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The Cauchy–Riemann equations for quaternions
Dennis Morris
The matrix form of a quaternion is

H =


a −b −c −d
b a −d c
c d a −b
d −c b a

 .
A quaternion function is a map from a quaternion to a quaternion of the
form

f



a −b −c −d
b a −d c
c d a −b
d −c b a




7→


u(a, b, c, d) −v(a, b, c, d) −s(a, b, c, d) −t(a, b, c, d)
v(a, b, c, d) u(a, b, c, d) −t(a, b, c, d) s(a, b, c, d)
s(a, b, c, d) t(a, b, c, d) u(a, b, c, d) −v(a, b, c, d)
t(a, b, c, d) −s(a, b, c, d) v(a, b, c, d) u(a, b, c, d)

 .
We expand the function matrix, omitting the ‘(a, b, c, d)’ for ease of presen-
tation:

f =


u 0 0 0
0 u 0 0
0 0 u 0
0 0 0 u

+


0 −v 0 0
v 0 0 0
0 0 0 −v
0 0 v 0



+


0 0 −s 0
0 0 0 s
s 0 0 0
0 −s 0 0

+


0 0 0 −t
0 0 −t 0
0 t 0 0
t 0 0 0

 . (1)

Now define four matrices with entries 0, −1 and 1 according to the coeffi-
cients of the elements occurring in (1),

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

,
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K =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

, L =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

,
and ifM is any 4× 4 matrix and x is a scalar, we denote byMx the result
of right-multiplying each element of M by x. Thus (1) becomes

f = Iu+ J v +Ks+ Lt.

Also we have

J · (Iv) = J v, K · (Is) = Ks and L · (It) = Lt.

In these three expressions, the leftmost matrix is a constant and the mid-
dle matrix is of the form that is isomorphic to the real numbers. Hence,
by substituting the LHS of the above three expressions into the expanded
function matrix, we are effectively dealing with functions of real numbers.

First, we differentiate with respect to Ia, which, being of the matrix
form that is isomorphic to the real numbers, is, itself, effectively a real
variable: a.

We are differentiating f



a −b −c −d
b a −d c
c d a −b
d −c b a


 with respect to Ia at

the point X =


α1 −α2 −α3 −α4

α2 α1 −α4 α3

α3 α4 α1 −α2

α4 −α3 α2 α1

. Let

A =


a −α2 −α3 −α4

α2 a −α4 α3

α3 α4 a −α2

α4 −α3 α2 a

,
u(a) = u(a, α2, α3, α4), u(α) = u(α1, α2, α3, α4),

v(a) = v(a, α2, α3, α4), v(α) = v(α1, α2, α3, α4),

s(a) = s(a, α2, α3, α4), s(α) = s(α1, α2, α3, α4),

t(a) = t(a, α2, α3, α4), t(α) = t(α1, α2, α3, α4).
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Then we have

f ′(X ) = lim
A→X

[
u(a) −v(a) −s(a) −t(a)
v(a) u(a) −t(a) s(a)
s(a) t(a) u(a) −v(a)
t(a) −s(a) v(a) u(a)

]
−

[
u(α) −v(α) −s(α) −t(α)
v(α) u(α) −t(α) s(α)
s(α) t(α) u(α) −v(α)
t(α) −s(α) v(α) u(α)

]
A−X

= lim
Ia→Iα1

(
Iu(a)− Iu(α)

Ia− Iα1
+
J v(a)− J v(α)

Ia− Iα1

Ks(a)−Ks(α)

Ia− Iα1
+
Lt(a)− Lt(α)

Ia− Iα1

)
= lim

Ia→Iα1

(
Iu(a)− Iu(α)

Ia− Iα1
+ J · Iv(a)− Iv(α)

Ia− Iα1

K · Is(a)− Is(α)

Ia− Iα1
+ L · It(a)− It(α)

Ia− Iα1

)
=

(
I ∂u
∂a

)
+ J ·

(
I ∂v
∂a

)
+K ·

(
I ∂s
∂a

)
+ L ·

(
I ∂t

∂a

)
.

Therefore

∂f

∂a
=



∂u

∂a
−∂v
∂a

−∂s
∂a

− ∂t
∂a

∂v

∂a

∂u

∂a
− ∂t
∂a

∂s

∂a

∂s

∂a

∂t

∂a

∂u

∂a
−∂v
∂a

∂t

∂a
−∂s
∂a

∂v

∂a

∂u

∂a


.

Secondly, we differentiate with respect to J b, which is a matrix form
that is not isomorphic to the real numbers; i.e. it is not a real variable. In
due course, we will have to make adjustments.

