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A revolutionary view of space
Dennis Morris

Introduction

The representation of complex numbers as positions in a 2-dimensional Eu-
clidean space begins with Wallis (1616–1703) in 1673. It was subsequently
stated by Wessel (1745–1818) in 1798 and again by Gauss (1777–1855) in
1799. It was given again by Argand (1768–1822) in 1806, and the represen-
tation subsequently became known as the Argand diagram. In such times,
Euclidean space was seen as being the only real type of space and complex
numbers were seen as being associated with the Euclidean geometry of two
dimensions. It was inevitable that mathematicians would seek some higher
kind of complex numbers associated with 3-dimensional Euclidean space,
and it was expected that such numbers would exist.

Throughout all these times, mathematicians assumed without question
that 2-dimensional Euclidean space is a subspace of 3-dimensional Euclidean
space. From this assumption it follows that the 2-dimensional complex num-
bers are a subalgebra of the higher 3-dimensional kind of complex numbers,
and enormous effort was expended in trying to expand the complex num-
bers upwards into higher dimensions. These efforts were encouraged by
some small, but tantalizing, success and some almost success. In 1813,
Servois (1768–1847) proposed a 3-dimensional kind of complex numbers
that nearly worked, and in 1843 Hamilton (1805–1865) invented the 4-
dimensional quaternions.

The quaternions work, they include the 2-dimensional complex numbers
as a subalgebra, but they are not an algebraic field. They are only a division
algebra; they lack multiplicative commutativity. However, it was ‘immedi-
ately obvious’ to mathematicians of the day that higher-dimensional kinds
of complex numbers would be multiplicatively non-commutative because
rotations within 3-dimensional Euclidean space are non-commutative. It
remains ‘immediately obvious’ to mainstream mathematical thought today.
It is nonsense, and it is a confusing misuse of the word commutative to
mean two entirely different things. Quaternions do not even have a polar
form. However, tantalizingly, quaternions can be used, clumsily, to calcu-
late rotations in 3-dimensional Euclidean space. By such tantalizations, are
mathematicians tempted to believe the ‘immediately obvious’.

Unfortunately, developing higher-dimensional kinds of complex num-
bers seemed too hard, and so, in the middle of the 19th century, mathe-
maticians developed a new approach to representing Euclidean space. They
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invented vectors and turned their attention to describing higher-dimensional
Euclidean spaces by the use of vectors. Vector algebra underlies huge areas,
possibly all, of our understanding of the physical universe. It has been very
successful.

Your author now wishes to reveal to the world the higher-dimensional
forms of complex numbers.

Matrix representation of algebras

An algebra is a linear space (vector space) together with an operation of
multiplication. Matrices are linear transformations. If the multiplication
operation of an algebra is matrix multiplication, then that algebra can be
represented as operations on matrices. Multiplication of complex numbers
is matrix multiplication. (The î =

√
−1 thing is just a diversion.)

Complex numbers by matrices

The matrix representation of complex numbers is that they are the set of
matrices of the form [

a −b
b a

]
.

These matrices maintain their form under multiplication, inversion, and
addition. They are, of course, multiplicatively commutative, and thus they
form a field. The conjugate of a complex-number matrix is the adjoint
matrix (the inverse multiplied by the determinant). The adjoint is the
conjugate in all such algebras. The norm of the algebra (the modulus) is
the square root of the determinant: a2 + b2, and this is half of the definition
of 2-dimensional Euclidean space.

Because the submatrices{[
a 0
0 a

]
,

[
0 −b
b 0

]}
.

are multiplicatively commutative, we can exponentiate the matrix and split
it to get the polar form†

exp

([
a −b
b a

])
= exp

([
a 0
0 a

])
exp

([
0 −b
b 0

])
=

[
r 0
0 r

] [
cos θ − sin θ
sin θ cos θ

]
.

Since det(exp(A)) = exp(trace(A)), where A is a matrix, the determi-
nant of the trigonometric matrix is 1. This is the origin of the identity
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cos2 θ+ sin2 θ = 1. The {cos, sin} functions are the other half of the defini-
tion of 2-dimensional Euclidean space. The polar form is a complex number,
and so we can write

det

([
a −b
b a

])
= det

([
r 0
0 r

])
= norm2.

The immediately above expression is important. It says that the determi-
nant of a complex-number matrix is the determinant of the length matrix
in the polar form and this is the square of the metric of the space that is
associated with complex numbers—2-dimensional Euclidean space. Notice
how this algebra picks its own norm.

