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Drawing the harmonic series
Sebastian Hayes
A clear geometrical drawing should not be seen as a mere illustration: it
demonstrates that a proposed theorem is true in at least this particular case.
The challenge is now to generalize it, to show that the truth of the theorem
does not depend on features specific to this one case, such as a triangle being
right-angled for example. This approach is inductive rather than deductive
and comes far more naturally to the vast majority of people, which is one
of the main reasons why it does not find favour with the mathematical
establishment. It is a completely different process from what passes as
mathematical (i.e. algebraic) proof today. A modern theorem may well
have been ‘proved’ and yet not one instance of it be presentable; this is the
case for ‘existence proofs’, which mathematicians at one time viewed with
distrust—Euclid’s proofs are usually constructive. Worse still, the proved
theorem may appear to be nonsense or plain wrong like the Banach-Tarski
two-sphere theorem, which demonstrates how a sphere can be dissected in
a particular way so as to eventually furnish two spheres each the size of the
original one.

There are many elegant proofs of the famous inequality

H.M. ≤ G.M. ≤ A.M.,

relating the harmonic, geometric and arithmetic means, but as far as I am
concerned the most convincing one is an elementary geometric construction.

Ruler and compasses construction of the harmonic mean

We start as the Greeks did with the lengths of line segments; that is, with
strictly positive quantities. Numerically, the harmonic mean, H.M., of two
quantities a and b is defined as 2ab/(a+ b).

Lengths AC = a and AE > AC = b are given. Draw AB tangent to
circle centre O. Then

AO = AC + CO = (2AC + 2CO)/2

= (AC + (AC + CE))/2

= (AC +AE)/2

= A.M. of AC and AE.
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Since AB2 = AC · AE by the secant theorem, AB is the G.M. of AC
and AE. Also, since AD/AB = AB/AO (similar triangles),

AD = AB2/AO =
(G.M.)2

A.M.
=

AC ·AE
(AC +AE)/2

= H.M. of AC and AE.

This diagram is perfectly general. Also, if there is a circle at all,

H.M. < G.M. < A.M.

As the constructed circle diminishes, AC/AE approaches unity and we may
consider the degenerate case when AC = AE as the mathematical limit,
i.e. a circle of zero radius. In such a case, clearly H.M. = G.M. = A.M. No
further argument is needed.

But this method does not readily generalize to the construction of a
harmonic series with more than three quantities.

Construction by bisection

Lengths AB and BC are given. Draw BC at any angle to AB and bisect
the angle ABC. Join AC meeting the angle bisector at H. Then HD drawn
parallel to AB is (AB ·BC)/(AB +BC) = H.M./2.
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Angle ABH = ∠HBD by construction; 4ABC is similar to 4HDC.
Therefore HD/AB = DC/BC = (BC − BD)/BC. But ∠HDC = ∠ABC
because AD is parallel to HD. Also ∠HDC = ∠HBD + ∠BHD (exterior
angle). Therefore4HBD is isosceles andBD = HD. ThereforeHD/AB =
(BC −HD)/BC. Hence

HD =
AB ·BC
AB +BC

=
H.M.

2
of AB and BC.

Construction of the H.M. by straight-edge and set square

The following method only requires the use of a straight edge and some
means of drawing parallel lines.
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The given lengths are AB and BC. Draw CD parallel to AB and equal to
BC. Then BE is the H.M./2 of AB and BC.

Proof. 4ABE is similar to 4CDE (∠ABE = ∠ECD and ∠AEB =
∠CED). Therefore EB/EC = AB/CD; EB = EC · AB/CD = (BC −
EB) · AB/BC (since BC = CD); EB(BC + AB) = BC · AB; EB =
BC ·AB/(BC +AB) = H.M./2.

Also, if we join up BD and draw EF parallel to AB, then EF = BE =
H.M./2.
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Since EF is parallel to CD, ∠EFB = ∠CDB. But BC = CD by
construction, therefore 4BCD is isosceles. Also ∠CDB = ∠DBC. But
4BEF is similar to 4BCD. Therefore 4BEF is also isosceles. Therefore
BE = EF = H.M./2.

To inscribe a square in a triangle

This suggests a method for constructing an inscribed square in a triangle
whose base angles are acute.

If the triangle is BAC with height AH, we draw AF = AH parallel to
BC.
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We have AH = EG = AF (construction); ED/DG = AF/BC
(heights of similar triangles); ED/DG + 1 = AF/BC + 1; EG/DG =
(AF +BC)/BC; DG = BC ·EG/(AF +BC) DG = BC ·AH/(AH +BC)
(since AH = EG = AF = height).

