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Machin’s formula
Bryan Orman
A turning point in the history of the calculation of π occurred with the
discovery, by Scotsman James Gregory in 1671, of the arctangent series

arctanx = x− 1
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Three years later Gottfried Wilhelm Leibniz independently found the same
arctangent series and published it along with an important special case,
x = 1:
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A nice looking result but completely useless when it comes to actually de-
termining a decimal approximation to π. Indeed, 300 terms are required for
two decimal place accuracy!

In 1706, Englishman John Machin used the formula

π

4
= 4 arctan
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239

and Gregory’s arctangent series to calculate π to 100 digits. Machin’s for-
mula is particularly useful since arctan 1/5 has a very simple series and
arctan 1/239 converges rapidly.

The mathematical literature has many formulae for π/4; one of Euler’s
is
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which is not as efficient as Machin’s formula. Are there any other Machin
type formulae? That is, formulae of the kind

π
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One way of examining this formula is to split it into two coupled equa-
tions:
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.

Solving the first of these for P/Q gives

P

Q
=

√
2(C2 + 1)− (C + 1)

C − 1
,
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and requiring that P and Q be integers, write
√

2(C2 + 1) = 2N , so that
C2 − 2N2 = −1.

To solve this equation note that the even convergents p2k/q2k of the
continued fraction representation of

√
2 satisfy

p22k − 2q22k = − 1

(Burton [1, page 325]). The pn and qn are defined by pn + qn
√

2 = (1 +√
2)(pn−1 + qn−1

√
2) with p0 + q0

√
2 = 1 +

√
2, giving

pn = pn−1 + 2qn−1,

qn = pn−1 + qn−1,
p0 = q0 = 1.

Alternatively, pn +qn
√

2 = (1+
√

2)n+1. Also note that p2n +p2n+1 = 2q2n+2

and q2n + q2n+1 = q2n+2.

With the identifications C = p2k and N = q2k we have
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Then
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Further examination of the properties of p2k and q2k yields four identities:
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Note that the ratio P/Q reduces to the ratio of either consecutive numera-
tors or consecutive denominators of the convergents of

√
2. Indeed, in the

limit these identities become

2 arctan(
√

2− 1) =
π

4

and P/Q is a convergent of
√

2− 1.
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We now examine the second of the coupled equations.

Solving for B gives

B =
Q+

√
P 2 +Q2

P

and so we need
√
P 2 +Q2 to be an integer. There are two cases to consider

since P 2 +Q2 is either p2n + p2n+1 or q2n + q2n+1, n = 0, 1, 2, . . . .

Let p2n + p2n+1 = u2, u an integer. Now pn is odd for all n since pn =
pn−1+2qn−1 and p0 = 1. So p2n ≡ 1 (mod 4) for all n, giving u2 ≡ 2 (mod 4).
But u2 ≡ 0 or 1 (mod 4); hence no solutions in this case.

Let q2n + q2n+1 = v2, v an integer. Since q2n + q2n+1 = q2n+2 and p22n+2 −
2q22n+2 = (−1)2n+3, we require p22n+2 + 2v4 = −1. What are the solutions
of w2 − 2v4 = −1? There are only two: w = 1, v = 1 and w = 239, v = 13
(Mordel [2, page 271]).

Hence p6 = 239 and q6 = 132 = 169 corresponding to q22 + q23 = 52 +
122 = 169 = q6. And

B =
q3 +

√
q22 + q23
q2

= 5.

Machin’s formula follows and there are no others of that type.
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A question that came up at this year’s M500 Winter Weekend concerned the
calculation of the Nth digit of π. Do we need to compute all the previous
digits as well? Surprisingly, the answer is ‘no’ if you are prepared to work
in binary. In this case

π ≈ 11.0010010000111111011010101000100010000101101000110000100011.

The computation is possible by a formula of David Bailey, Peter Borwein
and Simon Plouffe:

π =

∞∑
n=0

1

16n

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)
.

This also works well for hexadecimal:

π ≈ 3.243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e.
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Hailstones
Ron Potkin
This article is concerned with the Collatz problem, sometimes called ‘3n+1’
or ‘hailstones’. It has been known about for the last fifty years and has been
given a variety of names.

The problem is based on the following very simple sequence.

(a) Take any positive integer.
(b) If it is even, divide by 2.
(c) Stop if you reach 1.
(d) If it is odd, multiply by 3 and add 1.
(e) Using the new number, return to step (b).

It is conjectured that the sequence will always terminate at 1. Here are two
examples using 13 and 23:

(i) 13, 40, 20, 10, 5, 16, 8, 4, 2, 1;
(ii) 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1.

The problem seems very simple but it has proved intractable. For num-
bers up to 26, the sequences end in a few steps but when you reach the
number 27 it becomes more complicated. The sequence fluctuates up and
down but eventually reaches 1 after 111 steps. At some point the sequence
reaches over 9000.

There is a related function which is identical in all respects except that
in step (d), 1 is subtracted instead of being added; i.e. n→ 3n− 1. In this
case, some sequences do not end in 1. For example, 5 reduces to 7 and 7
reduces to 5. There is also a second longer loop: 17–25–37–55–41–61–91–17.
There may be others.