Real numbers by matrices

In the case of 1 by 1 matrices we have the algebra of real numbers. This
algebra has polar form

exp
([
a
])

= exp
([
a
])

exp
([

0
])

=
[
r
] [

1
]
.

The determinant of the length matrix is the 1st power of the metric of
1-dimensional space and 1 is the 1-dimensional trigonometric function.

Hyperbolic complex numbers

Of all the 2 by 2 matrix forms, there are only two that satisfy the require-
ments to be an algebraic field. One of these is the complex-number matrix
form; the other of these is [

a b
b a

]
: |a| > |b| ,

where we have had to impose the restriction shown. These matrices have
polar form

exp

([
a b
b a

])
= exp

([
a 0
0 a

])
exp

([
0 b
b 0

])
=

[
h 0
0 h

] [
coshχ sinhχ
sinhχ coshχ

]
.

We need no restrictions in polar form. The trigonometric functions do
that automatically. This is a general phenomenon applying to all complex-
number type algebras. The {cosh, sinh} functions together with the deter-
minant

norm2 = det

([
a b
b a

])
= a2 − b2



Page 4 M500 207

define 2-dimensional hyperbolic space.

Higher dimensions

Choose a finite Abelian group (any you like)—the order 3 cyclic group,
C3, will do for this demonstration. Write down the Cayley table of this
group—using A to denote the identity.

A B C
A A B C
B B C A
C C A B

Rearrange this table into a (standard) form in which the elements in the
first row are in alphabetical order and the identities appear on the leading
diagonal.

A B C
C A B
B C A

Copy this into a matrix:a b c
c a b
b c a

 : |a| > φ (|b|+ |b|) .

You now have the matrix form of a 3-dimensional complex-number like
algebra. It is a field. We have had to impose restrictions in the Cartesian
form—φ is the golden ratio associated with the Fibonacci numbers. In the
polar form no restrictions are necessary. In normal notation this algebra
has the multiplicative relations

p̂q̂ = q̂p̂ = +1, q̂2 = p̂, p̂2 = q̂, p̂3 = p̂3 = +1.

The polar form of this algebra is

exp

a b c
c a b
b c a

 = exp

a 0 0
0 a 0
0 0 a

exp

0 b 0
0 0 b
b 0 0

exp

0 0 c
c 0 0
0 c 0


=

h 0 0
0 h 0
0 0 h

AH3(λ) BH3(λ) CH3(λ)
CH3(λ) AH3(λ) BH3(λ)
BH3(λ) CH3(λ) AH3(λ)

AH3(ψ) CH3(ψ) BH3(ψ)
BH3(ψ) AH3(ψ) CH3(ψ)
CH3(ψ) BH3(ψ) AH3(ψ)

 .
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The norm of this algebra is the cube root of the determinant. Also
{AH3,BH3,CH3} is one of the two sets of the 3-dimensional trigonomet-
ric functions—your author has named these functions the 3-dimensional
hyper-trig functions. There are two sets of n functions associated with n-
dimensional space for all positive integral n . They are n-way splittings of
the exponential series:

AH3(x) =
x0

0!
+
x3

3!
+
x6

6!
+
x9

9!
+ . . . ,

BH3(x) =
x1

1!
+
x4

4!
+
x7

7!
+
x10

10!
+ . . . ,

CH3(x) =
x2

2!
+
x5

5!
+
x8

8!
+
x11

11!
+ . . . .

The other 3-dimensional hyper-trig functions are

AE3(x) =
x0

0!
− x3

3!
+
x6

6!
− x9

9!
+ . . . ,

BE3(x) =
x1

1!
− x4

4!
+
x7

7!
− x10

10!
+ . . . ,

CE3(x) =
x2

2!
− x5

5!
+
x8

8!
− x11

11!
+ . . . .

These hyper-trig functions, together with the cube root of the determi-
nant define a type of 3-dimensional space.

There are three other 3-dimensional algebras.

If you choose a non-Abelian group, then you will get a division algebra
(watch out for restrictions) like the quaternions. Such algebras are not
commutative and thus do not have a polar form.

The nature of space

The n-dimensional spaces associated with the n-dimensional complex num-
bers are very different from the vector spaces we are used to dealing with.
Vectors were invented by mathematicians. Complex numbers of all dimen-
sions are already in mathematics and needed only to be discovered. Your
author is currently investigating these newly discovered spaces but already
has some results.
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(1) In vector spaces, we move up a dimension by the addition of an extra
term to the metric. In complex-number spaces, one moves up a dimension
by multiplication.

