off balance. Indeed the actual
lottery machine is much worse. Instead of two fixed balls and one bouncing
between them, we have 49 balls rebounding of each other and off the six
containing walls. Of course, it is the nonlinear surfaces of the balls (and
not the linear planes) that cause the system to behave in such a chaotic
manner.

So here is some advice if you play the lottery with a fixed set of numbers
and you feel trapped in the system. Perhaps you imagine the day when your
favourite numbers are drawn but you haven’t bought a ticket. Disaster! You
have missed out on a prize worth millions of pounds!

Well, almost certainly not. Buying a ticket changes the initial conditions
of the draw, and, as explained above, the system is extremely sensitive to
initial conditions. If in the original, ticketless state your numbers were
drawn, then in the new state the gravitational force of the ink on your
ticket would disturb the system enough to produce a totally different set of
numbers. If you see your numbers drawn, therefore, you are probably £1
better off than if you had spent the money on a ticket.

Now that we have mentioned the National Lottery, we offer another piece
of useful advice. When you next play, try not checking the result. Just
leave it. While the ticket remains unverified your life will continue in a
quantum superposition of states, one for every possible outcome, including
at least one state in which you are extremely wealthy. And while the re-
sult is outstanding you will not be tempted to spend money on any more
lottery tickets. Of course, once the deadline for unclaimed prizes expires
your quantum superposition will collapse into a state where your wealth is
diminished by £1.

And while we’re on the subject of bouncing balls, see if you can answer
this simple question from Jeremy Humphries:

During a legitimate snooker game how can you score 162 on a
single visit to the table?

See page 20 for another snooker problem.
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Problem 203.1 – Circles
Generalizing the thing on the cover of M500 198 (top row, third item,
below), compute the radius of the central circle assuming that the limiting
circle has radius 1. We illustrate for n = 3, 4, . . . , 11 but note that the
central circle for n = 3 is too small to be seen.

Problem 203.2 – Rotating digits
Find all integer solutions (b, n, a0, a1, . . . , an) of the equation

b (10nan + · · ·+ 10a1 + a0) = 10na0 + 10n−1an + · · ·+ 10a2 + a1

subject to the conditions that b, n ≥ 2, 1 ≤ an ≤ 9 and 0 ≤ ai ≤ 9 for
i = 0, 1, . . . , n− 1.
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Solution 199.3 – Two tangents

LinesAB andBC are tangents to the
circle. The centre of the circle, O, lies
on AC. If |BC| = 9 and |AD| = 3,
what is the value of r, the radius of
the circle? �

�
��

S
S
S
S
S
S
S
S
S
S
S
S

C 9 B

O

D

3

A

r

E

Keith Drever

Since the problem was published in a
newspaper we can assume you do not
have to be a rocket scientist to solve it.

Tangents BC and BE meet the circle at right angles and |BE| = |BC| =
9. So ∠AEO = ∠BCA = 90◦. Since 4ACB is a right-angled triangle and
|BC| = 9, we can guess that it is a 3 : 4 : 5 triangle with BC representing
the ‘3’ side. We can immediately see that the radius r is 9/2. To prove this,
we find side AE of the right-angled triangle AEO that should be 6. Indeed
|AE| =

√
|AO|2 − |OE|2 =

√
56.25− 20.25 = 6, as expected.

For a more mathematical solution, let x = |AE|. Then we have

x2 = (r + 3)2 − r2 and (9 + x)2 = 92 + (3 + 2r)2,

which simplify to

x2 = 3(2r + 3) and 9x = r(2r + 3).

Squaring the second equation and dividing by the first yields 2r3 + 3r2 −
243 = 0. Mathcad ‘polyroots’ gives the only real solution as r = 4.5.

Patrick Lee
Let ∠BAC = θ. Then |AE| = r cot θ. It is clear that |BE| = |BC| = 9,
so |AB| = r cot θ + 9. By similar triangles, (r + 3)/r = (r cot θ + 9)/9;
i.e. r2 cot θ = 27. Substituting cot θ = (2r + 3)/9 in the last equation and
rearranging gives 2r3 + 3r2 = 243.

