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Solution 213.1 – Pascal triangle sums
Show that the sums of the reciprocals of the columns of Pascal’s
triangle, if they converge, are given by the simple formula

∞∑
n=1

k!(n− 1)!

(n+ k − 1)!
=

k

k − 1
.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

Nick Hobson http://www.qbyte.org/puzzles/

Here is a quick solution to this problem, from which convergence (for k > 1)
naturally drops out.

Let

S(k, r) =

r∑
n=1

k!

n(n+ 1) . . . (n+ k − 1)

be the partial sum to r terms. Also let S(k) = limr→∞ S(k, r). We aim to
prove that for k > 1 the limit exists, and that S(k) = k/(k − 1).

Observe that, for k > 1,

1

n(n+ 1) . . . (n+ k − 2)
− 1

(n+ 1)(n+ 2) . . . (n+ k − 1)

=
k − 1

n(n+ 1) . . . (n+ k − 1)
.

Hence, when k = 2,

S(2, r)

2
=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

r
− 1

r + 1

)
.
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This is a telescoping sum in which all but the first and last terms cancel,
leaving S(2, r)/2 = 1 − 1/(r + 1). As r → ∞, 1/(r + 1) → 0. Thus
S(2)/2 = 1, and S(2) = 2.

Next,

S(3, r)

3
=

r∑
n=1

1

n(n+ 1)
−

r∑
n=1

1

(n+ 1)(n+ 2)
.

Again, this is a telescoping sum, yielding

S(3, r)

3
=

1

2
− 1

(r + 1)(r + 2)
.

Thus S(3)/3 = 1/2, and S(3) = 3/2.

The general case is similar. We have

S(k, r)

k
= (k − 2)!

(
r∑

n=1

1

n(n+ 1) . . . (n+ k − 2)

−
r∑

n=1

1

(n+ 1)(n+ 2) . . . (n+ k − 1)

)
.

Hence

S(k, r)

k
= (k − 2)!

(
1

(k − 1)!
− 1

(r + 1)(r + 2) . . . (r + k − 1)

)
.

Thus S(k)/k = 1/(k − 1), and S(k) = k/(k − 1).

Problem 216.1 – Rotations

Let φ be a rotation of the sphere about a given axis. Let ψ be another
rotation of the sphere about a different axis. Then the composition φ ◦ ψ
is a rotation of the sphere through α degrees, say, about a certain axis, in
general distinct from the rotation axes of φ and ψ. Also, ψ ◦ φ is a rotation
of the sphere through β degrees, say, about an axis not necessarily the same
as the other three rotation axes.

Prove that α = β.
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Solution 213.8 – Definite integral
Compute

I =

∫ 1

0

5x114 + 5x112 − 4
71

x2 + 1
dx.

A popular problem. Nick Hobson, Simon Geard, Basil Thompson, Martin
Orman and Steve Moon sent in solutions. To 8 decimal places the answer is
approximately zero, as can be seen by splitting the integrand into two parts
and integrating them separately:

I = 5

∫ 1

0

x112 dx− 4

71

∫ 1

0

dx

x2 + 1
.

=
1

71

(
355

113
− π

)
≈ 0.

Nick Hobson
This somewhat surprising result occurs because 355/113 is an unusually
good approximation for π. It is ‘unusual’ in the sense that with a de-
nominator of only three decimal digits, the approximation is correct to
six decimal places. It is one of the continued fraction convergents for π:
3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, 208341/66317,
312689/99532, 833719/265381, . . . . The jump in size of the denomina-
tor from 113 to 33102 arises because of the relatively large term 292 in the
continued fraction expansion of π: [3; 7, 15, 1, 292, 1, 1, 1, 2, . . . ].

The approximation 355/113 is good enough for almost all practical pur-
poses. For instance, the circumference of a circle of diameter 113 miles
differs from 355 miles by less than 2 inches!

See Problem 202.1 – Squaring the circle, and its solution in M500 204, for an
interesting ruler-and-compasses construction (due to Srinivasa Ramanujan)
of a line segment having length

√
355/113—ADF.

Free book
The Natural Algebras: The higher dimensional complex number algebras

by Dennis Morris

This book is available freely as an internet download to readers of M500.
For details contact Dennis at superden4@aol.com.
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Solution 208.3 – Concentric circles
Explain the prominent circles that appear in the circular repre-
sentation of the complete graph Kn when n is reasonably large.