(2) The metric of vector spaces is always a square root. The metric of
an n-dimensional CN space is an nth root.

(3) The rotation matrices of vector spaces are the same in two dimen-
sions as the CN spaces (as are the metrics); however, in higher dimensions,
the rotation matrices of CN spaces contain the hyper-trig functions and
appear as angle matrices in the polar form of the algebra.

(4) In vector spaces, 2-dimensional space is a subspace of 3-dimensional
space. The 2-dimensional complex numbers are not subalgebras of the 3-
dimensional complex numbers because there is no order-2 group that is
a subgroup of an order-3 group. Thus 2-dimensional CN space is not a
subspace of 3-dimensional CN space.

(5) The 4-dimensional hyper-trig functions are 4-way splittings of the
exponential series. We have

AH4(x)− CH4(x) = cosx,

BH4(x)−DH4(x) = sinx,

AH4(x) + CH4(x) = coshx,

BH4(x) + DH4(x) = sinhx.

Thus, we can assemble 2-dimensional space from bits of 4-dimensional H-
type space. So 2-dimensional space is really 4-dimensional space—and up-
wards we go.

(6) Although I have not shown it, the higher-dimensional CN spaces are
‘folded up’ in the lower-dimensional CN spaces (string theory?). Perhaps
the universe began as an unfolding of space which stopped when it got to
prime numbered dimensions.

(7) The metrics of CN spaces are a mixture of hyperbolic and Euclidean
metrics multiplicatively entwined. This is reminiscent of space–time rather
than space alone.

The above is but a brief résumé of a 60-chapter work that your author
has produced. The work has not yet been peer reviewed, and the reader
should bear this in mind.

† Technically, it is nonsense to write eA unless A is a 1 by 1 matrix.
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Solution 204.6 – A triangle property
John Bull

Given a triangle ABC with in-circle centre I and radius r meet-
ing AB, BC, and CA at F , D and E respectively. Prove that
AD, BE and CF are concurrent at T . A short proof is re-
quested.

D

E

F

r cot Α

r cot Γ

r cot Α

r cot Β

r cot Β r cot Γ

r

A

Α

B
Β

C
Γ

I

T

Let the angles at A, B and C be 2α, 2β and 2γ respectively. Then AF =
AE = r cotα, BF = BD = r cotβ, CD = CE = r cot γ, and

AF

FB
· BD
DC
· CE
EA

=
r cotα

r cotβ
· r cotβ

r cot γ
· r cot γ

r cotα
= 1.

Hence by the converse of the theorem of Céva, AD, BE and CF are con-
current at T .

Proofs of Céva’s theorem can be found in a many books and on the Inter-
net, even with music, graphics and brilliant animation. However, the neat-
est method uses the modern Fundamental Theorem of Affine Geometry—
see Geometry by David Brannan, Matthew Esplen and Jeremy Gray (CUP
1999), p. 75.
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Solution 203.5 – 50p in a corner
What is the locus of the centre of a 50p piece lying flat in the
(x, y)-plane such that its edge is in contact with both the positive
x-axis and the positive y-axis?

Bill Purvis
We are to determine the path traced by the centre of a 50p coin rotated in a
square corner. The shape of a 50p coin is given by constructing a circle, then
fix seven points around the circumference, equally spaced. Then, taking
each point in turn as centre, draw an arc between the two points opposite.
The seven arcs so constructed define the outline of the coin. We show this
on the left of the diagram, below. I have shown the lines joining each point
to the two opposite points, as well as lines joining each of the points to the
centre.

A

B

C

DE

F

G

O

0.95 0.96 0.97 0.98 0.99 1.

0.95

0.96

0.97

0.98

0.99

1.

In order to simplify the calculations, I have taken the radius of the
circumcircle to be 1 unit, and all the calculations that follow will use this
convention. We will concentrate on the path determined by 1/7th of a
revolution, as there is obviously 7-fold rotational symmetry.

We begin by considering the ‘triangle’ determined by the topmost point
and the two lower points: ADE. The side AD can be determined using the
sine rule:

AD

sinAOD
=

AO

sinOAD
,

which, since AO = 1, AOD = 6π/7, and OAD = π/14, gives a value of
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AD = 1.9499. The curved side DE, can now be determined as AD ·DAE =
0.8751.