Thus DG = (height · base)/(height + base).

Also, if we draw a line through D meeting BA at J , JD = DG;
JD/BC = ED/AH (similar triangles); JD = (BC · ED)/AF = BC ·
(ED/AF ) (since AH = AF ). But ED/AF = DG/BC (similar triangles).
Therefore JD = DG = (height · base)/(height + base).

We recall that, for two quantities a and b,

A.M. =
a+ b

2
, G.M. =

√
ab, H.M. =

2ab

a+ b
=

(G.M.)2

A.M.

Now H.M. ≤ G.M. ≤ A.M. with equality only occurring when a = b. Thus

DG · JD = (inscribed square)

=
height · base

height + base
≤ height · base

4
=

area 4
2

.
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The area of the inscribed square is thus always less than half the area
of the triangle except for a triangle whose height equals its base, when the
area of the inscribed square is exactly half that of the triangle and a quarter
that of the larger square.

Note that the two preceding constructions are not the same (except in
the case of a right-angled triangle)—in the first we laid off a length equal
to a side and in the second we laid off a length equal to the height. Here
CA = AD = height (left-hand diagram, below).

If we make the parallel line AD equal to AC—and not equal to the
height—we can construct an inscribed rectangle but it will not be a square.

Thus AC = AD and 4ACD is isosceles; but since FEG is drawn
parallel to BC, this means that angle EGC = angle ADC = angle DCA,
which makes4EGC isosceles also. Therefore, EG = EC = BC ·AC/(BC+
AC) = H.M./2. But FE is also H.M./2 of BC and AD, or BC and AC.
Therefore FE = EG = EC. However, EH 6= FE (right-hand diagram).
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Standard straight-edge and parallel line construction
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If AB and EF are the given lengths, we simply draw them parallel and join
the extremities. Then a line through the join parallel to AB is the H.M.
Why? Since AB, CD and EF are parallel, triangles BOD and BEF are
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similar; likewise, triangles FOD and FAB.

With OD = d, AB = a, EF = c, DF = n, we have

m+ n

a
=

n

d
,

m+ n

c
=

m

d
.

Adding,
m+ n

d
=

m+ n

a
+
m+ n

c
.

Dividing by m+ n gives

1

d
=

1

a
+

1

c
, or d =

ac

a+ c
.

Also, triangles EOC and EBA are similar; likewise triangles AOC and
AFE. With OC = e,

e

a
=

EO

EB
=

n

m+ n
and

e

c
=

BO

BE
=

m

m+ n
.

Adding, we have e/a+e/c = 1, or 1/e = 1/a+1/c. Therefore d = e = CD/2.

Setting CD = b, b = 2ac/(a + c), which is the definition of H.M., the
reciprocals of the three lengths are in A.P. since 2/b = 1/a+ 1/c.

Note that the distance between a and c, BF in the above diagram, is
irrelevant to the construction. This is very remarkable and means that a
series of uprights forming a harmonic progression can be ‘squashed together’
or spread out at will. The three lines, representing the quantities a, b and c,
do not need to be at right angles to the baseline but they must be parallel.

The ‘Construction by Bisection’ and the second ‘Straight Edge and Set
Square Construction’ are special cases of the standard construction. In the
first, bisecting the angle ABD means that the width between the uprights
is equal to the second upright—in the standard construction diagram EF =
c = BF = m+ n. In the second we make one of the linking diagonals, BE
in the standard construction diagram, equal to c.

Whenever we see two parallel lines with
their extremities joined and the baseline
drawn in, we have a harmonic progression with
a and b and the half harmonic mean ab/(a+b)
in between. The half harmonic mean crops up
in physics much more frequently than the har-
monic mean itself: we come across the relation
1/f = 1/u+ 1/v in optics for example.
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‘Negative’ harmonic series

However, if, in a case where a > b/2, we produce the lines through the
mid-point of b in the opposite direction we find they do meet the baseline
and the diagonal produced so that we can define a joining line c.
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Here AB = a and CD = b are the given lengths and are drawn parallel;
AB < CD/2. Make CE = ED = CD/2. Join EB and produce to meet the
line CAO produced at H. Join EA and produce to meet the baseline at F .
Join FH.

If FH is parallel to AB, we have a case of the standard construction
and the lengths CE, 2AB and FH form an ascending harmonic progression.
Therefore, AB is H.M./2 of CE and FH; i.e. AB = FH ·CE/(FH +CE).