Ken Greatrix
I noticed that the circle in question is the K-number divided by 8 (then
rounded to the nearest whole number). This led me to investigate the
possibility of large Ks.

As Kn tends to infinity, the chord in question subtends an angle of 135◦

at the centre, but I can’t see why this should be significant. From the physics
classes at school, I remembered that the focal point of a spherical mirror is
halfway along the radius; thus an angle of 120◦ would be subtended. Using
a simple graphics routine, I proceeded as follows.

Define n points on a circle, where n ≡ 1 (mod 8)—this makes the
graphics easier since the int() function rounds downwards. Select an ar-
bitrary point at the top of the circle as a reference (this makes the final
picture look nice!) between two of the above defined points.

Starting from the reference point, take the first pair outwards and join
them to the appropriate points so that they are tangent to the first circle,
and they cross over above the centre. Take the second pair of points, joining
them to their partners so that they are tangent to the second circle. Repeat
this process until sufficient points have been joined by chords.

You should see a picture which vaguely looks like a bird.

The tail of the bird is concentrated on the required circle (the fourth
in your example on page 20 of M500 212). The next few cross outside this
circle and the process continues to make the bird’s wings.

As for an explanation of this, I suspect some sort of focussing that would
occur with a conic section (e.g. in an ellipse, from one focus to the other;
in a parabola, parallel lines reflect to a single focal point).

An example is shown on the front cover of this issue—K145; any higher
K-value becomes cluttered in the graphics. The light grey lines are tangent
to the 18th circle. The black lines are those described above. The black
blob at the top is my chosen reference point.

ADF writes—This is very interesting. On the next few pages I have
provided some examples with various values of n. The thin lines in the
background are some of the edges of Kn and they indeed generate the
familiar pattern of concentric circles. Notice how the focus of the thick
lines seems to be coincident with the 1

8 (n− 1) th circle, thus making it the
most prominent one when the remaining chords are added.
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25 33

41 49

73 97
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65
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81
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Solution 213.6 – What is the number?
There is a certain positive integer. When divided by three it
has remainder two; when divided by five it has remainder three;
when divided by seven it has remainder two. What is the num-
ber? In other words, solve

x ≡ 2 (mod 3), (1)

x ≡ 3 (mod 5), (2)

x ≡ 2 (mod 7). (3)

Nick Hobson
Here are a couple of approaches to this problem. By Fermat’s little theorem,
27 ≡ 2 (mod 7); hence x = 27 satisfies (3). Further, by the same theorem,
27 = (22)3 · 21 ≡ 13 · 2 ≡ 2 (mod 3), and similarly 27 = (24) · (23) ≡
1 ·8 ≡ 3 (mod 5). Hence x = 27 is a solution and, by the Chinese remainder
theorem, it is unique modulo 3 · 5 · 7 = 105. So the general solution is
x ≡ 23 (mod 105).

Alternatively, we could note that (1) and (3) have solution x ≡
2 (mod 21), and by inspection x = 23 also satisfies (2), again giving the
general solution x ≡ 23 (mod 105).

Tony Forbes
Steve Moon and Paul Richards also sent in the same solution arrived at
by similar methods. However, the real difficulty with the problem is in the
interpretation of the mysterious hint that came with it.

Three people walking together, ’tis rare that one be seventy,
Five cherry blossom trees, twenty-one branches bearing flowers,
Seven disciples reunite for the half-moon,
Take away one hundred and fives and you shall know.

After a little research I think I can offer an explanation.

Making use of a general method of solving systems of linear congruences
we can write down the solution of (1)–(3):

x ≡ 2 a+ 3 b+ 2 c (mod 105), (4)

where a, b and c are given (modulo 105) by
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a = 5 · 7
(
(5 · 7)−1 mod 3

)
,

b = 3 · 7
(
(3 · 7)−1 mod 5

)
,

c = 3 · 5
(
(3 · 5)−1 mod 7

)
.

Since 3, 5 and 7 are prime, computing the multiplicative inverse z−1 of any
non-zero z is a legitimate operation. Hence quantities like

(
(5 ·7)−1 mod 3

)
are well defined.

