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The Twins Paradox and related issues
Sebastian Hayes
MOST CURRENT books take the line that the Twins Paradox is no para-
dox at all and is simply a consequence of Special Relativity, a theory that
is now perfectly respectable and amply supported by experiment. Is this
really so?

Suppose twin A leaves the Earth and sets off in a space-ship travelling at
three-fifths of the speed of light, 3

5 c, while twin B stays at home. It is to be
understood—a point not sufficiently stressed in textbooks—that the Earth
and the destination star are absolutely at rest relative to one another and
thus share the same ‘inertial reference frame’. (In practice this would never
occur, of course.) Moreover, we assume that twin A, prior to his departure,
was earthbound and so, initially, shared the same reference frame with his
twin and the hypothetical ‘stationary’ star.

The star is, say, six light years away. Note that this is a distance, not
a time interval, and corresponds to (roughly) 6 · (9.46 · 1015) metres since
light in a vacuum travels at 3 ·108 metres/second or 9.46 ·1015 metres/year.

If twin A were actually travelling at the speed of light he would reach
the star six ‘years’ later. These are Earth years, which would be meaningless
to the traveller, of course: he will have his own way of measuring the lapse
of time. Now the rocket is in uniform motion with respect to the distant
star or, shifting to the rocket inertial frame, the star is in uniform straight
line motion with respect to the rocket. If Special Relativity is correct, we
need to make a distance ‘correction’ because we are dealing with systems
in relative motion. To obtain the distance of the star for the traveller, i.e.
relative to his frame, we must multiply by the factor

√
1− v2/c2, where 0 ≤

v < c. This factor is less than 1 and so we have the celebrated ‘Fitzgerald
contraction’, which applies to all lengths in the other inertial frame and
thus to distances also. The ‘other’ frame is, in this case, that of the rest of
the universe, including the Earth, all movements of rotation and expansion
being neglected.

Where does this strange factor come from? Fitzgerald originally fished
it out of a hat to explain the null result of the Michelson–Morley experiment
but Einstein showed that this factor followed from the two premises of
Special Relativity, firstly that the ‘laws of physics take the same form in
all inertial frames’ and secondly that ‘the speed of light in a vacuum is
constant’.

Here v = 3
5 c and so the factor, which is dimensionless, is

√
42/52 = 4/5.

The traveller is supposed to have a clock on board—in a moment we will
specify what sort of a clock it is—and, on arrival, once we have converted
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into Earth year values, it will read as

distance

speed
=

4
5 · 6 · (9.46 · 1015) metres

3
5 · (9.46 · 1015) metres/year

= 8 years.

Now, even if the voyager twin sends back a radio signal at once to
his twin, it will not arrive for another six years. Rather than work out
retrospectively what the time was on Earth at the moment the voyaging
twin reached the star, it is much more sensible to suppose, as Einstein
himself did in his 1905 paper, that a clock C was already installed on the
star and that this clock, a very regular pulsing device of some sort, had
somehow previously been synchronized with the Earthbound twin’s clock.
Since the star and the Earth are in the same inertial frame, this starbound
clock will, when duly interpreted, read exactly the same as the Earthbound
clock does at the same moment (since they share the same inertial frame).
Because there is no length contraction involved for a system at rest, we
simply divide ‘ordinary’ distance by the speed of the rocket, i.e.

6 · (9.46 · 1015) metres
3
5 · (9.46 · 1015) metres/year

= 10 years.

Now this reading is not the same as the reading on the rocketbound
clock. It is quite essential to grasp that this difference is a perfectly objective
bona fide physical difference: it is not a question of one twin ‘feeling’ the
passage of time differently.

We may imagine a batch of N0 radioactive atoms held by twin B on
Earth, by twin A on the rocket and already placed on the star. Then,
according to the formula for radioactive decay, when twin A arrives at the
star

Nrocket = N0 e
−8/T and NEarth = N0 e

−10/T ,

where T is the mean life of the radioactive atoms (in years) measured in a
co-ordinate system where the atoms are at rest.1

Alternatively, let us suppose that both the twins have very regular blood
pressure, that their hearts beat exactly once a second and that each heart-
beat of each twin sets off a mini-explosion by way of some electrical de-
vice connected up to their bodies. Each mini-explosion leaves a permanent
burn-mark on a revolving strip of metal so that the number of burn marks
indicates exactly the number of times each twin’s heart has beaten. Both
the twins agree that the number of burn marks defines what is meant by
comparative, and both twins are satisfied that the ‘explosion clock’ already
set up on the star has been exactly synchronized with the rhythm of their
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heart beats when they were still on Earth. According to Einstein, if we start
all three explosion clocks at the same moment, at the end of the two-way
trip, the number of burn marks on the strip of metal back on Earth will
be the same as that on the strip of metal on the star, and this number is
greater than the number of burn marks on the rocketbound strip of metal.

Twin A will, if he alights on the star, notice a discrepancy which really
exists. What to conclude? Well, he might decide there was something wrong
with one or both clocks, but if he checked his own clock with the one on the
star while staying there for a while, he would (according to Einstein) find
that they both ran at exactly the same rate.

We discount the time spent on the star (which is the same for all three
clocks anyway) and, for the moment, we discount the time spent putting
the rocket into reverse motion at the star end of the trajectory. Twin A
travels back at exactly the same constant velocity as he came and so his
clock will have the same reading for the return trip as it did for the outward
bound trip, i.e. will read 8 years. Similarly, twin B’s clock, once we have
‘backdated’ it to restart when the twin leaves the star, must read the same
as the clock which was on the star did when twin A arrived, i.e. will read
10 years. Twin A has thus aged by 16 ‘years’ and twin B by 20 years. Now,
although a year on the rocket will not be any sort of a naturally perceived
interval for the voyager, the number of radioactive atoms remaining, or the
number of burn marks on the strip of metal, is there as proof of the amount
of ‘time’ that has slipped by.