Since CE = CD/2 = b/2 and AB = a, FH = 2a(b/2)/(2(b/2)− 2a) =
ab/(b− 2a).

However, it must be shown first that FH is parallel to AB and CD. If
4EBD is similar to 4FBH, ∠HFB = ∠EDB = 90◦ and FH is parallel
to AB and CD. Also ∠FBH = ∠EBD since they are opposite angles.
It is thus sufficient to show that two sides of the respective triangles are
proportional; e.g. FB/BD = HB/BE.

Since 4HCE is similar to 4HAB, HE/HB = CE/AB. But CE =
ED = CD/2; therefore HE/HB = ED/AB. Also, since 4AFB is sim-
ilar to 4FED, ED/AB = FD/FB. Therefore HE/HB = FD/FB, or
(HB +BE)/HB = (FB +BD)/FB, whence BE/HB + 1 = BD/FB + 1;
BE/HB = BD/FB, as required.
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If now we continue using the same construction method, i.e. drawing
lines from the extremities of one upright through the mid-point of the next,
we obtain an upright JK that is closer to O.
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It can be shown in a similar way that JK is parallel to FH and CD.

This is a case of the standard construction on the baseline GKD, which
means that FG, 2JK and CD form an increasing harmonic progression; i.e.
JK = FG · CD/(FG+ CD). Since, in terms of the original lengths a and
b, FH is ab/(b− 2a) and CD is b, this means

JK =
b · 12ab/(b− 2a)

b+ 1
2ab/(b− 2a)

=
ab

2b− 3a
.

This is the ‘absolute’ value—line segments are always positive—but if we
consider lines below the baseline to be negative we obtain (after the first
two terms a and b) a diminishing negative harmonic series:

ab

2a− b
,

ab

3a− 2b
,

ab

4a− 3b
, . . . ,

ab

(n+ 1)a− nb
, n = 1, 2, 3, . . . .

A numerical example will make this clear. If we set a = 1, b = 3, we have
in effect the condition 0 < a < b/2 and the next term, c, is 1·3/(2−3) = −3.
The negative series proceeds −3, 3/(3−2 ·3) = −1, −3/5, −3/7, −3/9, . . . ,
or

−3

1
,
−3

3
,
−3

5
,
−3

7
, . . . ,

−3

2n− (n− 1)
, n = 1, 2, 3, . . . .

This series diminishes to zero obviously like ab/((n+ 1)a− nb), a > b.
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Drawing an indefinitely extendable harmonic progression

Wherever we can spot the standard diagram, made up of three parallel lines
and two linking diagonals, we know we have before us three lengths forming
a harmonic progression. Given any two lengths, a and c, we can always
construct an intermediate length, b, to form a harmonic progression with
three terms. Also, if we have any two lengths, a and b, with a > b, we can
very easily draw a third term, c, with b > c, to form a diminishing harmonic
progression. All that is necessary is to define the so-called ‘point at infinity’
and to bisect the angle. Now join the top (or bottom) of the first upright to
the mid-point of the second and produce it to meet the baseline (or slanting
top line). An upright parallel to the first and second lines is the desired
line.
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One can thus continue a diminishing harmonic progression indefinitely—
within the limits of technical ability. Numerically, supposing a > b > c >
. . . , we have c = ab/(2a − b) and using this relation repeatedly we derive
the following series

a, b,
ab

2a− b
,

ab

3a− 2b
,

ab

4a− 3b
, . . . ,

ab

na− (n− 1)b
.

We may define it generally as ab/(na − (n − 1)b), where 0 < b < a and
n = 0, 1, 2, . . . . This can be proved by induction:

t(n+ 1) =
t(n− 1)t(n)

2t(n− 1)− t(n)

=

ab

(n− 1)a− (n− 2)b
· ab

na− (n− 1)b
2ab

(n− 1)a− (n− 2)b
− ab

na− (n− 1)b

=
ab

(n+ 1)a− nb
= t(n+ 1).
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To construct a third length c when a and b are given and a > b > c it
is only necessary to draw diagonals through the mid-point of b.
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Then c = ab/(2a−b) and the process can be continued indefinitely. The
simplest example is what is often known as the Harmonic Series, namely
1, 1/2, 1/3, 1/4, 1/5, . . . .

It seems reasonable to suppose that the same method of construction
would apply to an increasing harmonic progression but this is not always
the case. By trial we find that only if a > b/2 can the third upright be
drawn.
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Clearly, in the rightmost picture lines through the mid-point of b will never
meet the baseline or the diagonal line so c cannot be drawn.