To see how this solution works, substitute a, b and c into (4) and reduce
modulo 3, 5 and 7 in turn. For instance, working modulo 3 we have a =
(5 ·7)−1 · (5 ·7) = 1 since the (5 ·7)−1 and (5 ·7) cancel. Also the expressions
for b and c each have a factor 3 in them. Hence b = c = 0. Thus (4) reduces
to x ≡ 2 (mod 3).

Now we compute a, b and c : a = 70, b = 21 and c = 15, giving

x ≡ 2 · 70 + 3 · 21 + 2 · 15 ≡ 23 (mod 105).

Lo and behold! The coefficients of 2 and 3, namely 70 and 21, are the same
as the 70 and 21 that occur in the rhyme. Moreover, 70 is associated with 3
(people walking together) and 21 with 5 (cherry blossom trees). But where
is the 15? The reference to the half-moon and 7 (disciples) suggests half
the rotational period of the moon in days—in approximate agreement with
14.765295, the figure given in one of Patrick Moore’s astronomy books.

There’s an interesting application of the CRT on page 18.

Problem 216.2 – Ramanujan’s continued fraction
Sebastian Hayes
As it is recounted by Kanigel, The Man who Knew Infinity (Abacus, 1991),
a Hindu friend of Ramanujan’s, Mahalanobis, when he and Ramanujan were
both at Cambridge, read out to him a puzzle from Strand magazine about
an inhabitant of Louvain (which had just been burned by the Germans).
This Belgian lived in a house on a long street which was numbered 1, 2, 3, . . .
consecutively along his side of the street. The number of his house had a
curious property: the sum of all the house numbers before it was the same
as the sum of all the house numbers that came after it. The magazine stated
that there were more than fifty houses and less than five hundred houses on
that side of the street. So what was the Belgian’s house number? Ramanu-
jan thought for a moment and then dictated the first few convergents of a
continued fraction which included all the solutions to the problem (not just
the one falling within the 50–500 range).

What was the continued fraction?
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Solution 213.3 – Triangles
Consider a graph T consisting of 2n separate triangles, n ≥ 1.
Now add 3n more edges such that (i) each new edge joins vertices
of T belonging to two distinct triangles, and (ii) each vertex of
T is adjacent to precisely one new edge. The result is a cubic
graph, Gn, say. For which values of n is Gn 3-edge-colourable?
For which values of n is Gn planar?

Ken Greatrix
Looking at the re-drawing of this puzzle, I have ‘stretched’ it into an aligned
format and coloured the lines appropriately (see Figure 1)—then I realized
that M500 is in B/W; so I put letters x, y, z on the lines!

Figure 1
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A single line with two extra triangles can be ‘inserted’ into a line of the
same colour (e.g. at point A in Figure 1, using Figure 2). A double line with
two extra triangles can be inserted into a pair of lines of the same colour
orientation (e.g. Figure 3 placed into Figure 1 at point B).

The simplest figure is two triangles (which can be seen if the ends of
Figure 2 are joined), thus for all n > 0 the puzzle is solved.

Figure 2
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You will note that the orientation of the colours could be any of 6 pos-
sible combinations. This implies that any single line of any of the three
colours could be interrupted with Figure 2 in the appropriate colour orien-
tation. Also, Figure 3 could be copied to any double-line position of the
appropriate colours, provided that those lines are adjacent in the plane (for
example, if Figure 3 is rotated through 180◦, it could be inserted at point
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C). So, the graph need not be a single loop.

Since I like to answer a question with a question (which also generates
feed-back for further issues for M500) . . . . If you are given a multiple-
triangle graph, you are able to reduce it with the reverse of the above
additions to its simplest form. How many simplest forms are there? Does
this always reduce to a simple ‘loop’ of triangles as in Figure 1?

Now I’d like to take the graph out of the Euclidean plane.

On the surface of three of the Platonic solids (tetrahedron, cube and
dodecahedron) three edges meet at each vertex. So, each vertex could be
replaced by a triangle. Does the graph of each of these solids have a solution?
Can the graph be projected onto the plane without lines crossing?

I suspect that only the tetrahedron has such a solution but can this be
proven? (Hint: consider the ‘opposite pairs’ of the solids).