At first glance, one would be forgiven for thinking that the answer is
‘obvious’, but try to explain why the ‘27’ sequence is so long. Isn’t it possible
that there is a similar sequence that grows forever and, if there are loops
within the 3n − 1 sequence, why shouldn’t the same apply to 3n + 1? A
3n + 1 sequence can be of any length. The question is: will it always end
in 1? This article does not solve the conjecture; it merely highlights areas
of interest and, hopefully, gives structure to the problem.

A modification. Below, the algorithm has been revised without losing
generality.

(a) Take any positive odd integer greater than 1.
(b) Multiply it by 3, add 1 and divide the result by 2.
(c) If the new number is even, divide by 2 and go to step (c).
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(d) If the result is 1 then stop.
(e) Using the new number, go to step (b).

Step (a). A number of the form x ·2n (where x is a positive odd integer)
will eventually reduce to x; so we can ignore even integers as the start of a
sequence.

Step (b). Applying the function 3x+ 1 to an odd integer will result in
an even number that we can divide by 2.

Step (c). Remove all powers of 2 from the number.

Repeating 13 and 23 with this revision gives

(i) 13, 5, 1;
(ii) 23, 35, 53, 5, 1.

They have been considerably shortened, making the sequences more man-
ageable. The sequence starting with 27 is reduced to 41 steps.

Definitions. (1) The new step (b) can be defined as a function: q(x) =
(3x+ 1)/2. We will be able to iterate this in some instances, e.g. q(7) = 11,
q2(7) = 17 and q3(7) = 26.

(2) Steps (b) and (c) can be defined as a function r(x) = (3x + 1)/2n

where the variable n reduces 3x+ 1 to an odd number.

(3) There is no easy way to handle step (c) using normal mathematical
operations so we will define it using the equation x = a2n (where a is an
odd integer) from which we obtain

P (x) = a; e.g. P (12) = 3 and P (7) = 7;
N(x) = n; e.g. N(12) = 2 and N(7) = 0.

It is not the intention to burden the reader with too many functions. The
q function is used frequently. The P and N functions are used as a pair for
indexing as described later. The r function is only used once (in Theorem 1).
With regard to P and N , there is also a similar set related to x = a3n but
these have been avoided.

(4) A subsequence is defined as the set of integers in a sequence ending
with an even number. So, for example, {7, 11, 17, 26} is a subsequence. This
can be obtained by iterating the function q as above.

Theorem 1. Integers of the form 4x + 1 need not head sequences
because r(4x+ 1) = r(x), where x is an odd positive integer.

Proof. Since x is odd, we can express it as 2b+ 1 and so we have

r(x) = r(2b+ 1) = (6b+ 4)/2 = 3b+ 2
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and
r(4x+ 1) = r(8b+ 5) = (24b+ 16)/23 = 3b+ 2. �

Note that r(x) = q(x) ≡ 2 (mod 3). This is developed later. It follows
that having eliminated even numbers and 4x + 1; we need only consider
sequences starting with 3, 7, 11, 15, . . . .

Theorem 2. Let f(a, n) = a2n+1 + 2n − 1. Then q(f(a, n)) = b2n +
2n−1 − 1 for n > 0.

Proof. Multiply by 3 and add 1 to get 3a2n+1 + 3 · 2n − 2. Divide
by 2 and rearrange to get 3a2n + 3 · 2n−1 − 1 = b2n + 2n−1 − 1, where
b = 3a+ 1. �

The significance of the variable b will be seen later.

The effect of this can be seen in the following table where, alongside the
subsequence starting with 31, the binary equivalents and the values of the
variables a and n are listed.

Decimal Binary Variable a Variable n

31 11111 0 5
q(31) 47 101111 1 4
q(47) 71 1000111 4 3
q(71) 107 1101011 13 2
q(107) 161 10100001 40 1
q(161) 242 11110010 121 0

The variables are easily obtained. For example, using q(71) = 107 as
an example, a = ((107 + 1)/22 − 1)/2 = 13. Using our notation, this is
(P (107 + 1)− 1)/2; n = N(107 + 1) = 2.

Variable n will decease by 1 at each iteration. We can make its value
as great as we wish. If we set it to (say) 10, we know that the sequence will
be at least 10 steps in length. If we set it to 10 billion, it will be at least 10
billion steps. In other words, we could create a sequence of arbitrary length.

Table a2n+1 + 2n − 1. The following table (M) is derived from the
function f(a, n). It is only an extract but it can be extended easily using a
spreadsheet. The variable a runs down the first column from 0 to 15. The
variable n runs across the second row from 0 to 5. The first row gives an
indication of how the end of each number in that column appears in binary.
The numbers in bold track the sequence 7–11–17–26–13–20–10–5–8–4–2–1.
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Binary 0 01 011 0111 01111 011111

a n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

0 0 1 3 7 15 31
1 2 5 11 23 47 95
2 4 9 19 39 79 159
3 6 13 27 55 111 223
4 8 17 35 71 143 287
5 10 21 43 87 175 351
6 12 25 51 103 207 415
7 14 29 59 119 239 479
8 16 33 67 135 271 543
9 18 37 75 151 303 607
10 20 41 83 167 335 671
11 22 45 91 183 367 735
12 24 49 99 199 399 799
13 26 53 107 215 431 863
14 28 57 115 231 463 927
15 30 61 123 247 495 991

(1) The values increase from 7 to 11 to 17 to 26 whilst at each step the
row number (a) increases to 3a + 1 and the column number (n) decreases
by 1.