Finally, from the next diagram, we can see that if a, b and c are in
descending harmonic progression, then so are a, a− c and a− b. The details
are left to the interested reader.
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Clock-watchers
Rob Evans
Recently, whilst looking through back copies of this magazine for interesting
maths problems to solve, I came across a problem entitled ‘Clock’. That
problem (slightly reworded and generalized) is as follows.

The hour-hand of a clock is h units long. Its minute-hand is
m units long, where m > h. Determine the angle between the
clock’s hands when their outermost points are travelling apart
from each other at the greatest speed.

If s is the distance between the outermost points of the clock’s hands and t
is the amount of time which has elapsed since an arbitrary fixed instant of
time, the above problem can be succinctly restated as follows.

Determine the angle between the clock’s hands when ds/dt is
maximized.

A solution to this problem appeared in M500 170. Essentially, it is as
follows.

Let t = 0 at a given instant of time when the clock’s hands are pointing
in the same direction. In turn, let θ = θ(t) be the clockwise angle through
which the minute-hand has moved relative to the hour-hand since t = 0.
Then the cosine rule yields

s =
√
h2 +m2 − 2hm cos θ (1);

see Figure 1. (Various well-known identities involving the cosine function
guarantee that (1) holds for all possible values of θ.) Consequently, we have

ds

dt
=

ds

dq

dq

dt
=

hm sin θ

s

dθ

dt
. (2)

Next, we find an expression for d2s/dt2. On the reasonable assumption that
the clock runs uniformly (i.e. dθ/dt is constant) we have

d2s

dt2
= − hm

s3
(
hm cos2 θ − (h2 +m2) cos θ + hm

)(dθ
dt

)2

.

From this expression, we deduce

d2s

dt2
= 0 ⇒ hm cos2 θ − (h2 +m2) cos θ + hm = 0
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⇒ (m cos θ − h)(h cos θ −m) = 0 ⇒ cos θ =
h

m
or

m

h
.

In other words, since m > h and cos θ ≤ 1, we must have

d2s

dt2
= 0 if and only if cos θ =

h

m
. (3)

To find unique value of θ at which ds/dt is maximized we shall now
restrict θ to the interval [0, 2π). From (2) and (3) and the reasonable as-
sumption that the clock runs forwards (i.e. dθ/dt is always positive) we
have

ds

dt
is maximized if and only if θ = arccos

h

m
. Q.E.D.

(Figure 2).

This solution in M500 170 was immediately followed by a contribution
from the editor to the effect that the simplicity of the final result suggests
that there ought to exist a correspondingly simple way of looking at the
problem. I will now demonstrate that this is indeed so!

Let t and θ = θ(t) be defined as before. Denoting the centre of the clock
by O and the outermost points of the hour- and minute-hands by H and M
respectively and then applying the sine rule to triangle OHM we have

sin θ

s
=

sin(π − φ)

m
=

sinφ

m
, (1′)

where φ = φ(t) is the clockwise angle through which the line HM has moved
relative to the line OH since t = 0. (See Figure 1′.)

However, recalling the earlier expression for ds/dt we have

ds

dt
=

hm sin θ

s

dθ

dt
.

Consequently, on combining the last two equations we have

ds

dt
= h sinφ

dθ

dt
.

So, on the assumption that the clock runs uniformly and forwards we have

ds

dt
= h(sinφ)ω, where ω =

dθ

dt
is a positive constant. (2′)

To find a unique values of θ and φ at which ds/dt is maximized we shall
now restrict θ and φ to the interval [0, 2π). From (2′) it is clear that ds/dt
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attains its maximum value of ωh if, and only if, φ = π/2. In other words,
ds/dt attains its maximum value of ωh if, and only if, θ = arccos(h/m).
Q.E.D. (See Figure 2′.)

So, as well as having found the value of θ for which ds/dt attains its
maximum value we have found what that value is. Moreover, in doing so
we have found that this value is independent of m.
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Figure 1

Figure 2

Figure 1'

Figure 2'

ds�dt is maximized
Θ = arccosHh�mL Î @0, 2ΠL

ds�dt is maximized
Φ = Π�2 Î @0, 2ΠL
Θ = arccosHh�mL Î @0, 2ΠL
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Solution 203.4 – Cyclic quadrilateral
A cyclic quadrilateral has sides a, b, c and d. Show that R, the
radius of the circumcircle, is a function of a, b, c and d. Another
cyclic quadrilateral, again with side lengths a, b, c and d, has a
circle inside it which is tangent to all four sides. Show that r,
the radius of the in-circle, is also a function of just a, b, c and d.