We must, of course, completely rule out all qualitative and biological
senses to the word ‘life’. It may well be that the stress and strain of space-
flight will have ‘prematurely aged’ the traveller—indeed this is almost cer-
tain. Secondly, the earthbound twin may have been having such a fantastic
life that he doesn’t mind looking a bit older. But all this is quite irrele-
vant since we are merely concerned with the passage of time as measured
by a finite number of punctual regularly repeating events—an ‘objective’
phenomenon if ever there was one.

Now, if the situation of the two twins was symmetrical—as Professor
Dingle used to claim—then the discrepancy, if observed, would contradict
the very Principle of Relativity that made Einstein famous. However, it is
not symmetrical since twin B remains in the same inertial frame during the
entire process, while twin A starts off in an Earthbound frame, switches to
a rocket inertial frame once the desired constant velocity has been attained,
goes into reverse when he reaches the star, shifts back into the previous
rocket inertial frame and finally ends up stationary in the Earth frame.
Twin A has thus been subject to accelerated motion (1) at the beginning
of the voyage; (2) at the halfway point and (3) at the end of the voyage.
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Even if we have twin A coasting by the Earth and so being in constant
motion from the very beginning and have his ‘clock’ start at the ‘very in-
stant’ he passes by a space station fixed to the Earth, and stop his clock
when he passes by the same spot on the return trip, there still remains the
period of deceleration and re-acceleration at the star end on the trajectory.

Now, there is currently much experimental evidence that the effects pre-
dicted by Einstein’s Special Theory of Relativity really do occur but the vast
majority of such tests deal with situations that actually are symmetrical—
and so should not be cited as direct confirmation of the Twins Paradox (or
perhaps better, the Twin Clock Paradox). The most dramatic evidence for
time dilation is the mean lifetime of µ-mesons which are produced by cosmic
radiation near the top of the Earth’s atmosphere as compared with their
mean lifetime in laboratory conditions. In the latter typically they live for
about 2.2 · 10−6 seconds; so that even if they travelled at the speed of light
they would only cover about 660 metres before decaying. It is found that
a fair percentage of such mesons actually reach sea level which, by Earth
frame reckoning, is some 20 kilometres or more away. This is perfectly in
accord with Special Relativity since the great speed of the mesons relative to
the Earth gives them an enormous time dilation factor (over 30). However,
the situation is perfectly reversible and so there would be no advantage in-
volved if the µ-meson were a microscopic rocket with a microscopic human
being on board. He or she would not ‘live any longer’ through being in
such a state of motion. He would simply judge the height of the Earth’s
atmosphere to be rather less than how we see it.

We note the interval between two ticks (or any other regular punctual

events) as δτ = δt
√

1− u2/c2, where u is the velocity of the system relative
to a given inertial frame and δt is the ‘proper’ time interval in the stationary
frame. If the frame in which we measure δτ is at rest with respect to the
first frame, δτ = δt since u = 0 throughout. If we start at T = 0 and
evaluate the ‘time’ that has elapsed according to the number of ticks, or
other strictly punctual events, δτ is a whole number, say TE . Whether the
inertial frame chosen as the ‘standard’ one is a rocket or an Earthbound
laboratory has no bearing on what happens within the frame, provided the
chosen frame remains unaccelerated. To make this more precise, suppose the
µ-meson were a rocket travelling at uniform speed and bearing a diminutive
twin. The heart of the human voyager would beat a certain number of
times, say N times, during the equivalent of the life span of the meson and
it would beat exactly N times in an Earthbound laboratory or any other
frame provided this frame really were inertial. If the agreed way to measure
lapse of time and comparative aging is the number of heartbeats, then that
is that and no kind of switching of frames is going to change the situation
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for the person who remains within his own frame. The discrepancy only
comes in when we have a double perspective going and make measurements
within one’s own system and measurements of a different system but from
the standpoint of the first system.

Thus if we evaluate time intervals from the outside, for example time
intervals within the rocket from the standpoint of the Earthbound system,
or, conversely, time intervals on Earth from the standpoint of the rocket,
u 6= 0 and δτ 6= δt. If the two systems are moving with uniform speed
relative to each other, u = v = constant and δτ = δt

√
1− v2/c2. Then,

supposing we have some means of synchronizing the two systems at the
start—for example by a beam of light which is emitted midway between,
say, a floating laboratory fixed to the Earth and the rocket as it passes the
Earth—and some acceptable way of synchronizing the concluding events
also, then TR = TE

√
1− v2/c2 where TR is the number of ticks in the

rocket and TE the number of ticks in the Earthbound system. We take
the former to the nearest whole number. Since

√
1− v2/c2 < 1 for v < c,

TR < TE .

Finally, what if u is variable? Einstein discusses this very point in his
1905 paper and suggests that a closed arbitrary curve be treated as a poly-
gon and that we consider the accelerated frame, or frames, as a succession
of inertial frames in which the physical system is ‘instantaneously’ at rest
(or in constant straight line motion). So δτ , the time interval elapsed in the
‘moving’ frame as judged by an observer on the other frame, becomes an
integral δτ =

∫ √
1− u2/c2dt with limits of integration in terms of u being

u = 0 and u = v (if the rocket starts from rest).

Since 0 ≤ u ≤ v where v is the final velocity which is to remain constant
during the outward and homeward voyages, it follows that the above integral
δτ < δt, where the latter is the time interval evaluated in the stationary
frame. So the ‘acceleration period’ of the voyage, whether long or short,
does not affect the previous result qualitatively: Einstein in his 1905 paper
predicted that any clock following the path of a closed curve and returning
to its starting point will always be found to have run slower than an identical
clock which remained at that point, or one nearby.

From this we can conclude that, no matter how the rocket system accel-
erates and decelerates, the total time Trocket < TEarth and in terms of heart
beats or other punctual events this will be a strict numerical inequality
Nrocket < NEarth. Thus the voyager twin ‘ages’ less.