(2) When n reaches 0, the row number is 13. Move to that number,
which is in row 3, column 1.

(3) The next number is q(13) = 20 and it is in row 10, column 0. Move
to that number at row 5, column 0.

(4) Observe that 5 is odd, so move to that number in row 1, column 1.

(5) Observe that q(5) = 8 is in row 4, column 0. This time we move to
row 2 and then row 1 in column 0 at which point we stop.

Explanation. There are three actions.

Action 1: q(Ma,n) reduces to M3a+1,n−1, where n > 0. This shows that
for any value of x, q(x) will only lie on the rows 1, 4, 7, . . . 3a + 1. Relate
this to Theorem 2:

q(a2n+1 + 2n − 1) = b2n + 2n−1 − 1,

where b = 3a+ 1.

Action 2: If a is even and n = 0, the next integer in the sequence
after Ma,0 is Ma/2,0. Continue moving up column 0 until we reach 1 (the
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target) or we reach an odd-numbered row. It is equivalent to step (c) of the
algorithm.

Action 3: If a is odd and n = 0, we select the integer a at Mp,q. Thus
p = (P (a+ 1)− 1)/2 and q = N(a+ 1).

I have called action 3 ‘bouncing back’ because, having travelled diago-
nally down to and then up column 0, we are bounced into a new column in
the table.

Theorem 3. Integers in rows 3a+ 1 are of the form 3x+ 2.

Proof. f(3a+1, n) = (3a+1)2n+1 +2n−1 = 3(a2n+1 +2n−1)+2. �

The effect is that in any subsequence, all numbers after the start equal
3x + 2. Following similar arguments, it can be shown that integers in the
remaining two rows constantly switch between 3x + 1 and 3x according to
whether a and n are odd or even.

So we have three types of numbers.

2 (mod 3): Apart from the starter, subsequences will contain only this
type. The q function will never result in 1 (mod 3) or 0 (mod 3).

1 (mod 3): These numbers only arise as a result of division by 2 in
column 0 and ‘bouncing back’ into a new column.

0 (mod 3): These numbers will never occur in a sequence other than as
a starter. They can never occur in a 3a+ 1 row.

Conjecture. Earlier we concluded that only numbers of the form
4x+ 3 need start a sequence. Now consider the three forms of integer.

First, since all numbers of the form 3x+2 can be derived from a previous
number in the sequence there is no need to consider it as a starter. In other
words, there is a number that will reduce to 2 (mod 3). So it would seem
that 3x+ 2 need not be a starter.

Second, although 3x + 1 will never occur within a subsequence, it will
occur somewhere within column 0 because, as we ascend dividing by two,
2 (mod 3) can lead to 1 (mod 3). It follows that 3x+ 1 can be derived from
3x+ 2 on a 3a+ 1 row and ‘bounced back’. This is not proved, but if true
then 3x+ 1 need not be a starter.

This leaves 3x, which can never hit a 3a+1 row and consequently, unless
it is a starter, will never appear in a sequence. So only 3x need be a starter.

By resolving 3x and 4x+3 we can reduce our list further to 3 (mod 12);
that is, 3, 15, 27, 39, 51, . . . .
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Unanswered questions. Loops. Are loops possible? Is it possible to
bounce back from column 0 with a number that is already in the sequence?
If duplication does occur, it can only be caused by a bounced back number.
No such duplication is known; if it did occur, the conjecture is disproved.
Can we show that this is not possible?

Inversion. Can we invert the function and, starting from 1, derive any
positive integer? What are the obstacles? Is it entirely hit or miss, or are
there rules by which we can get back to any number? Of course, if the
answer is positive then the conjecture is solved.

Loose ends. Yes, there is a loose end. We know that the q function
always results in 3x + 2. But we also know that 3x + 2 can occur as we
travel up column 0. Is there redundancy here? Why ‘bounce’ it back when
we already know the result of q? The number 5 is of this type. The only
sequence ‘passing through’ 5 is started by 3 (3, 10, 5, 16, 8, 4, 2, 1). All
other sequences including 5, and that is the majority of them, are as a result
of it ‘bouncing back’. So does that mean that all sequences apart from this
one are redundant?

Finally. We know that sufficient iterations of an odd number will
eventually hit column 0. The formula is ((3/2)n(x+1)−1)/2, where n is such
that (x+1)/2n is an odd number. Or, equivalently, (3N(x+1)P (x+1)−1)/2.
That will get you to a number in column 0. But if it is even, further
divisions by 2 will be needed to get an odd number, giving us an even
more complicated expression P (3N(x+1)P (x+ 1)− 1). Equally, the root of
a number in column 0 may be found. Thus ((2/3)n(x+ 1)− 1)/2, where n
is such that (x+ 1)/3n, removes all factors of 3; x = 3a+ 2, a is odd.

Problem 204.1 – Jigsaw
(i) For which x and y is it possible to make an x × y jigsaw puzzle which
has the same number of boundary pieces as interior pieces?

(ii) Estimate how long it takes to complete a jigsaw puzzle of n pieces,
giving the answer as an order-of-magnitude approximation as n tends to
infinity. Is the time determined by the difficulty of locating each piece?