Note that the diagram below shows the special case pertaining to the second
part of the problem, where there actually is an in-circle. This suggests a
further question. What relation must hold between a, b, c and d for the
in-circle to exist?
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Ted Gore
Let WXY Z be the quadrilateral. By the cosine rule,

x2 = a2 + b2 − 2ab cos θ = c2 + d2 + 2cd cos θ;

hence

cos θ =
a2 + b2 − c2 − d2

2ab+ 2cd
. (1)

From a different perspective we have

cos θ = cos(α+ β) =

√(
1− a2

4R2

)(
1− b2

4R2

)
(2)

since cosα = a/(2R) and cosβ = b/(2R). Putting (1) and (2) together we
get

R =

√
a2 + b2 − 2ab cos θ

2 sin θ
.

Now to find r. Because the quadrilateral is cyclic, we already have
formula (1) for cos θ. Let A denote the area of the quadrilateral. Then

A = (area of XYW ) + (area of Y ZW )

=
ab sin θ

2
+
cd sin(π − θ)

2
=

ab+ cd

2
sin θ. (3)

Now the radii of the in-circle meet a, b, c and d at right-angles. So A is the
sum of the areas of triangles XY O′, Y ZO′, ZWO′ and WXO′. Thus

A =
r

2
(a+ b+ c+ d). (4)

From (3) and (4) we get

r =
(ab+ cd) sin θ

a+ b+ c+ d
.

Problem 208.1 – 3 ratios
Show that a/b = c/d = e/f = α implies that

α =
3

√
2a2c+ 3c3e+ 4e2c

2b2d+ 3d3e+ 4f2d
.
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A brief introduction to Study numbers
Dennis Morris
Study numbers are a hyperbolic form of complex numbers. It seems, and
I am far from certain about this, that Study numbers are named after
Eduard Study, a German mathematician working around the year 1900.
I have scanned through some of his works, but I have found nothing at
all concerning these hyperbolic complex numbers and I wonder if they are
erroneously attributed to him. I cannot claim to have scanned all of his
works or any of them thoroughly because, although the maths is written
in maths, the English is in German, and I do not speak German. Perhaps
someone from the history of mathematics department can enlighten me.

Study numbers are similar to complex numbers, but instead of having
î =
√
−1 they have r̂ =

√
+1 6= ±1, where we have put a hat upon the

‘imaginary’ parts. They are written as x + r̂y. The permissible values are
restricted. The absolute value of the real part must be greater than the ab-
solute value of the ‘imaginary’ part: |x| > |y|. Addition and multiplication
are parallels of the complex numbers:

(a+ r̂b) + (x+ r̂y) = (a+ x) + r̂(b+ y),

(a+ r̂b)(x+ r̂y) = (ax+ r̂2by) + r̂(ay + bx) = (ax+ by) + r̂(ay + bx).

The conjugate of the Study number x + r̂y is x − r̂y, and division is
done with the conjugate as with complex numbers.

a+ r̂b

x+ r̂y
=

(a+ r̂b)(x− r̂y)

(x+ r̂y)(x− r̂y)
=

(a+ r̂b)(x− r̂y)

x2 − y2
.

Such division is not defined when |x| = |y|, but these values are excluded.

The norm of Study numbers (with |x| > |y|) is x2 − y2. The polar
form of Study numbers is c(coshχ + r̂ sinhχ), and so Study numbers can
be thought of as the hyperbolic form of complex numbers. For the reader’s
convenience, we provide copies of the graphs of these two functions.

Thus coshχ and sinhχ are the parameters of the hyperbola given by
x2 − y2 = c2, where c is a constant. The reader can compare this to
the complex number case, where sin θ and cos θ are the parameters of the
circle given by x2 + y2 = c2, where c is a constant. Study numbers sit on
a plane in a way similar to the way complex numbers sit on the Argand
diagram, but the Study number plane is a hyperbolic space rather than a
Euclidean one. The Study number plane is split into two halves by the
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45◦ lines where |x| = |y|, and the Study numbers occupy two horizontally
opposite quadrants. The real numbers lie on the horizontal x-axis. The
lower illustration is an Argand diagram for Study numbers. It is a plot of
hyperbolas with c = 1, 2, 3, 4. Also plotted are the 45◦ and minus 45◦ axes.
The value of ±x where a hyperbola crosses the x-axis corresponds to the
value of

√
c2.