We are differentiating f



a −b −c −d
b a −d c
c d a −b
d −c b a


 with respect to J b at

the point X . Let B =


α1 −b −α3 −α4

b α1 −α4 α3

α3 α4 α1 −b
α4 −α3 b α1

, u(b) = u(α1, b, α3, α4),

v(b) = v(α1, b, α3, α4), s(b) = s(α1, b, α3, α4) and t(b) = t(α1, b, α3, α4).
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Then we have

f ′(X ) = lim
B→X

[
u(b) −v(b) −s(b) −t(b)
v(b) u(b) −t(b) s(b)
s(b) t(b) u(b) −v(b)
t(b) −s(b) v(b) u(b)

]
−

[
u(α) −v(α) −s(α) −t(α)
v(α) u(α) −t(α) s(α)
s(α) t(α) u(α) −v(α)
t(α) −s(α) v(α) u(α)

]
B − X

= lim
J b→Jα2

(
Iu(b)− Iu(α)

J b− Jα2
+
J v(b)− J v(α)

J b− Jα2

Ks(b)−Ks(α)

J b− Jα2
+
Lt(b)− Lt(α)

J b− Jα2

)
.

Thus far, we are preparing to differentiate with respect to J b. We
cannot do this. However, J b = J · (Ib), and we can differentiate with
respect to Ib because this matrix form is isomorphic to the real numbers
and we can treat b as a real variable. Hence, since J is a constant,

f ′(X ) = lim
J b→Jα2

(
1

J
Iu(b)− Iu(α)

Ib− Iα2
+ J

(
1

J
Iv(b)− Iv(α)

Ib− Iα2

)
K
(

1

J
Is(b)− Is(α)

Ib− Iα2

)
+ L

(
1

J
It(b)− It(α)

Ib− Iα2

))
=

1

J

(
I ∂u
∂b

)
+ J 1

J

(
I ∂v
∂b

)
+K 1

J

(
I ∂s
∂b

)
+ L 1

J

(
I ∂t
∂b

)
.

We opt to multiply out these matrices in the order that we present them
above. They are non-commutative, and the consequences of multiplying
them in the reverse order will be discussed at the end.

Recalling that

J−1 =


0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

 ,
we obtain the formula

∂f

∂b
=



∂v

∂b

∂u

∂b

∂t

∂b
−∂s
∂b

−∂u
∂b

∂v

∂b
−∂s
∂b

−∂t
∂b

−∂t
∂b

∂s

∂b

∂v

∂b

∂u

∂b

∂s

∂b

∂t

∂b
−∂u
∂b

∂v

∂b


.
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In a similar manner, we differentiate f

([
a −b −c −d
b a −d c
c d a −b
d −c b a

])
with respect to

Kc = K· (Ic) at the point X to get ∂f/∂c and with respect to Ld = L· (Id)
at the point X to get ∂f/∂d.

Thus, including the expressions for ∂f/∂a and ∂f/∂b, we have

∂f

∂a
=



∂u

∂a
−∂v
∂a

−∂s
∂a

− ∂t
∂a

∂v

∂a

∂u

∂a
− ∂t
∂a

∂s

∂a

∂s

∂a

∂t

∂a

∂u

∂a
−∂v
∂a

∂t

∂a
−∂s
∂a

∂v

∂a

∂u

∂a


,

∂f

∂b
=



∂v

∂b

∂u

∂b

∂t

∂b
−∂s
∂b

−∂u
∂b

∂v

∂b
−∂s
∂b

−∂t
∂b

−∂t
∂b

∂s

∂b

∂v

∂b

∂u

∂b

∂s

∂b

∂t

∂b
−∂u
∂b

∂v

∂b


,

∂f

∂c
=



∂s

∂c
−∂t
∂c

∂u

∂c

∂v

∂c

∂t

∂c

∂s

∂c

∂v

∂c
−∂u
∂c

−∂u
∂c

−∂v
∂c

∂s

∂c
−∂t
∂c

−∂v
∂c

∂u

∂c

∂t

∂c

∂s

∂c


,

∂f

∂d
=



∂t

∂d

∂s

∂d
−∂v
∂d

∂u

∂d

−∂s
∂d

∂t

∂d

∂u

∂d

∂v

∂d

∂v

∂d
−∂u
∂d

∂t

∂d

∂s

∂d

−∂u
∂d

−∂v
∂d

−∂s
∂d

∂t

∂d


.

Looking at the four results and putting equal the corresponding ele-
ments, we have that the Cauchy–Riemann equations for quaternions are:

∂u

∂a
=

∂v

∂b
=

∂s

∂c
=

∂t

∂d
,

∂u

∂b
= − ∂v

∂a
= − ∂t

∂c
=

∂s

∂d
,

∂u

∂c
= − ∂s

∂a
=

∂t

∂b
= − ∂v

∂d
,

∂u

∂d
= − ∂t

∂a
= − ∂s

∂b
=

∂v

∂c

of which, the four partial derivatives in the top left-hand corner are the
familiar Cauchy–Riemann equations of complex analysis.