However, this is only a first look at the subject. Strictly speaking,
acceleration is not covered by the Special Theory of Relativity. According
to the famous ‘Principle of Equivalence’ which is the cornerstone of General
Relativity, the effects of acceleration on the components of a physical system
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are the same as the effects on such a system of an ‘equivalent’ homogeneous
gravitational field.

Suppose ν0 to be the frequency of light emitted in a stationary reference
frame A. We now have a second reference frame A∗ which is moving away
from A at uniform velocity v. If we apply the Lorentz transformations we
find that the frequency of the light actually received at A from the moving
reference frame is given by

ν1 = ν0

√
1− v2/c2
1 + v/c

= ν0

√
1− v/c
1 + v/c

= ν0

√
c− v
c+ v

≈ ν0(1− v/c)

to first order. This is the formula for the Doppler effect when an object
emitting light is moving at speed v relative to an inertial frame. Since
1−v/c < 1 there should be a reduction in the frequency of the light received.

Suppose a rocket of length h accelerating relative to an inertial frame F
and bearing two clocks, one at the back of the rocket, clock 1, and the other
at the front, clock 2, is is ‘instantaneously at rest’ at time 0. Now, if the
‘clocks’ are light sources, the time, t, for the light from clock 1 (measured
in F) to reach clock 2 is given by

ct = h+ 1
2at

2,

approximately t = h/c if 1
2at is very much smaller than c. At this time, t,

clock 2 will be moving instantaneously at a velocity v = at and therefore
clock 1 will appear to be receding from clock 2 at velocity v ≈ ah/c. Hence
the light at frequency ν0 from clock 1 will appear shifted to frequency ν1
given by

ν1 ≈ ν0

(
1− v

c

)
≈ ν0

(
1− ah

c2

)
.

The observer alongside clock 2 will thus observe the light shifted towards
the red by a difference in frequency of ν0ah/c

2 approximately. Conversely,
the formula for the light from clock 2 as it reaches clock 1 will be

ct = h− 1
2at

2

and an observer alongside clock 1 will consider that the light frequency is
being shifted towards the violet by the same difference as before.

This is nothing new. But according to the Principle of Equivalence, all
such effects would also be observed if the rocket were at rest but subject to
a gravitational field whose strength was exactly equal to the strength of the
force producing the acceleration (but opposite in sign). If the field is that
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of the Earth and the rocket is pointing upwards ready to be launched, we
replace ah by gh on the assumption that the Earth’s field is homogeneous
over the distance h, or for a varying gravitational field by the difference
in gravitational potential ∆φ. Here h is, or rather was, the height of the
rocket but it can be any distance between two points of a rigid body fixed
to the Earth and pointing skywards. We thus derive an expression for the
difference in frequency of two clocks,

∆ν

ν0
≈ ∆φ

c2
,

where ν0 indicates the frequency of light emitted at the surface of the Earth
(i.e. at the back of the stationary rocket). For two points situated at distance
r0, the radius of the Earth (considered to be constant), and r1 > r0, ∆φ =∫
GM/r2dr between limits of integration r0, and r1 giving us

∆ν

ν0
≈ 1

c2

∫ r1

r0

GM

r2
dr = − GM

c2

(
1

r1
− 1

r0

)
≈ g r0

c2

(
1− r0

r1

)
.

Since r1 > r0 > 0 this discrepancy is greater than 0, which means that
clock 2, situated at distance r1, should register more ticks than clock 1.
So there is ‘more action’ the further out you are from the centre of the
Earth—and consequently more heart beats and more aging. This positive
difference has been measured using very sensitive apparatus situated on
different floors of a New York skyscraper, thus confirming the predictions
of General relativity (on this issue at least).

Note, however, that in this example the two points are at rest relative
to the Earth and so there is no reason to invoke all the effects of Special
Relativity such as length contraction and time dilation. In the case of a
satellite orbiting the Earth we have not one but two relativistic effects and
they are opposite in sign: the satellite is in accelerated motion relative to
a clock at rest on the surface of the Earth, and so we would expect the
satellite clock to run slow, but the satellite clock is also at a point of higher
gravitational potential (because work had to be done against the pull of
the Earth to put the satellite into orbit) and so, because of the Principle
of Equivalence, we would expect the satellite clock to be speeded up. The
reader might like to work out the height above sea level when the astronaut
starts aging more than his twin who remains at the surface. (Answer given
at end of this article.)

What bearing does this have on the original Twin Paradox? The crucial
point is what happens during the period of deceleration/acceleration when
the rocket turns round—or, better, reverses direction—at the close of its
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outward journey. According to the Principle of Covariance, there is no spe-
cially privileged coordinate system at all and so we can legitimately consider
the rocket to be at rest all the time in a succession of ‘inertial frames’. From
the point of view of the rocket system, it is the Earth, originally moving with
a positive constant velocity v with respect to the rocket, which decelerates
to zero, then goes into reverse and attains v once more, this time moving in
the direction of the (stationary) rocket, if the total time taken for the Earth
to reverse is t2 measured in the Earth frame, the Earth may be considered
to have had a constant acceleration of a = ±v/(t2/2) = ±2v/t2 during this
period. By the Principle of Equivalence, we consider the Earth to have been
in vertical motion within a uniform gravitational field of strength 2v/t2 cen-
tred on the base of the rocket. According to this view, the Earth is, during
this period, in a region of higher gravitational potential than the rocket and
in consequence there is a good deal more going on back on Earth, more
ticks, more mini-explosions, more heartbeats. Thus, according to this defi-
nition of aging, the Earthbound twin still ages more than the voyager twin
during the entire trip, no matter how long or short the acceleration period
is, though not by quite the same amount as we obtain using the principles
of Special Relativity alone.