-3 -2 -1 1 2 3

-5

5

sinh Χ

-3 -2 -1 1 2 3

4

6

8

cosh Χ

-4 -2 2 4

-4

-2

2

4

Argand diagram for the Study numbers
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The vertically opposite quadrants are not part of the Study number
space; they are the realm of numbers of the form a+ r̂b with |a| < |b|.

Unlike complex numbers, Study numbers are not algebraically closed;
numbers with a negative real part have no square roots, but also unlike
complex numbers, functions of them (like loge) are single valued. Complex
numbers can be extended to become quaternions. Similarly, Study numbers
can be extended to form a hyperbolic form of quaternion. As with com-
plex numbers, Cauchy–Riemann like equations can be derived for Study
numbers.

Study numbers with positive real part have four square roots, but only
two of them are Study numbers.

Problem 208.2 – Binary tree
Ian Adamson
Imagine the picture below extended to infinity left, right, up and down. It
is clear that there are infinitely many nodes; but what sort of infinity? Are
the nodes countable or uncountable?
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Problem 208.3 – Concentric circles

You have n points
arranged in a circle
with straight lines
connecting every
possible pair of
points. There’s an
example on the right
with n = 23. And
another on the front
of M500 178, this
time with n = 19.

I have been look-
ing these things for
as long as I can re-
member and I have
always been puzzled
by the optical illu-
sions they generate.
So I ask a simple
question: Where do
all those concentric
circles come from?

0

1

2

3

4

56
7

8

9

10

11

12

13

14

15

16
17 18

19

20

21

22

Problem 208.4 – Folding a polygon
Take a regular n-sided polygon and choose a point, X, in its interior. For
each vertex V , draw the line that perpendicularly bisects XV . (You can
achieve the same effect by folding the plane so that V coincides with X.)
These lines define a polygon P with X in its interior. What is the maximum
number of sides that P can have?

The case n = 100 is illustrated on the cover. The thing that looks like a
circle is really a 100-sided polygon of ‘radius’ 1. The point has coordinates
(1/10, 9/10). Letting n tend to infinity, the picture becomes a solid black
square with an elliptical hole. Can you determine the equation of the ellipse?

Problem 208.5 – Rain
You travel from A to B in the rain. Do you get wetter running or walking?
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Product of cosines
Sebastian Hayes
In M500 190, p. 15, John Smith states the useful result which has cropped
up in several problems recently:

n−1∏
r=1

cos
rπ

n
=

(−1)(n−1)/2

2n−1
for n odd.

(Note the misprint in the magazine: ±n/(2n − 1).) The result, obtainable
by way of complex numbers, can be derived by elementary geometry alone.

O
A B

C

E

D

F

Θ 2Θ

Since AB is the diameter, ∠ACB is a right angle and thus AC =
AB cos θ and CB = AB sin θ, where ∠COB = 2θ.

If θ = 2π/5, CB will be the chord joining the vertex of a pentagon
placed at (1, 0) to the second vertex proceeding anti-clockwise. Then AC =
2 cos 2π/5 = 2 sinπ/10 will be the side of a decagon and, more generally, the
‘complementary’ chords joining (−1, 0) to the vertices of a regular n-gon, n
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odd, with a vertex placed at (1, 0), are equal in length to the odd-numbered
chords of a 2n-gon, i.e. 2 sin rπ/2n, r = 1, 3, 5, . . . , n− 2.

This is evident simply by inspection of the figure but, for those who
insist on formulae, we have, cos(π(n− r)/2n) = sin(rπ/2n). If n and r are
both odd, n − r is even and the 2 in (n − r)π/(2n) drops out. Thus, for
n = 5, sinπ/10 = cos 2π/5, sin 3π/10 = cosπ/5.

Now AE = AC and BC = BE; so, applying Ptolemy’s theorem to the
cyclic quadrilateral ACBE, we have 2AC ·CB = AB ·CE = 2CE for a circle
with unit radius, = BD = side of pentagon = 2 sinπ/5. Also AD ·DB =
BE ·CE = DF = BC. Multiplying (AC ·CB)(AD ·DB) = BD ·BC. Hence
AC · AD = 1 (for circle with unit radius); i.e. (2 cos 2π/5)(2 cosπ/5) = 1
and, by symmetry, (2 cos 3π/5)(2 cos 4π/5) = 1.

The same argument applies to the chords from (−1, 0) to the vertices
of every regular n-gon, n odd, with a vertex placed at (1, 0). For example,
taking the case of n = 7, 2n = 14, we obtain, applying the same principle
and using vertex notation, v6v1 = v2, v4v3 = v6, v2v5 = v4, v1v3v5 = 1.