Assume that the pictures are of reasonably constant squareness and
complexity, and that the pieces are of approximately constant size, say
2 cm × 2 cm, regardless of the value of n. Assume also that you have only
one transportation device (say a helicopter) for moving pieces from the box
to their correct places. (But note that a helicopter has a limited range; so
you will need to consider how to create fuel dumps.)
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Slicing a torus in half
Tony Forbes
What is the intersection of a torus and a plane that passes through its centre
of symmetry?

In the previous issue we set the problem as a practical exercise involving
doughnuts and a knife (‘Mathematics in the kitchen – IV’). Now it is time
to do some theory.

One way of constructing a torus is to take a circle of radius r and rotate
its centre around the circumference of a circle of radius R. If we assume
that the torus is lying flat, parallel to the (x, y)-plane and with the centre
of symmetry at (0, 0, 0), then it can be represented by

T = {((R+ r cos θ) cosφ, (R+ r cos θ) sinφ, r sin θ) : 0 ≤ φ, θ < 2π}. (1)

Here, (r cos θ cosφ, r cos θ sinφ, r sin θ) is a circle of radius r, centre at the
origin, in a plane at angle φ to the (x, z)-plane. To make the torus we
translate it to the point (R cosφ,R sinφ, 0).

Also we can represent the slicing plane by the set

P = {(x, y, x tanα) : x, y ∈ R},

which passes through the y-axis and makes an angle α to the x-axis.

Therefore T ∩ P is given by r sin θ = (R + r cos θ) cosφ tanα, which
simplifies slightly to

cosφ =
r cotα sin θ

R+ r cos θ
. (2)

Since the left-hand side must lie in [−1, 1], the range of θ for which (2) is
valid is restricted if cotα is large. In particular, (2) does not make sense
when α = 0; however, it is clear that in this case the intersection consists of
two concentric circles, the inner rim and the outer rim of the torus, of radii
R− r and R+ r.

We present some results on the next page. Reading left to right, top to
bottom, we show the intersection as a pair of black curves for α equal to 0◦,
20◦, 26◦; 26.9◦, arcsin(r/R) ≈ 27.03569◦, 27.1◦; 27.5◦, 30◦, 40◦; 60◦, 74◦

and 88◦. The radii are r = 1, R = 2.2. The view is from a long way off in
the direction of (− sinα, 0, cosα). That is, we are looking at the origin from
orthogonally above the cutting plane. The x-axis goes up the page and the
y-axis to the left. Only the half of the torus that lies below the plane is
shown.
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Interestingly, the sequence of pictures reveals how the two concentric
circles become transformed into two separated circles as α varies continu-
ously from 0◦ to 90◦. The middle picture in the second row is the transition
point at which the curves merge and then separate. As you can see, the in-
tersection appears to consist of two circles, centred at (0,−r, 0) and (0, r, 0),
each of radius R. We shall now prove that this is really so.

The relevant angle is α = arcsin(r/R). Substituting into (2) and noting
that cotα =

√
R2 − r2/r, we obtain

cosφ =
sin θ
√
R2 − r2

R+ r cos θ
.

We now substitute this value of cosφ into (1) to get the x, y and z coordi-
nates of T ∩ P. Straightaway we have

x = sin θ
√
R2 − r2 and z = r sin θ.

For the y coordinate we must be careful. When we substitute cosφ into
the second coordinate of (1), we need to consider both square roots in the

formula sinφ = ±
√

1− cos2 φ. Thus we obtain two values for y:

y− = R cos θ − r and y+ = R cos θ + r,

corresponding to the left-hand and right-hand circles, respectively. Finally
we verify that

x2 + (y− − (−r))2 + z2 = R2 and x2 + (y+ − r)2 + z2 = R2,

the correct equations for circles of radius R centred at (0,±r, 0).

There is another interesting phenomenon. If you look again at the
sequence, you will see that in the second picture there are no points of
inflection (places where the radius of curvature changes sign). However, in
the third picture the outer curve has acquired four such points symmetrically
placed about the x- and y-axes. So there must be a transitional value of
α after which four points of inflection appear, and when R/r = 2.2 that
value lies somewhere between 26◦ and 26.9◦. Similarly, in picture 8 the
two points of infection present in each of the curves—which look rather like
satsuma segments—have disappeared when we get to picture 9. So there is
yet another special value of α. I leave it for someone else to compute the
exact values of these two transitional α s.
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Problem 204.2 – Surface area of a torus
Show that the surface area of a cylinder of length 2πR and radius r is 4π2rR.
Show that this formula also holds for a torus with the same parameters r
and R, r < R, so that 2πR is the length of the circular axis of the tube
and r is its radius. Thus when you construct a torus from a cylinder by
joining the two open ends together, the surface area lost by compression on
the inside is exactly balanced by the stretching on the outside.

We now ask: Is it always true that a tubular shape made from a cylinder
has the same surface area? For instance, what happens if you make an
elliptical torus-like object?

Problem 204.3 – Area of an annulus ����&%
'$

Keith Drever
An annulus is a disc of radius A with a central hole of radius a. Can you
devise a method to find its area by taking only one measurement?

Problem 204.4 – Ones
Show that

11

10
· 1111

1110
· 111111

111110
· 11111111

11111110
· . . . = 1.101001000100001000001 . . . .