We now begin to construct the path of the centre of the coin (O). First
we consider the distance from O to the x-axis. The distance from the y-axis
will be similar, but with a phase difference of π/2. There are two distinct
segments to the path: that generated when the coin is rotating about one
of the points, and that generated when the coin is sliding along the curve.
We first consider that of rotation about the point E.

Let θ be the angle between the y-axis and line EO. Then the distance
from the x-axis is given by y = cos θ. It will be seen that rotation takes
place when π/14 ≤ θ ≤ π/14. For π/14 ≤ θ ≤ 3π/14, the coin is sliding
with y = 1.9499− cos(π/7− θ).

I generated a list of 20 values for y over the range −π/14 ≤ θ ≤ 3π/14,
which gave the following.

0.974928 0.98393 0.99095 0.995974 0.998993
1. 0.998993 0.995974 0.99095 0.98393
0.974928 0.965926 0.958906 0.953882 0.950863
0.949856 0.950863 0.953882 0.958906 0.965926

The x coordinate will give the same values but shifted by an angle of π/14,
and plotting these points on a scrap of graph paper suggests that the re-
sulting path is a good approximation to a circle. However, a more careful
plotting reveals that the plots tend to be outside a circle drawn through the
extrema. This is the right-hand diagram, opposite, with a circle of radius
0.025 for comparison.

Tony Forbes
It is interesting to obtain an exact formula. Imagine the coin rotated by
an angle α from its position in the left-hand figure, opposite. Temporarily
placing the origin at the centre of the coin, we ask ourselves where the
horizontal and vertical edges of the restraining corner must be. Because of
the seven-fold symmetry we can assume that −π/7 ≤ α ≤ π/7.

At this point I strongly recommend that you trace the diagram on to
card and cut it out. Denote the length of AD by r = (sin 6

7π)/(sin 1
14π) =

2 cos 1
14π.
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If −π/14 ≤ α ≤ π/14, then, as you can see by experimenting with
the cut-out, the horizontal edge is tangent to the curve DE, and a little
elementary trigonometry shows that the point of contact has y coordinate
−r+cosα. See the top right and middle left diagrams on the opposite page.
Otherwise the horizontal edge passes through a vertex, D if −π/7 ≤ α ≤
−π/14 (top left diagram), or E if π/14 ≤ α ≤ π/7 (middle right diagram)
at y coordinate − cos (π/7− |α|).

If α ≥ 0, then the vertical edge is tangent to the curve FG and
has x coordinate −r + cos (α − π/14) (middle left and middle right dia-
grams). Otherwise the vertical edge passes through vertex F at x coordinate
− cos (|α| − π/14) (top left and top right diagrams).

Moving the origin to the corner and tidying up then gives the following
expressions for the coordinates of the centre of the coin.

α x y

− π

7
≤ α ≤ − π

14
cos

(
α+

π

14

)
cos

(
α+

π

7

)
− π

14
≤ α ≤ 0 cos

(
α+

π

14

)
r − cosα

0 ≤ α ≤ π

14
r − cos

(
α− π

14

)
r − cosα

π

14
≤ α ≤ π

7
r − cos

(
α− π

14

)
cos

(
α− π

7

)
From this table you can see that the centre of the plot in the right-hand
figure on page 8 is at (cos 1

14π, cos 1
14π) and therefore the radius of the

circle passing through the extreme values (which occur when α is an integer
multiple of π/14) is 1− cos 1

14π ≈ 0.0250721.

The curves are actually segments of ellipses. For example, the first
function in the table,

x = cos
(
α+

π

14

)
, y = cos

(
α+

π

7

)
, (1)

defines a somewhat elongated ellipse of radii
√

2 cos 1
28π and

√
2 cos 13

28π,
centred at (0, 0) and with its major axis on the line y = x. A part of this
curve is shown in the bottom left diagram on the next page. The other three
curves are formed by rotating (1) through integer multiples of π/2 about the
point (cos 1

14π, cos 1
14π). The bottom right diagram shows all four ellipses

complete. The tiny bit in the middle where they collide is the locus of the
centre of the 50p piece.
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A

B

C

D

E

F

G Α = -
3 Π

28
A

B

C

DE

F

G
Α = -

Π

28

A

B

C

DE

F

G

Α =
Π

28
A B

C

D

E

F

G

Α =
3 Π

28

0.6 0.7 0.8 0.9 1

0.6

0.7

0.8

0.9

1

-1 1 2 3

-1

1

2

3
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Solution 203.1 – Circles
Generalize the thing on the cover of M500 198 (reproduced op-
posite) so that the nth ring from the centre has k 2n circles in
it, k = 3, 4, . . . . Compute the radius of the limiting circle as-
suming that the central circle has radius 1. (We have changed
the wording slightly—it is less perverse to assign the value 1 to
the central circle rather than the limiting circle.)