Page 6 M500 206

We chose to multiply the matrices in the order in which we presented
them. If we had consistently reversed this order, we would have found that

∂f

∂a
=



∂u

∂a
−∂v
∂a

−∂s
∂a

− ∂t
∂a

∂v

∂a

∂u

∂a
− ∂t
∂a

∂s

∂a

∂s

∂a

∂t

∂a

∂u

∂a
−∂v
∂a

∂t

∂a
−∂s
∂a

∂v

∂a

∂u

∂a


,

∂f

∂b
=



∂v

∂b

∂u

∂b
−∂t
∂b

∂s

∂b

−∂u
∂b

∂v

∂b

∂s

∂b

∂t

∂b

∂t

∂b
−∂s
∂b

∂v

∂b

∂u

∂b

−∂s
∂b

−∂t
∂b

−∂u
∂b

∂v

∂b


,

∂f

∂c
=



∂s

∂c

∂t

∂c

∂u

∂c
−∂v
∂c

−∂t
∂c

∂s

∂c
−∂v
∂c

−∂u
∂c

−∂u
∂c

∂v

∂c

∂s

∂c

∂t

∂c

∂v

∂c

∂u

∂c
−∂t
∂c

∂s

∂c


,

∂f

∂d
=



∂t

∂d
−∂s
∂d

∂v

∂d

∂u

∂d

∂s

∂d

∂t

∂d

∂u

∂d
−∂v
∂d

−∂v
∂d

−∂u
∂d

∂t

∂d
−∂s
∂d

−∂u
∂d

∂v

∂d

∂s

∂d

∂t

∂d


from which we would have derived the different Cauchy–Riemann equations:

∂u

∂a
=

∂v

∂b
=

∂s

∂c
=

∂t

∂d
,

∂u

∂b
= − ∂v

∂a
=

∂t

∂c
= − ∂s

∂d
,

∂u

∂c
= − ∂s

∂a
= − ∂t

∂b
=

∂v

∂d
,

∂u

∂d
= − ∂t

∂a
=

∂s

∂b
=

∂v

∂c

of which, the four partial derivatives in the top left hand corner are still the
familiar Cauchy–Riemann equations of complex analysis.
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Solution 202.6 – Prime sum
Show that∑
p prime

1

p2
= 0.45224 74200 41065 49850 65433 64832 24793 41732 . . . .

Basil Thompson
Not a solution; just some observations. How long to calculate a hundred
places after the decimal point? For this to be so, the largest prime number
must be greater than 1050. How many primes are less than 1050?

One expression for π(n), the number of primes less than n, is π(n) ≈
n/(log n), and this is an underestimate. Thus

π(1050) ≈ 1050

log 1050
≈ 8.7 · 1047.

That is, we need to calculate all the 1/p2 terms up to at least the first prime
greater than 1050, and this requires at least 8.7 · 1047 calculations.

How long to complete such a calculation? One billion years is equal to
about

109 · 365.25 · 24 · 60 · 60 ≈ 3 · 1016 seconds.

Therefore to complete the calculation in this time would require approxi-
mately 8.7 ·1047/3 ·1016 ≈ 3 ·1031 operations per second. Even if thousands
of machines were available, this is clearly impossible. And the problem of
deciding which numbers are prime would be even more time consuming.

Is there a simple formula for
∑

1/p2? To get some idea of what is
involved let us start with

∑∞
n=1 1/n2 = π/6. From this it is easy to deduce

that
∑
q 1/q2 = π/8, where q represents all the odd numbers. Therefore

∑
p prime

1

p2
<

π2

8
− 1 +

1

22
= 0.4837 . . . ,

which at least agrees with the original expression. But
∑
q 1/q2 contains

all the primes plus all the other odd prime numbers which are products of
prime numbers. In fact,∑
p prime

=
π2

8
− 1 +

1

22
−
(

1

92
+

1

152
+

1

212
+

1

252
+

1

272
+

1

332
+ . . .

)
.
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It might be possible to rearrange terms within the large parentheses
into infinite expressions such as 1/32

∑∞
3 1/p2, 1/52

∑∞
5 1/p2, . . . . The∑

1/p2 terms can be moved to the left-hand side but unfortunately this
leaves other terms behind. In any case, the whole equation becomes an
infinite number of series each summed to infinity. Is it possible to pull all
these series together to obtain a formula for

∑
1/p2?

Tony Forbes
The answer is not to sum the series directly. As Basil Thompson has ob-
served, to obtain 100 decimal places, say, we would need to go at least as
far as terms with p ≈ 1050, and this is clearly out of the question. If you
are still not convinced, try making a list of all the primes involved in such
a sum.

The trick is to express
∑
p prime 1/p2 as a series in log ζ(2n), where

ζ(s) =
∑∞
m=1 1/ms is the Riemann zeta function. This is useful for two

reasons; (i) log x and ζ(2n) are computable to any reasonable number of dec-
imal places, the latter using Tom Apostol, Introduction to Analytic Number
Theory, Theorem 12.17:

ζ(2n) = (−1)n+1 (2π)2nB2n

2 (2n)!
,

where B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 = 5/66, . . . are
the Bernoulli numbers; and (ii) log ζ(2n) gets small rapidly. If n is large,
log ζ(2n) is approximately 1/22n.