Thus we conclude that(
cos

π

n

) (
cos

2π

n

)
. . .

(
cos

π(n− 1)

n

)
=

(−1)(n−1)/2

2n−1

for n odd, taking signs of cosines into account.

The sign of the product depends on whether n−1 is or is not divisible by
4. For although the cosines will be equally distributed in the two quarters
((n−1)/2 of them will be less than n/2, and (n−1)/2 of them will be greater
than n/2), if an odd number of cosines are placed in the second quarter
(where cos is negative), the resultant sign will be minus and this will occur
every time (n− 1)/2 is odd, i.e. when n− 1 is not a multiple of 4. Thus, for
n = 7, we have (cos 4π/7)(cos 5π/7)(cos 6π/7n) = (−1)3/23 = −1/8.

We cannot, incidentally, take an equivalent product for n even because
cosπ/2 = 0 will be included and reduce the product to zero.

When n = 13,
∏12

r=1 cos rπ/13 = 1/212. Also from the main result of my
article ‘Product of regular polygon chords’ [this M500, page 24], the product

of the chords of a 13-gon is given by
∏12

r=1 2 sin rπ/13 = 13. Combining,
and using the relation tan (π − θ) = − tan θ, we have(

6∏
r=1

tan
rπ

13

)2

=

12∏
r=1

tan
rπ

13
= 13,

which answers Problem 195.2.
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Solution 200.3 – An arithmetic geometric mean
Traditionally the arithmetic–geometric mean of a pair of num-
bers {a, b} is the common limit of the process {a, b} → {(a +
b)/2,

√
ab}. Here we adopt a slightly skewed alternative defini-

tion. Let a1 = a, b1 = b, and for n > 1 let an = (an−1+bn−1)/2,
bn =

√
anbn−1. Show that

a∞ = b∞ =

√
b2 − a2

arccos a/b
.

Norman Graham
Let cn = bn − an, fn =

√
b2n − a2n, θn = arccos an/bn (assume principal

values 0 to π) and kn = fn/θn. The result is true only for |a1| < |b1|;
otherwise arccos a1/b1 does not exist.

We have

fn+1 =
√
b2n+1 − a2n+1 =

√
an+1(bn − an+1) =

√
bn + an

2
· bn − an

2
.

Therefore
fn+1 = 1

2

√
b2n − a2n = 1

2fn. (1)

and hence

fn =
1

2
fn−1 =

1

22
fn−2 = . . . =

1

2n−1
f1.

As n→∞,

fn → 0, b2n − a2n → 0, cn = bn − an → 0. (2)

Also

cos 2θn+1 = 2 cos2 θn+1 − 1 =
2a2n+1

b2n+1

− 1

=
2an+1

bn
− 1 =

an + bn
bn

− 1 =
an
bn

= cos θn.

Therefore
2θn+1 = θn, θn+1 = 1

2 θn. (3)

Dividing (1) by (3), fn+1/θn+1 = fn/θn, or kn+1 = kn. Hence

kn is independent of n. (4)
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For large n, cn → 0 and c2n can be neglected. Therefore

fn =
√

(bn + an)(bn − an) =
√

(2bn − cn)cn ≈
√

2bncn. (5)

Also as b → ∞, cos θn = an/bn = 1 − cn/bn → 1. Therefore θn → 0 and
cos θn ≈ 1− 1

2θ
2
n. Hence

θ2n
2
≈ cn

bn
and θn ≈

√
2cn
bn

. (6)

Dividing (5) by (6), kn = fn/θn → bn as n→∞. Hence, using (2) and (4),
an and bn → k1 as n→∞.

A numerical example

n an bn fn θn kn

1 1 3 2.82843 1.23096 2.29774
2 2 2.44949 1.41421 0.61548 2.29774
3 2.22474 2.33441 0.707107 0.30774 2.29774
4 2.27958 2.30683 0.353553 0.15387 2.29774
5 2.29321 2.30001 0.176777 0.076935 2.29774
6 2.29661 2.29831 0.0883883 0.0384675 2.29774
7 2.29746 2.29788 0.0441942 0.0192337 2.29774
8 2.29767 2.29778 0.0220971 0.00961687 2.29774
9 2.29772 2.29775 0.0110485 0.00480844 2.29774
10 2.29774 2.29774 0.00552427 0.00240422 2.29774