Norman Graham
For circles in the nth ring, denote the radius by xn and the tangent from
the centre by yn, as shown in the diagram opposite. Let

tn =
xn
yn

= tan
72◦

2n
and rn =

xn
xn−1

.

Then(
xn
tn
− xn−1
tn−1

)2

= (yn−yn−1)2 = (xn−1+xn)2−(xn−1−xn)2 = 4xnxn−1.

Therefore

r2n − 2rn

(
tn
tn−1

+ 2t2n

)
+

(
tn
tn−1

)2

= 0,

rn =
tn
tn−1

+ 2tn + 2tn

√
tn
tn−1

+ t2n.

(The negative sign is not used as it applies to the small circle.) Thus

x1 =
sin 36◦

1−sin 36◦
≈ 1.42590, y1 =

√
(1 + x1)2 − x21 =

√
1 + 2x21 ≈ 1.962611.

Successive values of xn and yn can be calculated (preferably by com-
puter!) using xn = rnxn−1, yn = yn−1 + 2

√
xnxn−1. The number of

iterations required to find y∞ is reduced by noting that as n→∞,

tn → 0,
tn
tn−1

→ 1

2
, rn →

1

2
and yn+1 →

yn − yn−1
2

.

Therefore

y∞ − yn → (yn − yn−1)

(
1

2
+

1

4
+

1

8
+ . . .

)
= yn − yn−1.

For k = 5, we have the values given in the first table on the next page.
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yn-1 yn

xn
xn-1

n rn xn yn − yn−1 yn

1 1.425920 1.962611
2 1.141512 1.627705 3.046951 5.009561
3 0.764410 1.244234 2.846223 7.855784

. . . . . . . . . . . . . . .
15 0.500054 0.000470 0.001330 12.258470
16 0.500027 0.000235 0.000665 12.259135

To this level of accuracy (six decimal places), y16 − y15 = 1
2 (y15 − y14).

Therefore y∞ = y16 + (y16 − y15) = 12.259800. The next table gives the
results for various k.

k x1 x2 x3 y∞

3 6.464102 12.558515 12.558515 98.643938
4 2.414214 3.359161 2.842404 24.939267
5 1.425920 1.627705 1.244234 12.259800
6 1 1 0.713790 7.854745
7 0.766422 0.696852 0.473438 5.772852
8 0.619914 0.524550 0.343324 4.602403
9 0.519803 0.415764 0.264293 3.867125

10 0.447214 0.341855 0.212270 3.368392
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Solution 205.2 – Ants
Let k and n, 1 ≤ k < n, be a fixed integers. There are n
ants, A0, A1, . . . , An−1, situated at the vertices of a regular n-
gon of side 1 m, arranged in anticlockwise order. At time 0 the
ants start walking at speed 1 m/s, ant Ai always heading in the
direction of ant Ai+k mod n, i = 0, 1, . . . , n − 1. When do they
meet?

Ian Adamson
In a regular n-gon {A0, A1, . . . , An−1}, there exists a unique O such that
all OAi are equal, 0 ≤ i ≤ n − 1. Define m = min{k, n − k}, θm =
angle AiOAi+k mod n = 2mπ/n, 0 < m ≤ n/2.

Clearly sin kπ/n = sinmπ/n.

We have sinmπ/n = AiAi+k mod n/(2OAi). But AiAi+k mod n = 1
when k = 1 (by definition) so OAi = 1/(2 sinπ/n). Hence (generally)

AiA(i+k)(modn) =
sinmπ/n

sinπ/n
= lk (say).

We may think of the ants walking on sides of m r-grams, clockwise only
when m < k (r = n/ gcd(m,n)), of side lk each of which subtends an angle
of 2mπ/n at O.

The component of the velocity of a pursued ant in the direction away
from the pursuing ant is cos 2mπ/n; so the side is decreasing with velocity
vm,n = 1−cos 2mπ/n = 2 sin2mπ/n. (I am grateful to Professor Leo Moser
for this idea.) Hence they (all) meet after time

tk,n =
lk
vm,n

=
1

2
(

sin
π

n

)(
sin

mπ

n

) =
1

2

(
cosec

π

n

)(
cosec

mπ

n

)
.