We are actually not out of the lion’s den yet by a long chalk. The
Earth rotates about its axis (or, if you wish, the ‘fixed stars’ rotate around
it) and follows an elliptical course relative to the sun. Also, the course
of any actual rocket would not be a straight line. The rates of clocks in
rotating reference frames are, of course, dealt with in General Relativity
but we soon get into heavy water conceptually. In Newtonian mechanics,
if we insist on treating the Earth as fixed, we have to introduce centrifugal
and Coriolis forces to explain why a falling body deviates markedly from
the vertical. The student at this level is taught to consider these forces, like
all Newtonian ‘inertial forces’, as nothing but mathematical fictions—the
implication being, of course, that ‘in reality’ the Earth reference frame is
not fixed but is rotating on its axis. Already, Bishop Berkeley, a remarkably
perceptive critic of Newton, questioned the legitimacy of assuming that
rotatory motion was ‘absolute’ rather than relative to the fixed stars (as
they were then conceived to be). In General Relativity there is no privileged
coordinate system and so it is just as legitimate to consider the Earth to be
fixed as rotating on its axis. This means that the centrifugal and Coriolis
forces so-called are just as ‘real’ as any other forces and are ascribed to
the rotation of distant celestial masses. To correctly describe the behaviour
of a single ‘clock’ it becomes necessary (in principle) to take into account
the rest of the matter in the universe and the ‘gravitational fields’ due to
distant masses may well turn out to be different even for systems moving
in uniform straight line motion relative to each other! Non-locality is built
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into General Relativity from the beginning but it is not the same kind of
non-locality that we get in Quantum Mechanics when, for example, paired
photons drifting away from each other remain correlated with respect to
their spin. The latter is a matter of specific particles being correlated to
certain other specific particles, but in General Relativity everything really
is ‘related to everything else’ (at least from the gravitational point of view)
since the universe is ‘all of a piece’. Interestingly, this is a return to the
ancient Roman Stoic conception whereby the cosmos is viewed as a single
organic entity: ‘Ever consider and think upon the world as being but one
living substance, and . . . how all things that are concur in the cause of one
another’s being’ as the Emperor Marcus Aurelius put it in his Meditations.

It is thus something of an exaggeration to say that the Twins Paradox
has long since been laid to rest. If the difference between a so-called ‘inertial’
and an ‘accelerated’ system is only a question of degree—strictly speaking
inertial systems do not exist at all—one might wonder whether after all we
should consider the two trajectories, that of the rocket and the Earth, as
being in some sense symmetrical. Certainly, if we have two rockets following
an identical circular (or elliptical) course with the same angular velocity but
moving in opposite directions, their clocks, initially set at zero, should give
the same readings each time they cross—otherwise this would be violating
one of the key assumptions of Relativity, the homogeneity of empty space.
Sciama has in fact argued that, if we neglect the influence of distant celestial
masses, Professor Dingle’s view would be perfectly correct!

One sometimes wonders what there is to hold on to in the universe if
‘everything is relative’: popular books try to reassure the public by telling
them that c, the speed of light in a vacuum, is ‘absolute’ but unfortunately
this is not the case in General Relativity. This does not bother me personally
since I have always considered c to be a limiting speed, not as a speed
actually attained by any particle. To attain c exactly a particle would have
to be massless, which means that it would have absolutely no resistance to
any attempt to change its state of rest or relative straight motion, in which
case I do not see how it could be anything at all even for a single instant.
The neutrino, long assumed to be massless, is now thought to have a small
mass, and the same could be true of the photon.

There are, for all that, certain ‘things’ which are not relative in the
Theory of Relativity, Special or General, namely events by which we must
understand ‘strictly punctual occurrences which leave traces and thus have
observable effects’. The idea of an ‘event’ such as a flash of light or an
explosion is indispensable in Special Relativity and was, for Einstein at
least, perfectly unproblematical.2 Now, the occurrence, or not, of an event
is in no sense a subjective matter nor, as far as I can see, does it have
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anything to do with one’s state of relative motion. If an explosion occurs
alongside you in your hotel room inertial frame, it occurs (or ‘will occur’) in
all inertial and non-inertial, frames everywhere—to avoid the use of tenses,
we can simply say that it ‘has occurrence’ in all frames. Moreover, if two
nearby distinct events are noted by an observer on the spot to have a definite
order, this is their true order which they cannot lose. The alleged arbitrary
order of ‘space-like’ separated events is largely an academic issue because
such events cannot possibly have any consequences for us. I have read that
for one person on Earth an invading fleet may have already set out from
Andromeda while for someone in the next town, or even the next street,
the decision to invade the Earth may not even have been taken. But so
what? When the fleet actually gets here the relevant preceding events on
Andromeda will have occurred, and will have occurred in a precise order
which is the same for everyone.

What we undoubtedly do lose in Special and General Relativity is the
notion of a universal ‘now’, but I cannot decide whether this is a serious
matter or not; if the Big Bang theory is right, presumably there was a
period when a ‘universal now’ did exist and so, in principle at least, as
Eddington suggested, it should be possible to define a kind of weighted
time slice through the universe as it evolves, in much the same way as we
determine the centre of mass of a physical system. Any such chosen ‘now’
would, of course, be purely theoretical but then this is true of the centre of
mass anyway since no such point actually exists in the real world.

Despite the high abstraction of modern science most of us do have some
sort of a basic physical picture at the back of our minds, usually quite a
crude one: Newton had his apples and billiard-balls and even modern pure
mathematicians would be hard pushed if they had to do without images
of the ‘number line which is everywhere dense’ and similar idealizations.
I find that I have for most of my life been carrying around in my head
a (very) basic schema which at rock bottom consists of only three items:
events, a Locality where events can and do occur, and some sort of causal
relationship which controls the occurrence (or not) of specific events. These
items are certainly amongst the half dozen or so main players in the great
game of Relativity and I have sometimes wondered whether it would be
possible to describe the world using these concepts alone, to the exclusion
of ‘object’ concepts such as particles and massive bodies—in terms of my
primary notions ‘objects’ are simply relatively repeating event-patterns and
their ‘mass’ is the resistance of a particular pattern to a change of rhythm.