We also had solutions from A. J. Moulder, Tony Huntington, Simon Geard,
Steve Moon, Ian Bruce Adamson and John Spencer. A. J. Moulder, who
solved the cubic 2r3 + 3r2 − 243 = 0 using a method described in the third
edition of Perry’s Chemical Engineers’ Handbook, says that this problem
was left with him by the chairman of his local U3A mathematics group.
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Problem 203.3 – Counting out

Tony Forbes
There are n objects arranged in a cir-
cle. They can be anything. In a typi-
cal application they could be n school-
children who are using the counting out
process described below to select one
of their number to perform an unpleas-
ant task of some kind. However, we
shall treat the objects as if they are just
0, 1, . . . , n − 1 arranged anti-clockwise
around the circle.

We perform the following process in
n stages.

Stage 1: Remove 0.

Stage k: Remove the kth number,
counting anti-clockwise starting from
the number adjacent to the one that
was removed in stage k − 1.

Record the numbers as they are re-
moved. Then you will have a permuta-
tion of 0, 1, . . . , n− 1. Convert the per-
mutation to standard cyclic form, omit-
ting all fixed points.

n
cycle
length

fixed points

3 2 0
4 3 0
6 5 0
7 6 0
8 3 0 3 4 6 7
9 7 0 6

10 9 0
11 8 0 7 10
14 13 0
15 14 0
17 15 0 12
23 20 0 8 15
35 34 0

101 99 0 94
127 126 0
128 127 0
130 129 0
151 148 0 75 91
399 396 0 70 353
491 488 0 236 375
644 641 0 160 633

For example, when n = 8 you should end up with the permutation
(0, 1, . . . , 7) 7→ (0, 2, 5, 3, 4, 1, 6, 7), which is (1, 2, 5) in cyclic notation.

The table on the right shows all those n ≤ 1000 where there is a single
cycle.

We ask: (i) Which n result in a single cycle. (ii) Clearly 0 is always a
fixed point of the permutation. What are the other fixed points, if any.

GCSE question: Last year 204 Japanese cars were imported by a
garage. This year the number of cars imported has increased by five twelfths.
How many cars have been imported this year?

Editor’s answer: 204.41666. . . .
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An alternative solution to the cups problem
Andrew Colin
The problem is this: you have m cups in a row, some the right way up and
some the wrong way up. ⋃⋃

· · ·
⋃⋂⋂

· · ·
⋂

Can you get all the cups the right way up if you are allowed to invert the
cups only n at a time? The problem appeared in M500 184 as ‘Cups and
downs’ by Paul Garcia.

Useful ideas. 1. Many moves are equivalent.

The problem definition does not state that the cups turned over must
be adjacent. It follows that if the number of cups turned per move is n,
then all moves which turn a cups from up to down, and b cups from down
to up where a + b = n are equivalent. Therefore the number of possible
distinct moves at any stage is at most n+ 1.

2. Parity of an arrangement.

Consider an arrangement where z cups are facing up. Then we define
p, the parity of this arrangement as z (mod 2). If z is even, p = 0. If z is
odd, p = 1.

Clearly any move which involves an even number of cups cannot change
the parity of the arrangement. Therefore it is impossible, by any sequence
of such moves, to arrive at an arrangement which has a different parity from
the starting position. In particular, it is impossible to change

⋂⋂⋂⋃
into⋂⋂⋂⋂

by any sequence that involves turning two cups at a time.

Since moves that involve an even number of cups won’t work for half
the initial arrangements, we shan’t consider them further. Instead consider
moves that turn an odd number of cups: 1, 3, 5, etc. Call this n.

A general algorithm for solving the cup problem when n is
odd. It is convenient to pretend that at the end we want all the cups to
face down. If you are looking for a configuration with k cups facing up, just
find any k cups in the initial configuration, stick labels on them and pretend
they are facing the other way.

We suppose that we are starting with a collection of m cups, of which
x are initially facing up, and m − x are already down; n is the number of
cups to be switched for each move.

If n = 1, the rule is trivial—just keep turning cups until they are all
facing down.
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For n > 2, there are three possible cases.