�
�
�

@
@
@ �

�
�

@
@
@t

t
t t

t
t

t t
�

@
@
@R

A0
A3

A6

�
��

2kπ

n

n = 8
k = 3
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Solution 205.3 – Reciprocals
Show that if 1 ≤ m < n, the following expression cannot be an
integer:

1

m
+

1

m+ 1
+

1

m+ 2
+ · · ·+ 1

n
.

Ian Adamson
Consider a set S of at least two consecutive positive integers. Then clearly
there exists some u ∈ S such that ord2(u) = r and ord2(v) ≤ r for all v ∈ S.
Uniqueness of u follows since contrariwise existence of w, ord2(w) = r,
w 6= u, implies w = 2rw1, w1 is odd as is u1, where u = 2ru1. Now the
existence of w means, since ord2(2r(w1 + u1)/2) ≥ r, we may choose w so
that |u1 − w1| > 0 is as small as we like, so let |u1 − w1| = 1 which is
impossible as u1, w1 are odd; so we have a contradiction.

Suppose now that lcm(S) is k. Also ord2(k) = r, ord2(x) < r, x ∈
S \ {u}. Thus ∑

t∈S

1

t
=

1

k

(∑
t∈S

k

t

)
. (1)

Now k/u is odd and all k/x are even; so the numerator of (1), say N , is
odd. Hence k - N which implies the proof.

Did you know that the first two words are sufficient (and sometimes nec-
essary) to identify a Shakespeare play? See how many you can recognize
before you look them up.

As by As I Before we
Boatswain! / Here, Cease to Escalus! / My
Good day, Hence, home, Hung be
I come If music If you
I learn I’ll pheeze In delivering
In sooth, In Troy, I thought
I wonder Let fame, Nay, but
Noble patricians, Now, fair Now is
Now, say, O for Old John
Open your Proceed, Solinus, Sir Hugh,
So shaken To sing Tush, never
Two households, When shall Who’s there?
You do
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Letter

Primes and partitions
Tony,

I recently read The Music of the Primes by Marcus du Sautoy. This
is a good history of mathematicians, but it is written by ‘a populist with
staunch faith in the public’s intelligence’, to quote the back cover. So you
don’t get much maths as such. However, he gives details of the continuing
discussions over Riemann’s hypothesis, about which I knew almost nothing.

Here is one bit of maths he gives. Apparently it is a formula for gen-
erating primes, and which was discovered in 1976. He does not say who
discovered it.

(k + 2)
(
1− [wz + h+ j − q]2

− [(gk + 2g + k + 1)(h+ j) + h− z]2

− [2n+ p+ q + z − e]2

− [16(k + 1)3(k + 2)(n+ 1)2 + 1− f2]2

− [e3(e+ 2)(a+ 1)2 + 1− o2]2 − [(a2 − 1)y2 + 1− x2]2

− [((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2]2

− [n+ l + v − y]2 − [(a2 − 1)l2 + 1−m2]2

− [ai+ k + 1− l − i]2

− [p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m]2

− [q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x]2

− [16r2y4(a2 − 1) + 1− u2]2

− [z + pl(a− p) + t(2ap− p2 − 1)− pm]2
)
.

I am unable to attach another interesting formula (by Ramanujan) which
calculates the number of ways that the elements of a set can be partitioned
into subsets. My scanner won’t put it into a word format because it can’t
cope with the sigmas and the big brackets around fractions.

Having read his book, though, I was able to follow the reasoning behind
your prime definition (iv) (M500 200 pp 24–5), and the connection of the
zeta function with primes and π2/6. Without reading the book, I would
not have followed it.

Colin Davies
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ADF — I should point out that the prime generating formula
[J. P. Jones, D. Sato, H. Wada and D. Wiens, Diophantine representation
of the set of prime numbers, American Mathematical Monthly, 1976] in-
volves integer variables and yields primes only when it is positive. And that
can happen only if all of the [. . . ]2 terms are zero, in which case the prime
is k + 2. Choosing a, b, . . . , z at random usually produces something which
is large, negative and composite. In fact, we would be interested if anyone
could tell us how to choose the parameters to get positive numbers.