To get going one needs what I call the ‘Principle of Occurrence’, which
in terms appropriate to the present discussion would go something like this:

If an event has occurrence for one observer, it has occurrence
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for all possible observers.

Is this saying anything more than the sort of worldly wisdom dispensed
by a typical American celebrity on a chat show, ‘if something happens,
my God it sure happens!’? I think it probably is: I am more worried
about the Principle letting in more than I bargained for than I am about
it being tautological. For it could be that by plotting a zigzag course from
one possible observer to another, one would end up by allowing in certain
‘future’ events and once one starts doing this it is not clear where to draw
the line. Einstein, towards the end of his life, apparently believed that
the ‘universe’ existed (or exists, rather) in an eternal now: it is not clear
whether his motivation was temperamental or mathematical.

Of course, an observable, thus macroscopic, event on closer examination
turns out to consist of a number of smaller events and before we know what’s
happening we find ourselves transported to the wonderland of continuous
functions and transfinite set theory. So everything turns out to be infinite
since, as we all know, there are just as many points (= events) in a line
segment (= interval) two inches long as in one that stretches from here to
Mars.

Can such ‘infinite regress’ be avoided? Yes, very easily, by introducing
the idea of an ‘ultimate event’ which is, by definition, an event which cannot
be further decomposed. It readily follows from this that any connected
sequence of observable events is made up of a finite number of ultimate
events—though it may well be that at the present stage of our technology
this number is unknowable. Again, it seems reasonable to suppose that
there is a limiting value to the number of events that can possibly occur,
or can have occurred, between two arbitrary specific ultimate events, i.e.
there is an upper limit to what can occur within an arbitrary region of the
Locality.

Such suggestions are perhaps not quite so offbeat today as they were
even five years ago. Most nineteenth century physicists thought that matter
was continuous. They were completely wrong about this and Einstein was
one of the people who showed that they were wrong (not by Relativity as
such but by his work on the photo-electric effect and similar phenomena).
At present the vast majority of physicists still for some reason insist on
seeing space and time as ‘infinitely divisible’ but this is not the picture
emerging from the theory of ‘loop quantum gravity’, one of the two or three
serious rivals to string theory in theoretical physics. According to one of
its main spokesmen, Lee Smolin, loop quantum gravity predicts that space
comes in discrete lumps about the size of 10−99 cm3 and time in point-
instants of about 10−43 seconds.3 The theory does not speak of ‘ultimate
events’ as such but it does seem to mean that whatever exists at all must
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either exist momentarily or as a discontinuous chain of discrete spacetime
configurations. In my terms, I would guess (or postulate) that each of these
Plancktime globules can receive at most only one ultimate event. I had, as
a first approximation, conceived of the Locality as being a uniform four-
dimensional grid: in loop quantum gravity the building blocks of spacetime
are naturally more complicated in structure (more like irregular polyhedra)
but the basic point is that there is a given (whole) number of blocks to any
bounded region of spacetime. If, then, we attribute at most one ultimate
event to one spacetime globule, this amounts to my principle that there must
be a maximum number of events that can occur in any bounded region of
the Locality.

As I envisage things, ultimate events have uniform and negligible (but
not zero) extent; they are not elastic and not subject to such things as
Lorentz contractions and time dilations. The legitimate divergence of opin-
ion about the ‘length’ of spatial and temporal intervals according to states
of motion (which is today an unquestionable experimental fact) must, then,
apply only to the gaps between the events. These gaps do not have a fixed
length because they do not have a proper length at all. Viewed like this
some of the ‘paradoxes’ of Relativity are perhaps more acceptable. Imagine
two successive screams of someone falling into a Black Hole. It has been said
that for someone on the outskirts of the Black Hole the interval between
the screams would be ‘infinitely long’ (an exaggeration, of course, for if this
were so the observer would not hear the second scream) whereas for the
person falling into the Black Hole the interval would be of perfectly normal
length. Now reduce these screams to two ultimate events: both ‘observers’
would agree that the screams took place and took place in a given order.
They would only disagree on the duration of the interval which is, in a sense,
neither here nor there.

I hasten to add that this distinction between ‘events’ and the ‘gap be-
tween events’ is no part of the theory of loop quantum gravity. Lee Smolin
does discuss the question of what there is between what he calls ‘ticks’ (the
nearest he gets to the idea of an ultimate event) and writes, ‘Time does not
exist in between the ticks; there is no in between’, in the same way that
there is no water in between two adjacent molecules of water’ (Smolin, op.
cit.). I would say that there is something between two molecules of water,
namely a gap, for if there was not a gap the two molecules would not be
two but one. Similarly, the gap between ‘ticks’ is, if you like, ‘nothing’ but
this only means that it is not measurable: it is that portion of the Locality
where no events have occurrence. If there is to be a competition between
the Locality and events, it is the former and not the latter that must be
considered to be the more fundamental: for I can imagine a Locality en-
tirely empty of events (in much the same way as the de Sitter universe is
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empty of matter) but I cannot imagine events occurring without there being
somewhere for them to occur.

Notes

1 This example is taken from W. G. V. Rosser, Introducing Relativity
(Butterworth), an extremely useful book pitched at about first year under-
graduate level.

2 The idea of an ‘event’ is also indispensable in Quantum Mechanics
since it is a punctual, objective occurrence with observable consequences
that collapses the diffuse wave function and obliges a ‘particle’ to take up a
specific position and the cat to unequivocally die. However, the phenomenon
is nothing like so clear-cut as in Relativity since there is the troublesome
question of the observer’s active and usually deliberate involvement in the
‘event’—which is why the literature prefers to speak of a ‘measurement’
rather than an ‘occurrence’ even if nothing is being measured. Also, the
wave function in its uncollapsed state cannot by any stretch of imagination
be considered to be composed of events which is why one has to speak of
‘probabilities’, ‘potentialities’ and so forth.