Start with

ζ(s) =
∏

p prime

1

1− 1/ps
.

Put s = 2n and take logs,

log ζ(2n) = −
∑

p prime

log

(
1− 1

p2n

)
.

Expand the right-hand side,

log ζ(2n) =
∑

p prime

(
1

p2n
+

1

2 p4n
+

1

3 p6n
+ ...

)
,
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and rearrange,

log ζ(2n) =
∑

p prime

1

p2n
+

∑
p prime

1

2 p4n
+

∑
p prime

1

3 p6n
+ .... (1)

Recall the definition of µ(n), the Möbius function: µ(1) = 1, µ(n) =
(−1)k if n is the product of k distinct primes, and µ(n) = 0 if n is divisible
by the square of a prime. Multiply both sides of (1) by µ(n)/n and sum
over n:

∞∑
n=1

µ(n)

n
log ζ(2n) =

∞∑
n=1

µ(n)

n

 ∑
p prime

∞∑
k=1

1

k
p−2kn

 .

This rather complicated expression can then be simplified slightly to get

∞∑
n=1

µ(n)

n
log ζ(2n) =

∑
p prime

( ∞∑
n=1

∞∑
k=1

µ(n)

k n p2kn

)
.

Now the clever bit. Put r = kn. Then the double sum over n and k
becomes a sum over r and a sum over the divisors n of r:

∞∑
n=1

µ(n)

n
log ζ(2n) =

∑
p prime

( ∞∑
r=1

∑
n divides r

µ(n)

r p2r

)
.

Swapping sides and rearranging,∑
p prime

( ∞∑
r=1

1

r p2r

∑
n divides r

µ(n)

)
=

∞∑
n=1

µ(n)

n
log ζ(2n).

But the third sum on the left is 1 if r = 1 and zero otherwise (Apostol,
Theorem 2.1). Hence the second sum on the left vanishes from r = 2
onwards, and we just get the bit where r = 1:∑

p prime

1

p2
=

∞∑
n=1

µ(n)

n
log ζ(2n),

and the right-hand side is a rapidly converging series involving no explicit
reference to primes at all.

What I find interesting is that you can evaluate a simple infinite series
over the primes to great accuracy without knowing any of the actual primes.
The mysterious encoding of the primes in the zeta function is presumably
what makes this possible.
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Solution 200.5 – Square with corner missing
Take two integers, 0 < m < n. Take an n× n square of suitable
sheet material. Cut out an m ×m square from a corner. Then
make two straight-line cuts and rearrange the pieces to make a
perfect square. For what values of m and n is this possible?

Dick Boardman
As we have seen [M500 204, p. 19], n = 3 and m = 1 will work.

However, there is a series of three-piece dissections of a square with
square corner missing. Let n be the side of the large square and m be the
side of the missing corner. Cut off an m × (n −m) rectangle and rotate it
to form an (n−m)× (n+m) rectangle and then use a ‘step’ technique to
convert this to a square. Thus for n = 5, m = 3, slice off and re-attach a
5 × 2 rectangle to give an 8 × 2 rectangle, then halve this to give a 4 × 4
square.

→

For n = 13, m = 5, first convert it to an 18× 8 rectangle and then use
one ‘step’ to get a 12× 12 square.

→ →

But this last dissection and others involving more than one step require a
slight bending of the rules. To achieve the ‘two straight lines’ condition,
fold the material suitably before making the cuts.
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Christopher Ellingham
In addition to Steve Moon’s solution in M500 204 for n = 3m, I have a pair
of ‘Pythagorean’ solutions for n = 5, m = 3 [above], and n = 5, m = 4,
below.

→

Mark Bastow
We make two straight-line cuts to remove rectangular ends from each leg of
the L-shape, and rearrange these to fit within the corner of the L-shape to
complete a perfect square of side x. We will then have

x2 = n2 −m2.

For the rectangular ends from the two legs of the L-shape to fit together,
we must also have

n−m = 2(n− x).

We can now eliminate x to obtain 5m = 3n.

Basil Thompson
We have [as above]

x2 = n2 −m2.

For the rectangular ends from the two legs of the L-shape to fit together,
we must also have

n− x = 2(n−m).

We can now eliminate x to obtain 5m = 4n.
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Solution 204.2 – Surface area of a torus
Is it always true that a tubular shape made from a cylinder has
the same surface area?

Bob Margolis
A distorted cylinder can be generated by drawing a circle at each point of a
curve in the plane perpendicular to the tangent to the curve at that point.

Taking the curve α, to be unit speed simplifies some calculations and
making the circle unit radius simplifies them further without destroying
generality.

Provided the curve does not cause the resulting surface to self-intersect,
we can proceed as follows. The usual notation T , N , B is used for the
Frenet frame and the Frenet formulae take the form

T ′ = κN,

N ′ = −κT + τB,

B′ = −τN,

and everything is a function of the parameter used to describe the position
on the curve (the arc length from an arbitrary starting point in the case of
a unit-speed curve).