Amendment for negative b1

If b1 is negative, a2 is negative and θ2 is in the range (π/2, π). Hence
θ1 = θ2 must be in the range (π, 2π).

n an bn fn θn kn

1 1 −3 2.82843 1.91063 1.48036
2 −1 1.73205 1.41421 2.18628 0.64686
3 0.366025 0.796225 0.707107 1.09314 0.64686
4 0.581125 0.680225 0.353553 0.546569 0.64686
5 0.630675 0.654982 0.176777 0.273285 0.64686
6 0.642829 0.648877 0.0883883 0.136642 0.64686

There is no problem with negative a1, since then a2 is positive.
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Product of regular polygon chords
Sebastian Hayes
We consider a regular n-gon, centre (0, 0), with one vertex placed
at the point (1, 0). Then the complex numbers ω0 (= 1), ω1,
. . . , ωn−1 represent the positions of the vertices taken in order;
i.e. (cos 0, sin 0), (cos 2π/n, sin 2π/n), . . . , (cos 2π(n− 1)/n, sin 2π(n− 1)/n).

The distances from (1, 0) to the other vertices taken in order are given
by |1− ω1|, |1− ω2|, &c., and these complex numbers represent the lengths
of chords from a vertex to each of the others. Thus∏

chords = |1− ω1| |1− ω2| . . . |1− ωn−1| .

(There are n− 1 chords only for an n-gon because we exclude the distance
from a vertex to itself.)

The distances |1− ω1| , |1− ω2| , . . . should be (2 sinπ/n), (2 sin 2π/n),
. . . . Take

|1− ω1| =

∣∣∣∣(1− cos
2π

n
, sin

2π

n

)∣∣∣∣ =

√(
1− cos

2π

n

)2

+

(
sin

2π

n

)2

=

√
2

(
1− cos

2π

n

)
= 2 sin

π

n
,

since cos 2θ = 1− 2 sin2 θ.

We now look at the equation zn− 1 = 0, where z is complex. There are
n roots and the expression can be written (z − ω0)(z − ω1) . . . (z − ωn−1).
But zn − 1 = (z − 1)(zn−1 + zn−2 + · · · + 1) and moreover 1 = (1, 0) is a
root of the complex equation. Therefore

(z − 1)(zn−1 + zn−2 + · · ·+ 1) = (z − 1)(z − ω1)(z − ω2) . . . (z − ωn−1),

where we identify 1 with ω0 and write out the second part in terms of its
roots.

Setting z = 1 in zn−1 + zn−2 + · · ·+ 1 = (z−ω1)(z−ω2) . . . (z−ωn−1),
we obtain

(1− ω1)(1− ω2) . . . (1− ωn−1) = n.

Hence
∏

chords = n.

Question. What’s one-sided and swims in the sea?
Answer. Möbius Dick.
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Letters to the Editor

Scepticism in mathematics
Tony,

I had always assumed that mathematics had no connection with physical
law. But it had always seemed to me that various mathematical structures
(if ‘structures’ is the right word) could be used as reasonably good, or often
very good, mathematical models to describe various physical situations. So
I found Sebastian Hayes’s point about the apparent impossibility of different
factorizations in other universes very intriguing.

I don’t see how you can have a counting system in any universe that
does not have the same prime numbers as we do. That suggests that the
mathematics forces the physical laws, rather than describing them. How-
ever, any given number of tennis balls could probably be distributed fairly
equally among any given number of bins in a universe that had a very large
value for Planck’s constant.

On another topic, and of no relevance to the above, I just read in our
parish magazine that Neil Kinnock, when describing his experience of work-
ing as a European Commissioner, said it was: ‘Like drawing a diagram using
x and y coordinates, where x is the unknown quantity, and y is the question.’

Colin Davies

Pins
Over the years, as I have had bank cards replaced (often after a fraud) and
their PINs changed, I have noticed that the four-digit numbers supplied
have always had some childish mnemonic tricks in them. For example: (x,
y, y, x) twice, (x, y, y, x+1 or x+2) three times and (x, y, (2-digit product
of x and y)) twice.

These are seven instances out of—I think—ten, and the others have also
been instantly memorisable in other ways, such as dates.

There are now 6-digit identification numbers for some actions on the
web, and the same tendency is apparent. It seems unsafe: only a tiny
subset of available numbers is being doled out.

Is this just my bank, or have you had a similar experience?

I have changed them, as one can, to what seem like bland numbers, but
for all I know these may be madly significant. Is there anywhere a database
of Really Boring 4- and 6-digit numbers, from which one might make a safe
selection?

Ralph Hancock
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