Case 1: n > m. You can’t apply the rule at all—there are not enough
cups to make a move.

Case 2: n = m. There is only one possible move. The problem can be
solved only if all the cups are initially facing up.

Case 3: n < m. All problems can be solved, as follows.

Rule 1. As long as x, the number of cups facing up, exceeds n, keep
turning down these cups in groups of n at a time. Then apply rule 2.

Rule 2. If x, the number of cups facing up, is now odd but less than n,
turn over a group which contains (x+1)/2 cups facing up, and n−(x+1)/2
facing down. This will bring the number of cups facing up to n− 1, which
is an even number. Apply rule 3.

Rule 3. If x, the number of cups facing up, is now even, turn over a
group that contains x/2 cups facing up, and n−x/2 cups facing down. This
will bring the number of cups facing up to n exactly. Apply rule 4.

Rule 4. Turn over the remaining n cups.

Example. Consider n = 5, with a starting group which has 24 cups of
which 18 are facing down.⋃⋃⋃⋃⋃⋃⋂⋂⋂⋂⋂⋂⋂⋂⋂⋂⋂⋂⋂⋂⋂⋂⋂⋂
Apply rule 1. Turn over five facing-down cups three times. This leaves three
cups facing down.⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋂⋂⋂
Apply rule 2. Turn over a group with two cups facing down and three facing
up. This leaves four cups facing down.⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋂⋂⋂⋂
Apply rule 3. Turn over a group with two cups facing down and three facing
up. This leaves five cups facing down.⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋂⋂⋂⋂⋂
Apply rule 4. Turn over the five cups facing down. The problem is solved.⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃
Crossnumber 202 solution

Across 1. 1352, 4. 36, 6. 939, 7. 2882, 9. 232, 10. 318, 13. 135, 14. 144, 17. 282,

18. 459, 19. 56; Down 1. 198, 2. 279, 3. 296, 4. 2822, 5. 3132, 8. 288, 10. 1822,

11. 2732, 12. 292, 15. 466, 16. 54
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Problem 203.4 – Cyclic quadrilateral
A quadrilateral is inscribed in a circle. In other words, it is a cyclic
quadrilateral—all four vertices lie on the circle. The sides are a, b, c and
d. Show that R, the radius of the circle, is independent of the shape of the
quadrilateral and is a function of a, b, c and d.

Another cyclic quadrilateral (again with side lengths a, b, c and d) has
a circle inside it which is tangent to all four sides. Show that r, the radius
of the inner circle, is also a function of just a, b, c and d.

What are R and r?

Problem 203.5 – 50p in a corner
This is like ‘Problem 200.4 – Circle in a box’ except that the coin has a
different shape and there is one less dimension.

What is the locus of the centre of a 50p piece lying flat in the (x, y)-
plane such that its edge is in contact with both the positive x-axis and the
positive y-axis?

To make a British 50p piece, draw a regular heptagon and round off
each side with an arc that has the opposite vertex as its centre. Then cut
the shape out of suitable sheet metal. (Or you could change a small amount
of your local currency to Sterling.)

Problem 203.6 – Loops
There are n pieces of string lying in a heap on the table. Choose two ends
at random and tie them together. Choose two unused ends from the 2n− 2
remaining and tie them together. And so on until there are no free ends
left.

What is the probability of creating a single loop of string?

Problem 203.7 – Rhombus
A snooker table has a playing area of sides a × b, a > b, and its cushions
have coefficient of elasticity e, 0 < e ≤ 1. A ball, initially placed in contact
with the a side, is struck so that it leaves at angle θ to the side. The ball
then follows a rhombus-shaped path and returns to its starting point.

Show that t = tan θ satisfies the quadratic

2 a b t2 + (a2 − b2)(1 + e) t− 2 a b e = 0.
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Mathematics in the kitchen – IV
ADF
For this experiment you will need some doughnuts and a sharp knife. By
‘doughnut’ I mean one of those ring-shaped cakes which you can purchase,
cooked while you wait, at around 10 for £1 from a specialist stall such as
the one opposite the Argos store in Kingston-upon-Thames. Each doughnut
should be a reasonable approximation to a torus.