The parametric description of the surface is

x(u, v) = α(u) + cos(v)N + sin(v)B.

Some tedious calculations show that the partial velocities xu and xv, unit
normal U and area 2-form A are given by

xu = (1− κ(u) cos(v))T (u)− τ(u) sin(v)N + τ(u) cos(v)B,

xv = − sin(v)N + cos(v)B,

U(u, v) = − cos(v)N − sin(v)B,

A = ±(1− κ(u) cos(v))du dv.

For reasons that may be clear later, we choose the negative sign for the area
2-form!

Now, suppose that the original cylinder had length L, so that the area
of the cylinder was 2πL.
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Integrate the area 2-form over the length of the cylinder (u) and from
0 to 2π (v). The area of the distorted cylinder is

Area = −
∫ L
0

∫ 2π

0
(1− κ(u) cos(v))du dv

=
∫ L
0

∫ 2π

0
(1− κ(u) cos(v))dv du

=
∫ L
0

[v − κ(u) sin(v)]2π0 du

=
∫ L
0

2π du = 2πL.

So, the area is preserved under ‘reasonable’ distortions of the cylinder.

To fill in the gaps and find the definitions, try Barrett O’Neill: Elemen-
tary Differential Geometry. By the way, such ‘tubes’ occurred occasionally
in the TMAs and exams for M334/M434, which is now defunct.

Solution 203.6 – Loops
There are n pieces of string. Choose two ends at random and tie
them together. Repeat until there are no free ends left. What
is the probability of creating a single loop of string?

Dave Wild
Let P (n) be the probability of creating a single loop of string from n pieces
of string.

Method 1 – Recurrence relation. A single piece of string forms a
single loop so P (1) = 1. If there are n pieces of string, where n > 1, then
after selecting any of the 2n ends, a loop will not be created unless the other

end of that piece of string is selected. Therefore P (n) =
2n− 2

2n− 1
P (n − 1).

Using this recurrence relation gives

P (2n) =
2n− 2

2n− 1
· 2n− 4

2n− 3
· · · · · 4

5
· 3

2
=

22n

2n
· (n!)2

(2n)!

for n = 1, 2, . . . .

Method 2 – Counting. The total number of ways of selecting the n
pairs of ends to be tied is (2n)!/(2n n!). The number of ways of forming n
strings into a loop is (n − 1)! 2n−1. Dividing these values gives the above
answer.

A few approximate probabilities are P (2) = 0.67, P (4) = 0.46, P (8) =
0.32, P (16) = 0.22 and P (32) = 0.16.
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Re: Fibonacci and all that
Sebastian Hayes
Ron Potkin’s article [M500 200 pp 14–17] is fascinating because it reveals—
to me at any rate—an unexpected connection between the Golden Section,
Fibonacci sequences, Pascal’s triangle and the Theory of Equations.

In all likelihood the Golden Section, or Divine Proportion, originated
in attempts to solve the problem: Can there be three numbers a < b < c in
continued ratio (i.e. a : b = b : c), where c = a + b? Within the terms of
Greek mathematics the answer was categorical: No such numbers exist or
can exist.

Leaping over some twenty-three centuries we arrive at the so-called
Fundamental Theorem of Algebra, which states that every rational inte-
gral function of x of degree n has n (possibly equal) roots and no more,
though whether they are real or not depends on certain conditions. Thus
x2 = x+ 1, the algebraic version of the original problem, has two solutions,
namely p = (1 +

√
5)/2 and q = (1−

√
5)/2.

What on earth has all this to do with the growth of rabbit populations?
Suppose an enclosure and rabbit pairs inside it. At the end of any month n
we take the count pn, of rabbit pairs. Those born within the month that has
just ended will be given by the difference pn − pn−1, those born during the
previous month by pn−1 − pn−2 and so on. In Fibonacci’s original scheme
no rabbit pairs die, we start with a single (presumably newlyborn) pair
and there is a maturation period of a full month. Those just born will not
reproduce but will maintain themselves, those born the previous month or
earlier, given by the count pn−1, will double their numbers. Thus

pn+1 = (pn − pn−1) + 2pn−1 = pn + pn−1.

If we introduce further grading, for example having a pair unproductive
for a month, then producing one pair and finally producing two, we obtain

pn+1 = (pn − pn−1) + 2(pn−1 − pn−2) + 3pn−2 = pn + pn−1 + pn−2,

which is the tribonacci sequence, so-called. More generally, we can produce a
Fibonacci-style sequence withm terms on the right-hand side by introducing
arbitrary (integral) constants a, b, . . . which indicate varying productivity
factors. Sterility, death and even the capacity to infect other rabbits with
a mortal disease can be dealt with by judicious choice of constants. For
example,

pn+1 = 2(pn − pn−1) + 3(pn−1 − pn−2) = 2pn + pn−1 − 3pn−2
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models the case where rabbit pairs produce one pair at once, then two pairs
in the following month and then die of exhaustion.