What if you decide on a Riemann surface, or other non-Euclidean sur-
faces. What forms do these graphs have?

Solution 213.5 – Cubic
Show that the roots of x3 − 3

√
3x2 − 3x +

√
3 = 0 are tan 20◦,

tan 80◦ and tan 140◦.

Nick Hobson
Another very nice puzzle! Let x = tan a. Using the tangent addition for-
mula, it is easily shown that

tan 3a =
3x− x3

1− 3x2
.

If a = 20◦, 80◦, or 140◦, then

tan 3a =
√

3 =
3x− x3

1− 3x2
.

Rearranging, we obtain

x3 − 3
√

3x2 − 3x+
√

3 = 0.

That is, tan 20◦, tan 80◦, and tan 140◦ are the (only) roots of the cubic.

Solved in a similar manner by Steve Moon and Basil Thompson.
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Solution 212.2 – Area of a triangle
Draw a triangle with side lengths a, b and c. Extend the sides to
infinity in both directions. Draw the four circles each of which
touches the three (extended) sides. One of these is inside the
triangle (the in-circle); let this have radius r. The other three
circles lie outside the triangles; join their centres to make a big
triangle. Prove that the new triangle has area abc/(2r).

A. J. Moulder
In co-operation with the leader of our U3A Mathematics group I offer the
following solution to the above problem. Let

(i) ABC be the original triangle with, as convention, BC = a, AC = b,
and AB = c ;

(ii) I be the centre of the in-circle with K, L, M the points of contact of
the in-circle with the sides b, c, a respectively;

(iii) I1, I2, I3 be the centres of the three circles outside the triangle which
touch the sides, extended where necessary, and S, T the points of
contact of circle centre I3 with c and a extended, U , V the points
of contact of the circle centre I1 with c extended and a, and W , X
the points of contact of the circle centre I2 with a extended and c
extended.

All as shown in the diagram, opposite.

Consider the triangles I3BT , I3BS. Then I3T = I3S = r3, the radius
of the circle. Angle I3TB = angle I3SB = 1

2π since BT , BS are tangents to
the circle. Also I3B is common and forms the hypotenuse in both triangles.

Therefore triangles I3BT , I3BS are congruent. In particular, angle
I3BT = angle I3BS; i.e. I3B bisects angle TBS. But angle TBS = π −B;
therefore angle I3BT = I3BS = 1

2π −
1
2B.

Similarly it may be proved that I1B bisects angle UBV and, since
UBV = π − B, angle UBI1 = angle V BI1 = 1

2π −
1
2B. Also angle TBS

and UBV are vertically opposite, formed by the sides a extended and c
extended, and therefore equal. So I3B and I1B is a straight line; i.e. the
line I1I3 passes through B. Similarly, the line I1I2 passes through point C
and the line I2I3 passes through A.

By considering triangles ILB and IMB it may be proved that IB bi-
sects angle B and from triangles I2XB, I2WB it is seen that I2B also
bisects angle B and hence I lies on the line I2B.
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We have

∠I1BI2 = π − ∠IBS − ∠ABI3 = π − B

2
−
(
π

2
− B

2

)
=

π

2

and

∠I2I3I1 = π − ∠SBI3 − ∠SAI3 = π − π −B
2
− π −A

2
=

π

2
− C

2

since A+B + C = π.

Now a = BV + V C and

r1
BV

= tan∠V BI1 = tan
(
1
2π −

1
2B
)

= cot 1
2B;

i.e. BV = r1 tan 1
2B. Similarly, CV = r1 tan 1

2C. Therefore

a = r1
(
tan 1

2B + tan 1
2C
)

= r1
sin( 1

2B) cos( 1
2C) + cos(1

2B) sin( 1
2C)

cos( 1
2B) cos( 1

2C)

= r1
sin( 1

2B + 1
2C)

cos( 1
2B) cos( 1

2C)
= r1

sin( 1
2π −

1
2A)

cos( 1
2B) cos( 1

2C)

= r1
cos 1

2A

cos( 1
2B) cos( 1

2C)
.

Therefore r1 = a cos( 1
2B) cos( 1

2C)/ cos( 1
2A).