Take a doughnut and (using the knife) make a single plane cut that
passes through the doughnut’s centre of symmetry. Try various angles.

Observe first that if the cut is made horizontally, the boundary of the
resulting cross-section consists of two concentric circles—one corresponds
to the outer rim of the torus and the other to the inner rim. Let us call the
radii of the circles R + r and R − r, repsectively. At the other extreme, a
vertical cut produces two circles of radius r each with centres separated by
distance 2R.

Now make cuts at various intermediate angles. Before trying these
out, you might like to speculate as to how the two large concentric circles
(resulting from a cut at 0◦ to the horizontal) become two widely separated
small circles as the angle varies continuously from 0◦ to 90◦.

Finally, assuming that you still have one
doughnut left, make a cut at the specific angle
α = arcsin(r/R). You do not need precise
measurements but in practice this is a little

��
��

��
��

tricky. Ensure that, as well as passing through the centre of symmetry, the
knife makes a tangent to the torus surface at the start of the cut and also
when it comes out of the torus at the other end. Try to guess what the
boundary of the cross-section will look like before you perform the cut.

For the enlightenment of readers, especially those for whom knives and
doughnuts are unavailable, there will be a full explanation in M500 204.
Meanwhile, I would like mention that this topic was inspired by a short talk
by Ian Harrison at the start of the 2005 M500 Winter Weekend. Judging
from the reaction of Ian, myself and the rest of the audience, you will surely
be utterly amazed at the result of the tangential cut!

Warning: sharp kitchen implements should always be used with care.
And if you intend to eat the doughnuts after the experiment, please wash
your hands (and the knife) before you start.
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Letters to the Editor

Useless statistics
Dear Tony,

I was reminded of the article ‘Odds and ends’ in M500 201 when we
were told:

BBC London news, 6.30 14 January, 2005 – £12.3 billion is spent
by Britons on fast food, that is, £204 per person.

If I divide 12.3 billion by 60 million, I get 205, so obviously our BBC statis-
tician wanted to be more precise than that and used 60.294118.

I have to report, however, that last year my great-aunt Matilda was on
holiday in Switzerland for two weeks; my grandfather fell off his ladder and
couldn’t get to the kebab for six weeks; my eldest son broke his jaw whilst
playing football and can only take liquids, and ....

A statistic such as this may have meaning to another statistician but to
the average TV viewer it is pointless.

Regards,

Ron Potkin

Toilet paper
Something similar to our ‘Problem 197.5 – Toilet paper’ came up on one
of Marcus du Sautoy’s BBC4 programmes. The question (set by some DJ)
was:

A vinyl record is 31 cm in diameter. The outside non-playable
bit is 1 cm wide. The inside non-playable bit is 2 cm, the label is
5 cm diameter. There are 30 grooves per cm. How far does the
needle travel when you play the music from beginning to end?

One contestant pointed out that the circles get smaller as you go further in,
so you will have some kind of diminishing series. Another came up with a
solution of 6000π — I didn’t get how she got that figure because I was busy
marvelling at how four bright people could be so stupid. None of them got
it. Nor did they get the answer to a subsidiary question after they were told
the answer, which was, ‘Why was the answer approximate (as in “A little
more than”)?’

Eddie Kent
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More on -plexes
Dear Eddie and Tony,

Mindaugas has joined in and sent the following list of -plexes (or -plets,
just change −x to −t), with his explanation, below. The 21-and-up sequence
is much more concise than JRH’s [M500 199 26].

None of them except decemplex is attested, but their building seems to
be quite straightforward. Centuplex again exists. ‘26-fold’ is problematic
because no word for ‘sixfold’ is attested, but let it be. Vigintisimplex (and
triginta- etc. -simplex) is also a bit of a problem, because it might sound
like ‘twenty-simple’, but ‘simplex’ is exactly ‘one-fold’. I think that some
of these words, particularly those from 11 to 19, can’t be built in any way
without sounding weird.