Now, from the above we can work out all terms of a ‘two-tier’ Fibonacci
sequence given values for a and b; i.e. t1 = 1, t2 = a, t3 = a2 + b, t4 =
a(a2 + b) + ab, . . . . But there appears to be no neat way of characterizing
the nth term.

By identifying a and b with p + a and −pq from x2 = (p + q)x − pq
Binet obtained a formula for the original Fibonacci sequence, namely tn =
(pn−qn)/(p−n). For m > 2 there is no formula as such but the general case
is easily recognizable—it is the expansion of the multinomial (p+ q+ . . . )n

with all the coefficients reduced to unity.

The general term is
n!

i!j! . . . k!
(piqj . . . rk), where i+ j + · · ·+ k = n and

the various combinations of i, j, k . . . must be found by trial. (When there
are only two variables the multinomial reduces to the binomial.)

1 2 3 4 5 nMm

t s r q p . . .

1 1 1 1 1 0Mm

t t+ s t+ s+ r t+ s+ r + q t+ s+ r + q + p 1Mm

t2 (t+ s)2 (t+ s+ r)2 (t+ s+ r + q)2 (t+ s+ r + q + p)2 2Mm

t3 (t+ s)3 (t+ s+ r)3 (t+ s+ r + q)3 (t+ s+ r + q + p)3 3Mm

. . . . . . . . . . . . . . . . . .

Now reduce all the coefficients to unity. The resulting expression will be
a polynomial of degree n in m variables and, in order to emphasize the
connection with Pascal’s triangle, I refer to it as nSm; 0Sm is defined as 1
for all m.

t s r q p . . .
0S1

0S2
0S3

0S4
0S5 . . .

1S1
1S2

1S3
1S4

1S5 . . .
2S1

2S2
2S3

2S4
2S5 . . .

3S1
3S2

3S3
3S4

3S5 . . .
. . . . . . . . . . . . . . . . . .

The rule of formation is 0Sm = 1, n+1Sm = vm
nSm + vm−1

nSm−1 +
. . . v1

nS1 = vm
nSm + n+1Sm−1.

If now we take the further step of setting t = s = r = · · · = 1, we obtain
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t s r q p

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

.

These are the binomial coefficients displayed somewhat differently.

Prior to reading Ron Potkin’s article, I had not realized that we
can transform the recursive definition tn+1 = atn + btn−1,+ctn−2 + . . .
into a formula in n by identifying the constants a, b, c, . . . with

∑
roots,

−
∑

(roots taken in pairs), . . . , (−1)m+1
∏

roots, and so on for any number
of terms, not just two. This strikes me as a remarkable but also somewhat
puzzling discovery because there is a priori no reason why a Fibonacci-style
sequence of m terms should have anything to do with an m-degree polyno-
mial. In terms of my matrix nSm, it comes down to deriving nSm+1 ‘column-
wise’ instead of ‘across-wise’; i.e. using only entries nSm+1, n−1Sm+1, . . . ,
1Sm+1. I wondered whether the result was in fact correct. However, it is
easy to show the pattern for m = 1, m = 2, since

n+1S1 = t nS1,
n+1S2 = s nS2 + n+1S1 = s nS2 + t nS1.

But by definition, nS1 = nS2 − s n−1S2; so

n+1S2 = s nS2 + t( nS2 − s n−1S2) = (s+ t) nS2 − st n−1S2.

From here on it is not too hard to establish the general case by induction
using the rule of formation.

This means that, if we so desire, we can ‘work the other way’ and given
a sequence defined by a formula in n, we can define it recursively using
polynomial roots though the result is rather like using a pile-driver to crack
a nut. Thus the natural numbers themselves, the triangular numbers and
so on are given by

t1 = 1 for all sr
s0: tn+1 = tn 1, 1, 1, 1, 1, . . .
s1: tn+1 = 2tn − tn−1 1, 2, 3, 4, 5, . . .
s2: tn+1 = 3tn − 3tn−1 + tn−2 1, 3, 6, 10, 15, . . .
s3: tn+1 = 4tn − 6tn−1 + 4tn−2 − tt−3 1, 4, 10, 20, 35, . . .

Note, however, that in a population model the roots must be real—
coefficients which do not produce real roots correspond to an impossible
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situation, for example when more rabbits die in a single month than are
in existence e.g. pn+1 = 2pn − 5pn−1. More restrictive still, the terms in a
Fibonacci-type sequence must be integers including and above all the first
term denoting the initial number of pairs.

The net result is that we do not quite manage to square the circle. Re-
turning to the original Fibonacci problem with t1 = 1, instead of obtaining
t2n = tn−1tn+1 we get the near miss t2n = tn−1tn+1 ± 1. Moreover, the same
sort of thing will apply given any positive integral choice of t1, for we will
obtain the ratio of successive terms as an infinite continued fraction:

tn+1 = atn + btn−1,

tn+1

tn
= a+

btn−1
tn

= a+
btn−1

atn + btn−1

= a+
b

a+
btn−1
tn

= a+
b

a+
b

a+ . . .