3 Lee Smolin, Atoms of Space and Time, Scientific American, Special
Edition, A Matter of Time, vol. 16 no. 1 (2006). This special edition also
includes a very good article by Ronald Lasky on the Twins Paradox from
the standpoint of Special Relativity, to which I am indebted (though the
author’s views on the issue are not necessarily the same as mine).

The answer to the question of when the astronaut twin starts to age
more than his earthbound brother is: about 3,200 kilometres above sea
level. We first obtain an expression for ∆ν/ν0 (where ∆ν is the difference
in frequencies of the clock in the satellite compared with the frequency ν0
of an Earthbound clock) according to Special Relativity. This change is
approximately − 1

2v
2/c2 and using mv2/r = mGM/r2 we arrive at

∆ν

ν0
≈ −

1
2 g r0

c2
r0
r
.

Adding this to the expression already obtained for ∆ν/ν0 according to the
difference in gravitational potential we obtain a rough result

∆ν

ν0
≈ g r0

c2

(
1− 3 r0

2r

)
,

where r0 is the mean radius of the Earth and r is the radius of the satellite’s
orbit considered to be circular. See pp. 272–3 of Rosser, op. cit.
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Solution 212.3 – 100 seats
There are 100 seats on a plane, and 100 people have booked
(different) seats. They form a queue. The first person to board
the plane ignores the instructions on his ticket and chooses a seat
at random. Thereafter each passenger goes to his/her allocated
seat if it is unoccupied and otherwise chooses an unoccupied seat
at random. What is the probability that the last person gets her
booked seat?

Tony Forbes
This is an interesting problem but on reflection I now think that we were
probably guilty of making it unnecessarily difficult by not telling you the
answer. Certainly in my own experience probability problems are quite often
impossible to solve with any degree of confidence if you do not already have
the solution. Proceeding in ignorance, let us see what happens on 100000
typical flights of the plane.

957 99025 99031 98957 98997 98986 98997 98977 98910 98911
98925 98891 98837 98912 98831 98805 98789 98796 98792 98797
98747 98689 98754 98710 98692 98646 98714 98626 98597 98620
98596 98542 98590 98472 98534 98469 98423 98398 98399 98395
98346 98410 98334 98300 98128 98183 98213 98101 98193 98059
98015 97893 97905 97939 97730 97835 97830 97757 97708 97577
97545 97531 97380 97311 97276 97249 97215 97070 96955 96918
96682 96596 96576 96366 96284 96220 95955 95972 95649 95542
95130 94941 94684 94385 94066 93857 93467 92950 92332 91709
90954 89948 88859 87629 85754 83168 79868 74974 66489 49977

These are the numbers of times the i th passenger gets correctly seated.
So the last person gets her seat about 49977 times in 100000 trials; hence
the answer to the problem is obviously 1/2. Also it seems even more is
true. If you look at the rational numbers obtained by dividing the counts
by 100000, you will see that apart from the first they approximately form
the sequence

99

100
,

98

99
,

97

98
, . . . ,

3

4
,

2

3
,

1

2
.

Notice, by the way, that by choosing a seat at random the first passenger
does not necessarily occupy a seat other than the one he booked. Therefore
with probability 1/100 all passengers get their booked seats.

Now that we know the answer we can argue with confidence. The num-
ber 100 is not particularly relevant. So we assume there are n passengers
and it is just as easy to demonstrate that the same sequence of rational
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numbers occurs but starting with (n− 1)/n instead of 99/100. We wish to
prove that

P (passenger i correctly seated) =


1

n
if i = 1,

n− i+ 1

n− i+ 2
if 2 ≤ i ≤ n.

(∗)

Clearly (∗) holds if n = 2 or if i = 1. Assume (∗) is true for all n from 2 to
N − 1, say, and we shall prove (∗) for n = N .

Consider passenger i, 2 ≤ i ≤ N , and suppose passenger 1 chooses seat
s. If s = 1, everybody gets their booked seats—probability 1/N . If s = i,
passenger i definitely does not get correctly seated. If s > i, passenger i
definitely gets correctly seated—probability (N − i)/N .

If s < i, then passenger i is in the same situation as in the original
problem but with only N − s + 1 seats, namely 1, s + 1, s + 2, . . . , N , and
the passengers renumbered by subtracting s − 1. Thus passenger s is now
playing the role of the original passenger 1. Since 2 ≤ N − s + 1 < N we
can use (∗) to compute the probability of passenger i (who is now called
i− s+ 1) getting correctly seated:

(N − s+ 1)− (i− s+ 1) + 1

(N − s+ 1)− (i− s+ 1) + 2
=

N − i+ 1

N − i+ 2
.

Putting everything together, we find that the probability of passenger i
getting his/her booked seat is

1

N
+
N − i
N

+
1

N

i−1∑
s=2

N − i+ 1

N − i+ 2
=

N − i+ 1

N − i+ 2
,

and thus (∗) is proved.

Problem 217.1 – Another 100 seats
This interesting variation on Problem 212.3 was communicated to me [ADF]
via Peter Cameron.

There are 100 seats on a plane, numbered 1–100. There are 100 pas-
sengers, also numbered 1–100. Each passenger has a preferred seat. The
passengers arrive in order. On arrival, a passenger sits in his/her preferred
seat if possible; otherwise he/she goes to the next available seat in the nu-
merical ordering. If no such seat exists, the passenger leaves the plane.
In how many of the 100100 possible choices for the preferred seats do all
passengers embark successfully?
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The ladder problem yet again: Problem 204.9
John Bull

A ladder of length 1
stands against a vertical
wall just touching a shed
of height and width b.
Find the distance of the
ladder bottom from the
shed.
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d b

b

b

x

A

B

E

FD

Diagram for the

original ladder

problem

Rotate B about D until B is on AE extended. We then transform
Figure 1 to Figure 2; ADB is now a right triangle with ED an altitude to
the right angle at D. This construction can be found in Euclid VI.8 and
in elementary geometry text books [1, 2]. Labelling would normally follow
a different convention, but we shall stay with that of the original problem
with, additionally, AD = p. So in our case p+ q = 1.