Show that this is true in any number base, not just 10. For example, when
the base is 2 we have (using decimal notation)

3

2
· 15

14
· 63

62
· 255

254
· . . . =

∞∑
n=0

2−n(n+1)/2.

Problem 204.5 – Circles
Consider a triangle with vertices A, B and C. Let Q the centre of the in-
circle. Let QA be the centre of the escribed circle that touches AB extended,
AC extended and BC between B and C. Let QB and QC denote the centres
of the other two escribed circles defined similarly. Show that

|QQA||QQB ||QQC |+ d
(
|QQA|2 + |QQB |2 + |QQC |2

)
= 4d3,

where d is the diameter of the circumcircle.
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Problem 204.6 – A triangle property
Dick Boardman
First some terminology. Let A, B and C be the vertices of a triangle. A
median is a line joining a vertex to the mid-point of the opposite side; an
altitude is a line joining a vertex to the opposite side (possibly extended)
and meeting it at 90◦; a perpendicular bisector is a line passing through
the mid-point of a side at 90◦; and an angle bisector is a line that passes
through a vertex splitting the angle there into two equal halves.

As is well known, the following triples of lines have common intersec-
tions.

(i) The medians. The intersection is the triangle’s centre of gravity.

(ii) The altitudes. The intersection is the orthocentre of the triangle.

(iii) The perpendicular bisectors of the sides. The intersection is the
centre of the circumcircle, the circle that passes though A, B and C.

(iv) The angle bisectors. The intersection is the centre of the in-circle,
the unique circle inside the triangle that is tangent to the three sides.

Not so well known (at least to Tony Forbes and me) is that if the in-
circle touches the sides of the triangle at D on side BC, at E on AC and
at F on AB, then the lines AD, BE and CF meet at a common point, T ,
say.

Is there a short proof of this theorem?

ADF writes — I thought it would be a good idea to illustrate these
interesting concepts. Hence the diagram opposite.

The common intersections are labelled by the following letters directly
underneath them: M – medians, O – altitudes, P – perpendicular bisectors
of the sides, Q – angle bisectors, and T – AD, BE and CF as defined above.

Observe that P , M and O are collinear. This is the Euler line, shown
dashed.

Also included in the diagram is the nine-point circle. The centre (la-
belled N) bisects the Euler line, and the circumference passes through
through the mid-points of the sides and the bases of the altitudes. The
other three points are where it bisects the lines joining the orthocentre to
the vertices. Moreover, the nine-point circle touches the in-circle as well as
the three exterior circles that make tangents to all three (possibly extended)
sides of the triangle.
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P M Q T O
N

Problem 204.7 – Arctangent identities
Assuming that N , M , B, C and A are non-zero integers, show that

N arctan
1

B
+M arctan

1

C
= arctan

1

A
(1)

if and only if (B + i)N (C + i)M (A− i) is real.

Recall that Bryan Orman and Tony Forbes wrote about arctangent
identities like (1) in M500 199 and 201 respectively. Now it would seem
that the problem is reduced to finding N , M , B, C and A such that a
certain imaginary part is zero. Thus we have moved the search for solutions
of (1) from the domain of trigonometry to somewhere else.
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Solution 202.1 – Squaring the circle
In the diagram on
the right, |OA| =
|OB| = 1, |OC| =
1
2 , |OD| = 2

3 and
|BM | = |BC| =
3
2 ; DE is perpen-
dicular to AB and
|BF | = |DE|; OG,
DH and BF are
parallel; AL is per-
pendicular to AB,
|AL| = |GH|, |AK|
= |AG| and MN is
parallel to KL.

Construct the
diagram and deter-
mine |BN |.

C
A

E

B

G

H

K

M

N

L

F

D

O

Peter Fletcher

This is a straightforward triangle-bashing exercise. We have

|BF | = |DE| =

√
1−

(
2
3

)2
=

√
5

3

and, since angle AFB is 90◦, |AF | = 1
3

√
31. Hence

|AK| = |AG| =
|AF |

2
=

√
31

6
, |AL| = |GH| =

|AF |
3

=

√
31

9
,

|BK| =

√
113

6
and |BL| =

√
355

9
.

Then the expressions for |BK| and |BL| together with |BM | = 3
2 give the

answer,

|BN | =
|BL||BM |
|BK|

=

√
355

113
≈
√

3.141592920.

Therefore the circle has area very nearly equal to 355/113, the area of a
square on BN . Hence the title.
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Tony Forbes
From the given solution it is clear how to draw a square of area 355/113
using just those traditional weapons of math construction, a ruler and a
pair of compasses. The original diagram is due to Ramanujan, ‘Squaring
the circle’, Journal of the Indian Mathematical Society v (1913). At the
end, Ramanujan observes: ‘If the area of the circle be 140,000 square miles,
then BN is greater than the true length by about an inch.’

Of course, there are other ways to construct a line of length
√

355/113,
but Ramanujan’s method is interesting because it is particularly economical
on the use of paper. Here’s a simpler procedure which does not have that
property.

Draw a long line, X , call it the x-axis and select a point O =
(0, 0). Using the compasses set to the unit length, mark off
points at integer intervals along X from A = (−1, 0) to B =
(355, 0). Through O draw a line, Y, perpendicular to X and
mark points at C = (0, 1) and D = (0, 113). Draw a line through
C parallel to DB meeting X at E. Draw a circle with AE as
diameter. Let the circle meet Y at F and G. The required length
is |OF | = |OG|.