.

Setting a = b = 1 gives the elegant continued fraction representation of φ
discovered by Euler.

Problem 206.1 – Swap sort
Tony Forbes
Let S(n) denote the minimum number of instructions of the form

if Ai < Aj then interchange Ai and Aj (1)

to guarantee to sort a vector of n numbers whose k th element is Ak.

Obviously S(2) = 1. Also it is easily seen that the instructions

if A1 < A2 then interchange A1 and A2

if A2 < A3 then interchange A2 and A3

if A1 < A2 then interchange A1 and A2

are necessary and sufficient for dealing with three numbers. If we write (1)
as [i, j], we can express this three-number sort program concisely as [1, 2]
[2, 3] [1, 2]. With a little more work we find that [1, 2] [3, 4] [1, 3] [2, 4]
[2, 3] is the shortest program that sorts four numbers; thus S(4) = 5.

Derive a general formula for S(n). If that’s too difficult—and I suspect
it is—try and obtain good upper and lower bounds.
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Solution 204.3 – Area of an annulus

An annulus is a disc of radius A with a central hole
of radius a. Can you devise a method to find its area
by taking only one measurement?

����&%
'$

ADF
A popular problem! Sebastian Hayes, John Bull, Martyn Lawrence, Bill
Purvis, Hugh McIntyre, Hugh Luxmoore-Peake, Mandy Corbett, Claudia
Gioia, Basil Thompson and Steve Moon all wrote in to offer more or less
the same solution. Basically, you place your ruler so that it is tangent to
the inner circle and measure the distance between the two points where it
cuts the outer circle.

Assume that the centre of the annulus is at (0, 0) and the ruler makes
contact with the inner circle at (0, a). Then the equation of the outer circle
is x2 + y2 = A2 and that of the ruler is y = a. Solving gives the points
of contact as (±

√
A2 − a2, a) and the distance between them is 2

√
A2 − a2

from which the area is obtained by squaring and multiplying by π/4.

While I was writing this up I had a thought. Why not do it the other
way round? Place the ruler at a tangent to the outer circle and see where
it meets the inner circle. For this to make sense we would have to work
with complex numbers, but the principle is exactly the same as before. The
equation of the inner circle is x2 + y2 = a2 and that of the ruler is now
y = A. The contact points are (± i

√
A2 − a2, A) and the distance between

them is 2i
√
A2 − a2. This time you square and multiply by −π/4 to get the

area.

John Bull is reminded of another problem. He says:

A string is tied around the entire circumference of the earth.
The string is cut and a 1 metre length inserted. If the string
now arranged to stand equidistant from the earth all the way
round, what would be its height? M500 readers ought to be able
to figure this one out for themselves.

And I am reminded of The Chicken from Minsk (and 99 Other Infuriatingly
Challenging Brainteasers from the Great Russian Tradition of Maths and
Science) by Yuri B. Chernyak and Robert M. Rose. The string-around-the-
world is actually the one referred to in the title, and to give you some idea
of the general tone of the book we state their version of the problem here.

A fibre-optic cable completely encircles the Earth, by chance
passing through a new, privately owned chicken farm on the
outskirts of Minsk. The chickens refuse to walk or fly over the
cable and will only pass under it. Clearly, the cable must be
raised off the ground by 1 foot. But for technical reasons, the
cable must then be raised 1 foot higher everywhere else, around
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the entire circumference of the Earth. The farmer, exercising
his newly acquired individual rights (no more USSR!), refuses
to permit the cable to cross his land unless it is raised. The
bureaucrat in charge of the project is a holdover from the old
days. He maliciously agrees to raise the cable only if the farmer
agrees to pay for all of the additional cable, at $1 per foot. The
farmer agrees, provided that the government will pay for all the
supporting structures. How much must the chicken farmer pay?

Judging by the layout and generous use of cartoons, the book is obvi-
ously aimed at the person in the street. Nevertheless, it differs from the
usual rubbish put out by British publishers, and indeed I was pleasantly
surprised to see a considerable number of novel and stimulating problems.
Here’s one, with the title ‘Jack-in-the-Box (An Exercise in Renormaliza-
tion)’. What force is required to depress the Jack so that both the Jack and
the box will leave the ground? And another, from the chapter ‘Expanding
and Contracting Universes’. Boris has drawn a straight line on a coin. He
is convinced that when the coin is heated the line becomes curved because
some parts are further from the centre. Marina disagrees. Who is right?

The book has a significant bias towards applied mathematics, with prob-
lems on frames of reference, gravity, harmonic oscillators, mechanics, special
relativity, and thermodynamics. Presumably nobody leaves the Russian ed-
ucation system without a reasonable working knowledge of these subjects.
But there is also a chapter on ‘Geometry and Numbers’, including an in-
finitely nested square root exercise similar to something we did in M500
190. And Monty Python fans have not been forgotten. One of the ‘Warm-
ing Up’ problems concerns a man who buys a parrot from a pet shop and
later returns to complain about it!