By the sine rule for triangle ABC,

a

sinA
=

b

sinB
=

c

sinC
= 2R,

where R is the radius of the circumscribed circle. Therefore

a = 2R sinA = 4R sin( 1
2A) cos( 1

2A),

r1 =
4R sin( 1

2A) cos( 1
2A) cos( 1

2B) cos( 1
2C)

cos( 1
2A)

= 4R sin( 1
2A) cos( 1

2B) cos( 1
2C).

Similarly, using c = BS +AS,

r3 = 4R cos( 1
2A) cos( 1

2B) sin( 1
2C).
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Now
r3
I3B

= sin∠I3BS = sin 1
2 (π −B) = cos 1

2B.

Therefore

I3B = r3 sec 1
2B =

4R cos( 1
2A) cos( 1

2B) sin( 1
2C)

cos 1
2B

= 4R cos( 1
2A) sin(1

2C).

Similarly, I1B = 4R sin( 1
2A) cos( 1

2C). But

I1I3 = I1B + I3B = 4R
(

sin( 1
2A) cos( 1

2C) + cos(1
2A) sin( 1

2C)
)

= 4R sin( 1
2A+ 1

2C) = 4R cos 1
2B

since A+B + C = π. Similarly I2I3 = 4R cos 1
2A. Now

area of 4I1I2I3 = 1
2 I1I3 · I2I3 · sin∠I2I3I1

= 1
2 · 4R cos( 1

2B) · 4R cos( 1
2A) · sin( 1

2π −
1
2C)

= 8R2 cos( 1
2A) cos( 1

2B) cos( 1
2C).

But the area of triangle ABC is rs, where s is the semi-perimeter; i.e.
s = 1

2 (a+ b+ c). Hence, by use of the sine rule,

Area of 4ABC = 1
2 r a+ 1

2 r b+ 1
2 r c

= 1
2 r
(
2R sinA+ 2R sinB + 2R sinC

)
= Rr (sinA+ sinB + sinC)

= Rr
(
2 sin 1

2 (A+B) cos 1
2 (A−B) + 2 sin( 1

2C) cos( 1
2C)

)
= 2Rr cos( 1

2C)
(

cos 1
2 (A−B) + sin 1

2C
)

= 2Rr cos( 1
2C)

(
cos 1

2 (A−B) + cos 1
2 (A+B)

)
= 4Rr cos( 1

2A) cos( 1
2B) cos( 1

2C).

Therefore

area of 4I1I2I3
area of 4ABC

=
8R2 cos( 1

2A) cos( 1
2B) cos( 1

2C)

4R cos( 1
2A) cos( 1

2B) cos( 1
2C)

=
2R

r
.

Therefore (area of 4I1I2I3) = 2R (area of 4ABC)/r. But the area of
triangle ABC is 1

2 b c sinA. From the sine rule,

R =
a

2 sinA
=

abc

2 b c sinA
=

abc

4 (area of 4ABC)
.

Hence 2R (area of 4ABC) = abc/2 and (area of 4I1I2I3) = abc/2r, as
required.
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Solution 211.2 – Pond
A fence of height f surrounds a flat disc of radius R in which
there is a central pond of radius r. You look through a hole in
the fence at height h. What proportion of the top of the fence
can you see reflected in the pond?

Steve Moon

In the general case the visible part of the top of the fence is seen by an
observer at H by reflection in a curve AA′ as shown. Define θ, O, A and
B, and H as in the diagram; H is the hole, and we take the origin, O, to be
the point on the ground beneath H. Then θ is the half-angle subtended by
the projection on the ground of the visible part of the fence. Let a = OA
and b = AB.

For reflection, we have h/a = f/b, a + b = 2R cos θ, and by the cosine
rule, r2 = a2 +R2 − 2aR cos θ. Hence

a =
2Rh cos θ

f + h
. (1)



M500 216 Page 17

Now a2 − 2aR cos θ +R2 − r2 = 0. Hence, using (1),

cos2 θ =
(R2 − r2)(f + h)2

4R2hf
. (2)

To find the proportion of the fence seen, compute

cos 2θ = 2 cos2 θ − 1 =
(R2 − r2)(f + h)2

2r2hf
− 1.

By symmetry the length of the top of the fence seen is 2 ·r ·θ = 4Rθ. Hence
the proportion seen is

4Rθ

2πR
=

2θ

π
=

1

π
cos−1

(
(R2 − r2)(f + h)2

2R2hf
− 1

)
.