For |OA| = 1 and from the construction we have |OE| = 355/113. The
chord theorem then states that |OF ||OG| = |OA||OE|.

In general, let RSTU be a convex quadrilateral inscribed in a circle and
let the diagonals RT and SU meet at X. The chord theorem asserts that

|RX||TX| = |SX||UX|.

This follows from Ptolemy’s theorem: The sum of the products of the
two pairs of opposite sides of a convex quadrilateral inscribed in a circle is
equal to the product of the lengths of the diagonals.

In our case the quadrilateral is AFEG, |AO| = 1 and |OE| = 355/113 =
α, say. Let |OF | = |OG| = x. Then

2
√

1 + x2
√
α2 + x2 = 2x (1 + α).

Solving gives x =
√
α.

To learn more about Ptolemy, his theorem and related results, I rec-
ommend Topics in Geometry by Hazel Perfect (Pergamon Press, Bristol,
1963). Alternatively, Jeremy Humphries suggests consulting that woman
whose daughter sang this bluesy song,

My momma done Ptolemy / When I was in pigtails ....
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Coordinate representation of Euclidian algorithm
Sebastian Hayes
Readers will be familiar with the Euclidian algorithm for finding the gcd
(greatest common divisor) of two integers, so-called because Euclid gives it
pride of place in the first of the four books he devotes to number theory.
Almost as well known and even more useful is the theorem

If the gcd of two integers a and b is d, then we can find integers
x and y such that ax+ by = d.

By extension we can solve for multiples of d and if d = 1, i.e. a and b
are relatively prime, we can solve for any integer on the right-hand side.
However, if d is not a multiple of the gcd of a and b there are no solutions
(in integers).

How do we find such integers? We can get a whole stream of solutions
if we can turn up a single pair x, y and these we obtain by ‘working the Eu-
clidian algorithm backwards’. This is rather fiddly, and I have just recently
come across a way of setting out the Euclidian algorithm which keeps track
of where you are so you get your pair of numbers right off. (For this I am
indebted to David Sharpe, the editor of Mathematical Spectrum.)

We start off with two numbers whose gcd we wish to find, say 17 and
56. We may consider that we have coordinate axes which are calibrated
in an eccentric manner so that one unit along the x axis has 17 parts and
one unit along the y axis has 56. On this understanding we can associate
positive and negative integers with points. For example, 17 itself will be
associated with the point (1, 0) since 1 · 17 + 0 · 56 = 17 and direct multiples
of l7 will be (m, 0); 56 is associated with the point (0, 1). Zero is produced
when we have 56 · 17 − 17 · 56 = 0; i.e. we associate zero with the points
(56,−17) and also (−56, 17).

Surprisingly, it is possible to add, subtract and even multiply coordinate
values—these are, don’t forget, not proper complex numbers. The working
is as follows.

56 (0, 1)
(1, 0) 17 −→ 51 (3, 0)

(−9, 3) 15 ←− 5 (−3, 1)

(10,−3) 2 −→ 4 (20,−6)

(−46, 14) 2 ←− 1 (−23, 7)

(56,−17) 0
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For example, I write 51(3, 0) because 51 = 3 · 17 and the next line is a sub-
traction. We then put the result 5 into 17 and we multiply the coordinates
by 3. And so on. The last line on the left checks out since we recover our
original numbers, as we should do.

If we are interested in the point associated with 1, we have it, namely
(−23, 7); i.e. 7 ·56−23 ·17 = 1. Also, we can obtain from this the first point
the ‘other way round’; i.e. with 17x > 0 and 56y < 0,

(17− 10)56− (56− 33)17 = 17 · 56− 10 · 56− 56 · 17 + 33 · 17

= 33 · 17− 10 · 56 = 1.

So the other point is (33,−10).

From here it is easy to generalize—finding as many solutions as required,
positive and negative.

Solution 200.2 – Square with corner missing
Given integers m, n, 0 < m < n, take an n × n square of sheet
material and cut out an m × m square from a corner. Then
make two straight-line cuts and rearrange the pieces to make a
perfect square. For what values of m and n is this possible?

Steve Moon
This is how to do it for integer pairs m, n = 3m.

�
�
�
�
�
�

@
@

@
@
@
@

�
�

�
�
�
�

@
@
@
@
@
@-

Nobody has sent any other significantly different solutions.

After the menopause, women’s risk of heart disease is the same as men’s.
One woman in six dies of it every year. — Telegraph 15/7/2003.

[Sent by Peter Fletcher]
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Solution 191.2 – LCM
Denote by [a, b, c] the least common multiple of a, b and c. Show
that [a, b, c] ≤ (n/3)3 for all sufficiently large n, where a+b+c =
n, 1 ≤ a < b < c ≤ n. Investigate the difference between the
maximum value of [a, b, c] and (n/3)3.

Norman Graham
In general, if

∑
xi = n for i = 1, 2, . . . ,m (n fixed) and all the xi are

positive, the product x1x2 . . . xm is a maximum when the xi are all equal
to n/m. This follows from the fact that if any two xi s are replaced by their
average, the product is increased, since 1

2 (a+ b)2 − ab = 1
2 (a− b)2 > 0.