Problem 206.2 – 81 cells
Look at the sudoku puzzle the front cover of this magazine. In case you have
not seen these things before, the object is to complete the array so that each
row, column and 3×3 box contains the numbers 1, 2, . . . , 9. When you have
achieved that we have two more problems.

(i) Observe that the cover example has eight empty regions (three rows,
two columns and three boxes). Either prove the non-existence of a sudoku
puzzle with nine empty regions, or find one.

(ii) There exist sudoku puzzles with 17 starter digits. Is this best possi-
ble? If not, construct a sudoku puzzle with 16 (or fewer) starter digits. Note
that in a valid sudoku puzzle the rows and columns cannot be permuted
and the solution is unique.
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Re: Problem 202.4 – Commas and brackets
In the Zermelo–Fraenkel scheme for constructing the non-
negative integers, 0 = {} and n = {0, 1, 2, . . . , n−1}. How many
commas and brackets are there in the expression for n?

ADF
Indeed, it is not too difficult to prove that there are in fact 2n−1−1 commas
and 2n+1 brackets. (Obviously the expression for 0 contains −0.5 commas.)
I also discovered—after someone pointed it out to me—that you can eas-
ily determine n from its representation. Count the brackets at the end
and subtract one. Thus the expression on the front cover of M500 202,
{{}, {{}}, {{}, {{}}}, . . . , {{}}}}}}}}}}}, represents 10.

Sebastian Hayes

Readers might be interested to know what the axioms referred to are. In
Robert R. Stoll, Set Theory and Logic, a book I recommend, they are given
as follows. Set and set membership are taken as ‘primitive notions’. Then:

ZF1 (axiom of extension) If a and b are sets and if, for all x,
x ∈ a iff x ∈ b, then a = b.

ZF2 (axiom schema of subsets) For any set a there exists a
set b such that, for all x, x ∈ b iff x ∈ a and A(x), where A(x) is
some condition on x which contains no free occurrence of b.

ZF3 (axiom of pairing) If a and b are sets, then there exists a
set c such that a ∈ c and b ∈ c.
ZF4 (axiom of union) For every set c there exists a set a such
that if x ∈ b for some member b of c, then x ∈ a.

ZF5 (axiom of power set) For each set a there exists a set b
such that, for all x, if x ⊆ a, then x ∈ b.
ZF6 (axiom of infinity) There exists a set a such that ∅ ∈ a
and, if x ∈ a, then x ∪ x ∈ a. (It is this axiom that permits the
construction of the natural numbers.)

ZF7 (axiom of choice) For each set a there exists a function
f whose domain is the collection of non-empty subsets of a and,
for every b ⊆ a with b 6= ∅, f(b) ∈ b.

These axioms suffice apparently for practically all mathematical purposes
though a further two axioms were introduced by Skolem and von Neumann
to cope with the ‘full-blown theory of transfinite ordinal and cardinal num-
bers’ (Stoll, p. 303).



M500 206 Page 21

My own objection to this approach is that it does not really start from
first principles. Inevitably it has to assume an ‘intuitive’ understanding of
what ‘set’ and ‘set membership’ mean while such notions are, I would claim,
ultimately based on our ‘intuition’—I would say perception—of ‘oneness’
and ‘plurality’ in the actual physical world. In effect we have the natural
numbers in our heads already, so it is ultimately futile (though for all that
not without interest) to construct them axiomatically. My view is that if
we want to go further back, we must look in the direction of basic physics
and not logic; i.e. ask ourselves whether there can be a ‘universe’ in which
the dichotomy one/many is meaningless. Such a ‘world’ would be radically
non-numerical but set theory would not be any help here either.

Problem 206.3 – Odd socks
Norman Graham
Out of n different pairs of socks in a drawer, r socks are removed at random.
What is the probability of obtaining d matched pairs? What if two pairs
are identical?

M500 Winter Weekend 2006
The twenty-fifth M500 Society Winter Weekend will be held on Friday 6th
to Sunday 8th January 2006 at

NOTTINGHAM UNIVERSITY.

This is an annual residential weekend to dispel the withdrawal symptoms
due to courses finishing in October and not starting again until February.
It’s an excellent opportunity to get together with acquaintances, old and
new, and do some interesting mathematics in a friendly and leisurely atmo-
sphere. Ian Harrison is running the event and this year’s theme is

Euclidean-style Geometry.

Cost: £180.00 for M500 members, £185.00 for non-members. This in-
cludes standard accommodation and all meals from dinner on Friday to
lunch on Sunday. For full details and a booking form, send a stamped,
addressed envelope to

Diana Maxwell.

Enquiries by email to diana@m500.org.uk. A booking form is also available
at www.m500.org.uk.
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