As a check, if R = r, then θ = π/2 and all the fence top is visible. If
f = h then sin θ = r/R and cos2 θ = 1− r2/R2 to which (2) reduces.

We can find the equation of AA′, the top of the fence as seen in the
pond. Its cartesian coordinates are

x = a cos θ =
2Rh

f + h
cos2 θ, y = a sin θ =

2Rh

f + h
cos θ sin θ.

Therefore the reflection of the top of the fence is defined by

y2 = x

(
2Rh

f + h
− x
)

with the restriction given by the equation of the pond, (x−R)2 + y2 ≤ r2.

Problem 216.3 – Reflection
Tony Forbes
What is the function you get when you reflect graph of y = ex in the line
y = ax, where a is a constant?

Note that as a varies from 0 to ∞ via 1, the function goes from −ex to
e−x via log x. We would really like to know what happens in between.
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Where I can put my new Theorem of the Day
Robin Whitty
The web site http://myweb.lsbu.ac.uk/∼whittyr/MathSci/TheoremOfTheDay
maintains a list of, say, L theorems. These are picked in turn to be displayed
as ‘Theorem of the Day’. To do this, a javascript function measures the
number of milliseconds since a fixed base date and divides this by 86400000,
the number of milliseconds in twenty four hours. The result, rounded down,
is a number of days, D, which increases by one every midnight. The theorem
displayed on any given day is chosen as theorem number D (mod L) in the
list (indexed from 0 to L− 1).

As often as possible I choose another classic theorem and add a descrip-
tion of it to the web site; with respect to the above, this increases L to L+1,
while D remains fixed. My problem is that I want to do this without the
order of presentation of the theorems (and today’s already chosen theorem
in particular) being disturbed. So while adding the new theorem I have
also to cycle the list of theorems round to bring position D (mod L) into
position D (mod L+ 1).

Now the question is: how do I discover the current value of D? The
answer I would like to give is that I use a scrupulously coded algorithm based
on Dershowitz and Reingold’s timeless Calendrical Calculations (Cambridge
University Press, 2001). The reality is that I cheat: I increase the theorem
array size by 1, upload the java code, observe what theorem is now (illicitly)
occupying today’s slot and make haste to re-upload with the correct theorem
cycled into its rightful position.

However, in the process of pulling this fast one, I do get to find out
the value of D; and it seems worth mentioning how because it is a nice
illustration of one of the Theorems of the Day: the Chinese Remainder
Theorem.

So, suppose that the day’s theorem is currently in position s in the list,
the value of D (mod L), and that, when I add the new theorem, the current
theorem changes to D (mod L+ 1), which we notice is position t in the list.
This is written as a pair of congruence equations in the unknown, D:

D ≡ s (mod L), D ≡ t (mod L+ 1). (1)

Now the Chinese Remainder Theorem, in its simplest form, says that

x ≡ a (mod m), x ≡ b (mod n),
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where gcd(m,n) = 1, is solved, uniquely mod mn, by

x = am(m−1 mod n) + bn(n−1 mod m), (2)

where m−1 mod n is the least positive multiple of m which has remainder
1 (mod n) (and similarly for n−1 mod m).

Now it is easy to see that L−1 mod (L + 1) = L, since L2 = (L +
1)(L − 1) + 1 ≡ 1 (mod L + 1), and (L + 1)−1 mod L = L + 1, since
(L+ 1)2 = L2 + 2L+ 1 ≡ 1 (mod L). So equation (1) is solved by

D ≡ s(L+ 1)((L+ 1)−1 mod L) + tL(L−1 mod (L+ 1)) (mod L(L+ 1))

≡ s(L+ 1)2 + tL2 (mod L(L+ 1)).

Example: suppose today’s theorem is number 4 in the list of 42. I add a new
theorem and now the theorem displayed has changed to number 16 (out of
43). Then

D ≡ 4× 432 + 16× 422 = 35620 ≡ 1306 (mod 42× 43 = 1806).