In the present problem, a, b and c are all different; so it follows that
[a, b, c] ≤ abc < N , where N = (n/3)3. The values of a, b and c to maximize
[a, b, c] for selected values of n were obtained by trial and error, and are
shown in the following table. We write ∆ for N − [a, b, c].

n N a b c [a, b, c] ∆ ∆/N F

6 8 1 2 3 6 2 0.25 6
7 343/27 1 2 4 4 235/27 0.685131
8 512/27 1 3 4 12 188/27 0.367188 14
9 27 1 3 5 15 12 0.444444 24
10 1000/27 2 3 5 30 190/27 0.19 14
11 1331/27 1 3 7 21 764/27 0.574005 56
12 64 3 4 5 60 4 0.0625 6
13 2197/27 1 5 7 35 1252/27 0.569868 56
14 2744/27 3 4 7 84 476/27 0.173469 26
15 125 3 5 7 105 20 0.16 24
16 4096/27 4 5 7 140 316/27 0.0771484 14
17 4913/27 4 6 7 84 2645/27 0.538368
18 216 5 6 7 210 6 0.0277778 6
19 6859/27 3 5 11 165 2404/27 0.350488 104
20 8000/27 5 7 8 280 440/27 0.055 14
21 343 5 7 9 315 28 0.0816327 24
22 10648/27 5 8 9 360 928/27 0.0871525 26
23 12167/27 5 7 11 385 1772/27 0.14564 56
25 15625/27 5 9 11 495 2260/27 0.14464 56
35 42875/27 7 13 15 1365 6020/27 0.140408 104

To obtain the answer for any other value of n, express it in the form
18r + n0, where n0 is a value of n other than 7 or 17 from the table. Then
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the required values of a, b and c are those for n0 plus 6r, and the value of
∆ is that for n0 plus rF , where F is the number in the last column of the
table. In fact, F = 2(a2 + b2 + c2 − ab− ac− bc).

For example, take n = 50 = 18 · 2 + 14, so that n0 = 14, and r = 2.
Then [a, b, c] = [3 + 6 · 2, 4 + 6 · 2, 7 + 6 · 2] = [15, 16, 19] = 4560 and
∆ = 476/27 + 26 · 2 = 1880/27. As a check, we have N = (50/3)3 =
125000/27 = 4560 + ∆.

A note on divisibility tests
Shena Flower
With reference to the letter from J. V. Budd on p. 22 of M500 201 concern-
ing a test for divisibility by 7. Since childhood (i.e. 56 years) I have known
of the following test.

Cross out the units digit.

Double it and subtract from the remaining
number.

Continue until you cannot go further.

Test the number that remains for divisibility
by 7 by inspection.

For example, using the number 314159265,
we perform the test as shown on the right.

This procedure is equivalent to subtracting
multiples of 21 and since the final number is 0
we know that 314159265 ≡ 0 (mod 21) and is
thus divisible by 7.

Similar methods can be used for other
primes. For divisibility by 13, apply the same
test but multiply by 9 (instead of 2), since
13 × 7 = 91. For divisibility by 17, apply the
same test but multiply by 5, since 17×3 = 51.

3 1 4 1 5 9 2 6 5/
1 0

3 1 4 1 5 9 1 6/
1 2

3 1 4 1 5 7 9/
1 8

3 1 4 1 3 9/
1 8

3 1 3 9 5/
1 0

3 1 2 9/
1 8

2 9 4/
8

2 1/
2

0

For which logarithm base b does the equation

sinx = logb x

have precisely two distinct roots. What about precisely 2k distinct roots?
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Random quadratic equations
Tony Forbes
In M500 199, David Wild wrote about someone on Radio 4 saying that
before the introduction of complex numbers only half the quadratic equa-
tions could be solved. Of course this wasn’t intended to be taken literally.
Then John Bull’s letter in M500 202 reported Frederick Mosteller (Fifty
Challenging Probability Problems) asserting that the probability of a ran-
dom quadratic equation x2 + 2bx+ c = 0 having real roots tends to 1 as the
sample space size tends to infinity. However, Mosteller leaves unanswered
the case where there are three coefficients, a, b and c.

Well, let’s see what happens. We wish to calculate p(X), the probability
that ax2 + bx + c = 0 has real roots, where −X ≤ a, b, c ≤ X for some
(large) positive number X, and a, b and c are uniformly distributed random
variables. As I can think of no good reason to double the x coefficient, I
shall insist on the more natural bx rather than 2bx.

The problem is not without interest. Indeed, we have had a couple of
suggestions. One reader assumed that the coefficients were integers and
arrived at the value p(X) = 2/3 by a clever summation. Another used
integration to obtain p(X) = 11/18. Being unable to decide which of the
two totally different answers was correct, I had to resort to a simulation.
I chose 100000 triples (a, b, c) at random from a suitable sample space and
counted the number of times when b2 ≥ 4ac.

This situation is quite common in mathematical research. If you have
a difficult probability problem and if (as with me) probability theory is not
amongst your greatest strengths, it is absolutely vital to test your solution.
All you need is a decent random number generator, a modicum of com-
puter programming and a computer to run your simulation on. Statistics
textbooks refer to such techniques collectively as Monte Carlo methods—
presumably because of the close association with Formula One motor racing.

Anyway, the result is that p(X) ≈ 0.627 and moreover it appears to
be independent of X. Unfortunately 0.627 is too far removed from both
2/3 ≈ 0.667 and 11/18 ≈ 0.611 for the discrepancy to be dismissed as
experimental error.