Thus: 10 decemplex, 11 undecimplex, 12 duodecimplex, 13 tredecimplex,
14 quattuordecimplex, 15 quindecimplex, 16 sedecimplex, 17 septendecimplex,
18 duodevigintiplex, 19 undevigintiplex, 20 vigintiplex, 21 vigintisimplex, 22
vigintiduplex, 23 vigintitriplex, 24 vigintiquadruplex, 25 vigintiquintuplex,
26 vigintisextuplex, 27 vigintiseptemplex, 28 duodetrigintaplex, 29 undet-
rigintaplex, 30 trigintaplex, 31 trigintasimplex, etc., 40 quadragintaplex, 50
quinquagintaplex, 60 sexagintaplex, 70 septuagintaplex, 80 octogintaplex, 90
nonagintaplex, 98 nonagintanovemplex (not duodecentuplex), 99 undecentu-
plex, 100 centuplex.

Best wishes,

Ralph Hancock

Means on a circle
John Bull’s article, ‘On the average’ [M500 201 1] made me think of the
following. We have a regular polygon with n vertices, n > 2, inscribed in
a circle of unit radius. Consider the chords from any one vertex to each of
the others. Then for the squares of the chord lengths, we have

arithmetic mean =
2n

n− 1
,

geometric mean = n2/(n−1),

harmonic mean =
12

n+ 1
.

Sebastian Hayes
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Solution 190.6 – Triangle
David Porter
A rather late suggestion for the ruler-and-compasses construction required
by this problem but possibly different enough from those given in M500
193 to still be of interest. The problem is to locate P , given the equilateral
triangle GHC, as in the diagram opposite. Likewise for any regular polygon.

Consider the general case where we have a regular polygon with internal
angle β. In the diagram, let C be one corner of the polygon and let A and
B be the centre points of the two sides that meet at C. We thus require a
construction that gives the point P such that PA = 2PB and the angles
θ and φ are equal. First, if θ = φ the opposite angles of the quadrilateral
ACBP are supplementary and hence ACBP is a cyclic quadrilateral and
so the point P lies on the circumscribing circle of triangle ABC.

My construction is as follows.

(1) Draw the circumscribing circle of triangle ABC.

(2) Drop the perpendicular from A onto BC at D.

(3) Extend CB to the left and mark E on it such that ED = 2AC.

(4) Draw the perpendicular at E and mark F on it such that EF = DA.

(5) Draw the straight line connecting F to C; then the point P at which
this cuts the circle is one corner of the required internal polygon.

Proof. Let α be the angle between CB and CF ; then by the sine rule on
triangles CPB and CPA we have BP/ sinα = PC/ sin(π − θ) = PC/ sin θ
and AP/ sin(β − α) = PC/ sinφ = PC/ sin θ. Hence

BP/ sinα = AP/ sin(β − α).

Rearranging and expanding the sine of the composite angle gives us

AP sinα = BP (sinβ cosα− cosβ sinα)

which, providing α is not zero, we can divide through by sinα to give
AP = BP (sinβ/ tanα− cosβ). So

AP = BP ((DA/AC)/(EF/EC)−DC/AC).

But EF = DA; so AP = BP (EC −DC)/AC and since EC −DC = 2AC
this yields AP = 2BP as required.

Though this proof is based on a diagram in which β is acute, the con-
struction as described also works for larger angles whilst the proof remains
unchanged provided we assume DC becomes negative when D falls to the
right of C.
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Mathematics Revision Weekend 2005
Preliminary announcement

The 31st M500 Society Mathematics Revision Weekend will be held
at Aston University, Birmingham over 9–11 September 2005.

The Weekend is designed to help with revision and exam preparation,
and is open to all OU students. Tutorial sessions start at 19.30 on the
Friday and finish at 17.00 on the Sunday. We plan to present most Open
University mathematics courses.

The cost, including standard accommodation and all meals from bed
and breakfast Friday to lunch Sunday, will be £150. Add £22 for en-suite
facilities. The cost for non-residents will be £75. M500 members get a
discount of £10. See the Society’s web page, www.m500.org.uk, for full
details and an application form, or send a stamped, addressed envelope to

Jeremy Humphries, M500 Weekend 2005.
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