In Figure 2, triangles ADB, DEB and AED are all similar. So

AD

DE
=
DB

EB
=
BA

BD
,
DE

AE
=
EB

ED
=
BD

DA
,
AE

AD
=
ED

DB
=
DA

BA
,

Or
p

b
=
q

x
=
d+ x

q
,
b

d
=
x

b
=
q

p
,
b

p
=
p

q
=

p

d+ x
.

This gives

p2 + q2 = d(d+ x) + x(d+ x) = d2 + 2dx+ x2 = (d+ x)2,

which offers a proof of Pythagoras’ theorem on triangle ADB. Hence

(d+ x)2 = p2 + q2 = (p+ q)2 − 2pq = (p+ q)2 − 2b(d+ x)
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and with p + q = 1 implies (d + x)2 + 2b(d + x) − 1 = 0. Also dx = b2.
The solution now follows previous M500 articles: Steve Moon (212, p.12)
and Nick Hobson (214, p.18). But note that we have proved Pythagoras’
theorem along the way rather than have simply used it.

[1] Clement V. Durrell, A New Geometry for Schools, 1957, page 504.

[2] Hall & Stevens, A School Geometry, 1902, page 268.

Dick Boardman
I expect you are fed up with ladder problems. However, I may as well add
my halfpenny contribution. Referring to the notation in the diagram on the
previous page, we start with equations

d x = b2 (1)

and
d2 + 2 b d+ x2 + 2 b x+ 2 b2 = 1 (2)

given in Nick Hobson’s solution on page 18 of M500 214.

Using a d-axis and an x-axis, equation (1) is a rectangular hyperbola
and equation (2) is a circle, centre (−b,−b). Both of these curves are sym-
metrical about the line d = x. So rotating the axes by 45 degrees produces a
quartic with no cubic or linear terms. Substitute d = X+Y and x = X−Y
and the result falls out.

Problem 217.2 – Chords and regions
Sebastian Hayes
We have n points situated irregularly on the circumference of a circle. They
are joined by straight lines in all possible ways. What is maximum number
of regions into which the lines divide the circle?

Problem 217.3 – Integral
Show that ∫ 3√3

1

t2dt× cos
3π

9
= log 3

√
e,

and then translate the problem into limerick form. [We have left 3/9 as is to
make our version of the fourth line work, but if you can do the job without
this artifice, so much the better. Similar contributions welcome.]
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Solution 214.5 – 1000000 tarts
There are one million tarts; all weigh the same except for 100,
which are too light. There is also a weighing machine that will
indicate whether or not a batch of tarts has the correct weight.
Devise a testing strategy to identify the 100 defective tarts with
a small maximum number of weighings.

John Smith

A bound for the best possible algorithm

There are C1000000
100 ways of ordering 100 bad tarts in a collection of 1000000

tarts; n weighings can, at best, distinguish 2n orderings. So the best scheme
must require at least n weighings where n is the smallest integer satisfying
2n ≥ C1000000

100 . A bit of electronic computing shows that

log2 C
1000000
100 = 1468.384722,

so that, in the worst case, any weighing scheme will require at least 1469
measurements.

A simple algorithm

A simple algorithm would use repeated bisection.

Until all bad tarts are found, repeatedly:

Divide the batch into two equal sized batches:

weigh one batch;

if it is bad, put the other batch aside;

if it is not bad, put it aside;

until the batch size is 1.

Then the tart in the remaining batch must be bad.

Put the bad tart to one side, and start again.

This way we can locate a bad tart in a sample of 2n tarts in n weighings.
For an initial N = 1000000, we need 20 weighings. By repeating the process
100 times, we can find all 100 bad tarts in 2000 weighings.

The inefficiency of this method lies in the fact that, for the first few
weighings of each cycle, it is almost certain that the batch is bad. Thus
very little information is gained from the measurement.

Some hand-waving analysis

A good first weighing should divide the C1000000
100 possible orderings into two
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roughly equal sized orderings. If we choose a batch of n tarts at random,
the batch will contain, on average, 100n/1000000 tarts. If n is neither too
large nor too small, the number of bad tarts will roughly follow a Poisson
distribution with mean 100n/1000000. The probability of a batch of n
tarts having no bad tarts is thus roughly exp(−100n/1000000). An ideal
measurement will be equally likely to show bad or correct weight. So we
should choose n such that

exp
−100n

1000000
=

1

2
,

which gives

n =
1000000

100
log 2.

In the more general care where we have N tarts of which k are bad, then
the first weighing should be of a batch of about 0.7N/k tarts.

A better algorithm

We use analysis to give the following possible algorithm.

Suppose we have N tarts, of which k are bad.

If N = k, then all the tarts are bad.

Otherwise, select 2n of the tarts, where n is the largest integer satisfying
2n ≤ (N − 1)/k. Weigh the 2n tarts.

If they have the correct weight, then put them to one side, and solve
the remaining problem of N − 2n tarts, of which k are bad.

If they do not have the correct weight, then repeatedly divide the 2n

sample into 2, and so find a bad tart in another n weighings. Then solve
the problem of N − 1 tarts, of which k − 1 are bad.

In symbols, let W (N, k) be the number weighings required to find k
tarts in a batch on N . A recurrence relation for W (N, k) is

W (N, k) =

{
0 if N = k; otherwise
max(1 + n+W (N − 1, k − 1), 1 +W (N − 2n, k)),

where n is the largest integer satisfying sn ≤ (N − 1)/k.