But now that we know the answer to the question, we can proceed with
confidence. It simplifies matters if we can restrict the coefficients a, b and
c to non-negative numbers. Thus

p(X) =
1

2
+
q(X)

2
,
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where q(X) is the probability that ax2 + bx+c = 0 has real roots, assuming
0 ≤ a, b, c ≤ X. This is seen by dividing the cube −X ≤ a, b, c ≤ X into
eight sub-cubes. The probability of real roots is 1 in the four sub-cubes
where ac ≤ 0, and in the other four sub-cubes the probabilities are the
same (and equal to q(X)) by symmetry. All we do now is integrate:

q(X) =
1

X3

∫ X

0

∫ X

0

∫ X

0

χ(b2 − 4ac) da dc db,

where χ(x) = 1 if x ≥ 0, χ(x) = 0 otherwise. Let us fix b and concentrate
on the two inner integrals (over a and c). Then

q(X) =
1

X3

∫ X

0

A(X, b) db,

where A(X, b) is the area in the (a, c)-plane bounded by the positive a-axis,
the positive c-axis, the line a = X, the line c = X and the curve ac = b2/4,
as in the picture below. By a straightforward calculation we have

A(X, b) =
b2

4
+ 2

∫ X

b/2

b2

4a
da =

b2

4
+
b2

2
log

2X

b
.

Hence

q(X) =
1

X3

∫ X

0

(
b2

4
+
b2

2
log

2X

b

)
db

=
5 + log 64

36
≈ 0.254413.

Therefore

p(X) =
41 + log 64

72
≈ 0.627207.

0 b/2 a X
0

b/2

c

X

A(X, b)
c = b2/(4a)

If you really do
want your quadrat-
ics to have 2bx
rather than bx,
the computation is
slightly easier. The
relevant inequality
is b2 ≥ ac and
the final answer is
rational: 7/9.
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Letters to the Editor

Dizziness
Many thanks for M500 201. Even my feeble brain was adequate for enjoy-
ment of the ‘Odds and ends’ statistical gaffes.

I think I can explain the dizzying effect of the two diagrams with circles,
which Tony mentioned in ‘An exponential sum’. As any fule kno, our mental
image of what we see is a complete artefact, the original image on the
retina having been completely deconstructed and reconstructed in a way
that makes sense to us.

The very first stage of image processing is to find edges in the data
from the retina. An ‘edge’ here is a border between a light area and a dark
area—all the early stages of visual processing happen in black and white,
and colour is not filled in till considerably later. There are neurons in the
visual part of the brain to detect edges at a large range of different angles.
However, they all work in terms of straight lines. And they are not very
exact about the angle that causes them to fire. So if you look at a diagram of
a circle, it causes a good deal of untidy neuron activity as the cells respond
to the differently angled black-white transitions of the inside and outside of
the circular black line.

If you are just looking at one or two circles, later stages of brain process-
ing will tidy up the impression, substituting from memory a form that you
see as a smooth, stable circle. However, if there are a lot of circles—or in
the case of the cover picture, a lot of marks that are seen as curves—there
is too much chaotic data to tidy up, and some of the original chaos gets
through, producing a dancing effect.

The image of 36 circles also presents another problem: the brain is
unsure whether or not to interpret the circular tangents as intersecting lines
(an image familiar to our ancestors as they swung among the branches) or
to stick to the interpretation of a lot of circles. The effect, at least for me, is
to make the line look too thin at the point of contact of the circles, although
under a magnifying glass I can see that it isn’t. This effect is also probably
partly due to the fact, known from the familiar optical illusion tricks, that
we see white forms—the insides of the circles—as larger than they are.

The fizzy effect of the cover diagram has been diluted by printing it on
blue paper, which reduces the contrast.

Ralph Hancock
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Paradoxical dice
Tony,

Re: ‘Paradoxical dice’, [M500 199 24]. As every backgammon player
knows, the chance of throwing a (2,1) is 2/36 and the chance of throwing
a (2,2) is 1/36. So it does not seem paradoxical that a (2,1) would occur
before a (2,2) on average.

Am I understanding the question properly?

Robin Marks

Songs likely to be of interest to mathematicians

Affine Romance
Love Me Tensor
A Random Walk in the Black Forest
Oranges and Lemmas
A Martingale Sang in Berkeley Square
Root 66
Magnetic Moments
This Merely Was Nine

The last one is from The Reverend Spooner sings Rodgers and Hammerstein.
See page 17 for another. Any more?

Mathematics Revision Weekend 2005
The 31st M500 Society Mathematics Revision Weekend will be held
at Aston University, Birmingham over 9–11 September 2005.

The cost, including standard accommodation and all meals from bed
and breakfast Friday to lunch Sunday, is £150. Add £22 for en suite facil-
ities. The cost for non-residents is £75. M500 members get a discount of
£10. See the Society’s web page, www.m500.org.uk, for full details and an
application form, or send a stamped, addressed envelope to

Jeremy Humphries, M500 Weekend 2005.

The Weekend is designed to help with revision and exam preparation,
and is open to all Open University students. Tutorial sessions start at 19.30
on the Friday and finish at 17.00 on the Sunday. We plan to present most
OU mathematics courses.
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