I assume that Colin’s unscannable formula is the main result in
G. H. Hardy and S. Ramanujan, ‘Asymptotic formulæ in combinatory anal-
ysis’, Proc. London Math. Soc. 2 xvii (1918), 75–115. Let p(n) denote the
number of partitions of a set of n elements. Then

p(n) =

ν∑
q=1

Aq(n)φq(n) +O(n−1/4),

where

φq(n) =

√
q

2π
√

2

d

dn

exp

(
2π√
6 q

√
n− 1

24

)
√
n− 1

24

 ,

Aq(n) =
∑
(p)

ωp,q exp

(
−2n pπ i

q

)
,

ωp,q =


(
−q
p

)
exp

[
−
(

2− p q − p
4

+
(q2 − 1)(2p− p′ + p2p′)

12 q

)
πi

]
, p odd,(

−p
q

)
exp

[
−
(
q − 1

4
+

(q2 − 1)(2p− p′ + p2p′)

12 q

)
πi

]
, q odd,

(a/b) is the Legendre/Jacobi symbol, p′ is any positive integer such that
1 + pp′ ≡ 0 (mod q), ν = α

√
n and α is any positive constant.

That symbol, (a/b), which looks like something over something with a
redundant pair of brackets, is not a fraction. In the simplest case, where
b is an odd prime and a 6≡ 0 (mod b), it is the quadratic residue function:
(a/b) = 1 if a ≡ x2 (mod b) is solvable for x, and (a/b) = −1 otherwise.
Look it up in a number theory book for a full explanation.
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What’s the next number?
Diana Maxwell
How does this sequence continue and what is the rule?

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ?, . . .

That’s how it works in English. In Spanish, on the other hand, it’s not so
simple. The sequence, which consists of sets of numbers, goes like this:

{4, 6}, {4, 6}, {4, 6}, {4, 6}, {5}, {4, 6}, {5}, {4, 6}, {5}, {4, 6},
{4, 6}, {4, 6}, {5}, {5}, {4, 6}, {5}, {4, 6}, {5}, {4, 6}, {4, 6}, . . .

and in the continuation there seems to be a bias in favour of {4, 6} over
{5}. Interesting Question: Is the number of {5} terms infinite?

Problem 207.1 – 25 points
Start with a 5 × 5 square array of unmarked points. (*) Mark any four
unmarked points which are at the corners of a square. Repeat (*) as often
as possible. What is the maximum number of times you can perform (*)?

Try it with ‘corners of a square’ replaced by ‘corners of a rectangle whose
sides are parallel to the edges of the array’. Try it also with an n×n array.

Book received
Robin Wilson
How to solve sudoku: A step-by-step guide
Infinite Ideas, Oxford 2005, 116 pages

From the cover: ‘Sudoku, a seriously addictive puzzle, is sweeping the world.
It’s a phenomenon that is spreading faster than you can count to nine. ...
There are examples and practice grids for you to hone your skills on before
you move to the next fiendish challenge. So if you’re feeling a little grid-
locked there are numerous tried and tested tips and tactics to help you get
to grips with sudoku puzzles.’

In this book, Robin Wilson, head of Pure Mathematics at the OU,
Gresham Professor of Geometry, and sudoku addict, gives a step-by-step
guide (for absolute beginners) to solving these puzzles. How to solve sudoku
can be obtained from the publisher (post free) by sending £4.99 to Infinite
Ideas, 36 St Giles, Oxford OX1 3LD.

How many mistakes are there: ‘Their are three mistakes in this sen-
tance’? (Do not attempt this while shaving.) [EK]
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Problem 207.2 – Parts of a partition
A partition of n can be represented as a vector (a1, a2, . . . , an), where the
ai are defined by

n = a1 + 2a2 + 3a3 + · · ·+ nan.

Thus, for example, in this notation the eleven partitions of 6 are

(6, 0, 0, 0, 0, 0), (4, 1, 0, 0, 0, 0), (3, 0, 1, 0, 0, 0), (2, 2, 0, 0, 0, 0),
(2, 0, 0, 1, 0, 0), (1, 1, 1, 0, 0, 0), (1, 0, 0, 0, 1, 0), (0, 3, 0, 0, 0, 0),
(0, 1, 0, 1, 0, 0), (0, 0, 2, 0, 0, 0) and (0, 0, 0, 0, 0, 1).

What is the maximum possible number of non-zero elements ai in a partition
of n? How many partitions of n use this maximum number?

Problem 207.3 – Odds
Let Q be the set of integers defined by (i) 1 ∈ Q; (ii) n ∈ Q⇒ 2n+ 1 ∈ Q;
(iii) 3n ∈ Q⇒ n ∈ Q.

Either prove that Q is the set of positive odd integers, or determine the
smallest odd integer not in Q.