A doubt remains in my mind: is there not some clever way to find out the
value of D without making today’s theorem temporarily change? Perhaps
instead of increasing L to L+1 some other increased length L′ would reveal
D without changing from theorem s to t. We do not need L′ to be coprime
to L; provided s ≡ t (mod gcd(L,L′)) an extended version of the Chinese
Remainder Theorem still applies. Or perhaps there is some other approach
altogether that I have not thought of.

Problem 216.4 – Four fours
Tony Forbes
In past years, fours and collections thereof have played a significant role in
M500 problems, the classic game being to represent numbers by expressions
that involve just four 4s together with the usual mathematical apparatus.
So for the positive integers we would have 1 = 44/44, 2 = 4!/(4 + 4 + 4),

3 = 4/4 + 4/
√

4, 4 =
(

log log 4 − log log
√√√√√√√√√

4 · 4
)/

(log 4),
5 = . . . well, you get the idea.

Now try the same thing with the fundamental mathematical constants,
π, e, i, the golden ratio φ = (

√
5 + 1)/2, and any others you have a par-

ticular fondness for. Don’t worry if you can’t do it exactly; a reasonable
approximation might be perfectly acceptable.
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Finding numbers in a grid
Tony Forbes
See how many numbers you can find in each of the following arrays.

As in the game Boggle, which is played in a similar manner but with
letters and words [M500 213 15], you make a number from the symbols
shown by stepping along a non-self-intersecting path travelling N, NW, W,
SW, S, SE, E or NE from one square to the next (if any). In the first grid,
for example, 1003020004 is valid (1, S, 0, SE, 0, E, 3, N, 0, W, 2, SW, 0,
SE, 0, E, 0, E, 4) but 100302004 is not (because I can’t see how to do it
without illegal multiple use of a zero in one of the central squares); nor are
01003 (because it starts with a zero), 103 and 13.

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

1 0 0 2

0 0 0 0

0 0 0 0

3 0 0 4

0 0 0 0

0 1 . 0

0 . 2 0

0 0 0 0

0 0 0 0

0 1 1
2 0

0 π 2 0

0 0 0 0

If you are feeling energetic, perhaps you would like to have a go at a
related problem in graph theory. How many paths are there in the planar
graph consisting of n2 vertices arranged in an n×n array with edges between
nearest neighbours in the eight directions 0◦, 45◦, 90◦, . . . , 315◦? For
example, the one on the left (n = 2) has 4 vertices, 6 edges and contains 30
paths: 6 of length 1, 12 of length 2 and 12 of length 3. The graph on the
right corresponds (after multiplication by 2) to the ‘Boggle’ problem with
16 distinct symbols.
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Problem 216.5 – Equation
Tony Forbes

Solve

x = 3 ex
2/214.
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Math Made Visual
Creating Images for Understanding Mathematics
by Claudi Alsina and Roger B. Nelson
Published by The Mathematical Association of America

Sebastian Hayes
This is a marvellous book beautifully produced, full of original and inter-
esting ways of proving well-known theorems and also containing many the-
orems unknown to me. For a long time now algebra has ruled the roost and
mathematics has become almost entirely abstract. This puts many people
off who otherwise would enjoy mathematics, or parts of it anyway.

‘Is it possible to create mathematical drawings that help students un-
derstand mathematical ideas, proofs and arguments? We are convinced
the answer is yes’, the authors state in their Introduction. I personally,
since I believe that the concrete world actually exists and that mathematics
does not transcend it, needed no persuading of the authors’ basic thesis,
but even those who are not of this persuasion will probably find the book
enlightening. As a pedagogical aid it cannot be praised too highly.

As to price, you will have to go to Amazon and see what is on offer as
the book is not available in British bookshops.

Mathematics Revision Weekend 2007
The 33rd M500 Society Mathematics Revision Weekend will be held
at Aston University, Birmingham over 14–16 September 2007.

The cost, including accommodation (with en suite facilities) and all
meals from bed and breakfast Friday to lunch Sunday is £195 – £230. The
cost for non-residents is £100 (includes Saturday and Sunday lunch). M500
members get a discount of £10. For full details and an application form,
see the Society’s web page, www.m500.org.uk, or send a stamped, addressed
envelope to

Jeremy Humphries, M500 Weekend 2007.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. Tutorial sessions start at 19.30
on the Friday and finish at 17.00 on the Sunday. We plan to present most
OU mathematics courses.
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