Problem 207.4 – Sextic
Solve

500x6 − 13000x3 = 77613.

Balls
Bob Newman
A and B play snooker. They play a complete frame which B wins with the
minimum possible score, and B pots only one ball. What colour is it?

ADF writes — Bob Newman also has the most plausible answer we
have heard to that other snooker problem [M500 203, p. 14]. How can you
score 162 in one visit to the table?

A gives away 159 in fouls. B meanwhile makes no score and commits
no fouls (0, 159). B commits a 4-point foul and leaves a free ball (4, 159). A
pots the free ball (equivalent to a red) and takes a black (12, 159). A does a
147 clearance (159, 159). The black is re-spotted, A wins the toss and pots
the black (166, 159). A has scored 162 in one visit.
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81 cells revisited
Tony Forbes
Continuing the problem we set in M500 206, have a look at the sudoku puz-
zle on this page. (Fill in the blanks to make a Latin square on {1, 2, . . . , 9}
with the extra constraint that the nine 3×3 boxes also contain {1, 2, . . . , 9}.)
Notice that in the starter-digits there is a significant bias towards high num-
bers. There is no 1. The number 2 is not absent because a valid sudoku
puzzle cannot omit two different digits. Exercise for reader—Why? But
there is the next best thing: only one 2. And only one 3 and one 4. How-
ever, in this example each digit 5, 6, . . . , 9 appears more than once. We
ask: Is this best possible? Can you have a sudoku puzzle with no 1s, and
only one each of 2, 3, 4 and 5?

9

4

8 6

6

9 7

5

2

7 6

9

3

8

9 7

6 8 5

5

9

8

7

We can represent a sudoku puzzle as a vector S = (S0, S1, . . . , S80),
indexed by I = {0, 1, . . . , 80}, whose elements Si are sets of integers. Certain
subsets of I are called regions—if we imagine S arranged as the familiar 9×9
array, a region is precisely the set of indices of a row, column, or 3× 3 box.
For J ⊆ I, define SJ =

⋃
{Sj : j ∈ J}. We say that S is inconsistent if Si is

empty for some i ∈ I, and S is valid if SI ⊆ {1, 2, . . . , 9} and for each region
R and each n ∈ {1, 2, . . . , 9} there is at most one i ∈ R such that Si = {n}.

In its initial state (as published in The Times, for example), S is valid
and there is a set H ⊆ I such that |Sh| = 1 for h ∈ H and Si = {1, 2, . . . , 9}
for i ∈ I \ H. You then transform S until either (i) S is inconsistent, or
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(ii) |Si| = 1 for all i. The transformations must preserve the validity of S
and they must leave Sh unchanged for h ∈ H. But otherwise you can do
anything you like—you can work logically or you can make changes entirely
at random. The objective is to achieve (ii), and in a genuine sudoku puzzle
this final state (with valid S) is unique.

Let us consider a specific transformation, Φ, called the critical set strat-
egy and defined as follows.

Φ If R is a region and P ⊆ R such that |P | = |SP |,
then replace Sq by Sq \ SP for each q ∈ R \ P .

Given an initial S, we apply Φ repeatedly until S is stable and we note the
number φ(S) of indices i for which |Si| = 1. This leads to a very interesting
question: What values can φ(S) take? There exist S for which φ(S) = 81,
and it is obvious that 80, 79 and 78 are impossible. But what about others?

Surprisingly, φ(S) can be quite large, as in the example below. There
are 70 numbers in the array but Φ has no effect; you need other methods
to complete it. This happens to be the largest in my collection of sudoku
puzzles which are closed under Φ. In fact I have examples for all values of
φ(S) from 22 to 70, and I would be particularly interested if someone can
create a puzzle with φ(S) outside this range.

3 9 5

8 4 7

1 6 2

2 1 6

9 3 5

8 4 7

7 4 8

1 6 2

9 3 5

3

2 8

7 5 1

1 5 8

3 7 9

6 2 4

2 7

5 1

3 8 9

7 3

5 8

2 1 6

5 2

7 1

4 8 3

8 1

2 3

5 9 7

Answers to quiz on p. 15: H62, AYLI, Cor; T, TGoV, MfM; ToA, JC, H61; H8, TN, WT;
MAAN, TotS, AWTEW; MoV, T&C, KL; H43, LLL, A&C; TA, MND, R3; KJ, H5, R2;
H42, CoE, MWoW; H41, PPoT, O; R&J, M, H; Cym.
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