Analysis of this recurrence relation to give a formula for W (N, k) is
too hard (for me). But for a computer, it only requires 108 iterations,
plus storage for 2000000 integers. My computer analysis suggests that
W (1000000, 100) = 1521. This number of 1521 is fairly close to the ideal
figure of 1469, and certainly much smaller than the figure of 2000 weighings
from the simple algorithm.



Page 20 M500 217

Six-region sudoku puzzles
Tony Forbes
As usual we begin with a sudoku puzzle. Complete the array to make a
Latin square on {1, 2, . . . , 9} such that each of the 3 × 3 boxes into which
the array is divided contains all of the symbols 1–9. The solution is unique.

6

8

3 7

2

1

7 6

4

1

2

5 3

2

7

9

8 3

5

2

3 9

6

8

Puzzle A

Four coordinates and six regions

Consider the 9 × 9 grid of a standard sudoku puzzle. Instead of labelling
rows and columns 0–8, let us imagine that we are using base 3 numbers, 00,
01, 02, 10, 11, 12, 20, 21, 22, instead. Or, looking at it another way, we use
a two-coordinate system. For rows, the first digit, or coordinate, is the row
block number and the second coordinate is the row number within the row
block. Similarly for columns.

Now a cell has four coordinates, (a, b, c, d): a = row block number; b
= row number within row block a; c = column block number; d = column
number within column block c. To recover the original coordinates you just
multiply by 3 and add; (a, b, c, d)→ (3a+ b, 3c+ d).

A region is the set of cells obtained by fixing a certain pair of coordinates,
and moreover it can be identified by the fixed coordinates. Thus row ab is
the set of cells where a and b are fixed and c and d each run from 0 to 2,
column cd is the set of cells where c and d are fixed and a and b vary, and
box ac is the set of cells where a and c are fixed and b and d vary.

So we have identified rows, columns and boxes by fixing two out of the
four cell coordinates. Using ∗ to denote a coordinate that varies from 0 to
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2, we have rows: (a, b, ∗, ∗), columns: (∗, ∗, c, d) and boxes : (a, ∗, b, ∗). But
there are three further ways of fixing two coordinates, and we can therefore
introduce three new region types according to the chosen pair. We call
the regions defined by (∗, b, c, ∗), (a, ∗, ∗, d) and (∗, b, ∗, d) split rows, split
columns and split boxes respectively—in agreement with the explanation
given in M500 214.

region type coordinates region type coordinates
row (a, b, ∗, ∗) split row (∗, b, c, ∗)
column (∗, ∗, c, d) split column (a, ∗, ∗, d)
box (a, ∗, c, ∗) split box (∗, b, ∗, d)

A split row consists of three rows of three, spaced three apart in one of the
three column blocks (like the cells marked ‘r’ and ‘x’ in the array, below).
A split column consists of three columns of three, spaced three apart in one
of the three row blocks (‘c’ and ‘x’). A split box is a 3 x 3 square array of
cells, spaced three apart in both directions (‘b’).

0 1 2 c
a b 0 1 2 0 1 2 0 1 2 d

0 . . c . . c . . c

0 1 r r x . . c . . c

2 b . c b . c b . c

0 . . . . . . . . .

1 1 r r r . . . . . .

2 b . . b . . b . .

0 . . . . . . . . .

2 1 r r r . . . . . .

2 b . . b . . b . .

We define a 6-region sudoku square as a 9× 9 Latin square where every
row, column, box, split row, split column and split box contains the symbols
{1, 2, 3, 4, 5, 6, 7, 8, 9}. A 6-region sudoku puzzle is a sudoku puzzle with the
additional constraint that the split rows, split columns and split boxes must
also contain the symbols 1–9.

[Acknowledgement. This is based on an idea of Robert Connelly of
Cornell University and communicated to me by Peter Cameron of Queen
Mary College, London.]
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Symmetry

As well as any I haven’t thought of, the valid symmetry operations for a
6-region sudoku square include the following:

(i) rotation by 90 degrees anticlockwise;

(ii) reflection in the middle row or the middle column;

(iii) reflection in a main diagonal;

(iv) swap any two row blocks; swap any two column blocks;

(v) any permutation of the symbol set;

(vi) any permutation of the four coordinates.

On the other hand, swapping two rows is never a legitimate operation.

The last one in the list, (vi), is especially interesting because it can
change the shapes of the regions. We are already familiar with one spe-
cial case: transposition is equivalent to interchanging the row and column
coordinates, (a, b, c, d) → (c, d, a, b). But now we have four coordinates
and hence 24 permutations; so there is plenty of scope for experimentation.
Take the permutation of the coordinates that sends the symbol at position
(a, b, c, d) to position (b, c, a, d), and on examining the effect it has on var-
ious regions, you can verify that, for example, you should get successively
row, box, split row and back to row.

1 2 3 4 5 6 7 8 9
. . . . . . . . .
. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

→

1 2 3 . . . . . .
4 5 6 . . . . . .
7 8 9 . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

→

1 2 3 . . . . . .
. . . . . . . . .
. . . . . . . . .

4 5 6 . . . . . .
. . . . . . . . .
. . . . . . . . .

7 8 9 . . . . . .
. . . . . . . . .
. . . . . . . . .

Symmetric 6-region sudoku puzzles remain symmetric under any per-
mutation of the four coordinates.

To prove this, let π be any permutation of the four coordinates. We
know that the operation (a, b, c, d) 7→ π((a, b, c, d)) preserves the 6-region
sudoku property. Now define another operation on the four coordinates,

µ : (a, b, c, d) 7→ (2− a, 2− b, 2− c, 2− d)

and observe that applying µ to a cell moves it to its diametrically opposite
position (rotation by 180◦). Hence after applying µ to a symmetric 6-region
puzzle, the result is also a symmetric 6-region puzzle.
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But π and µ commute; that is µ(π((a, b, c, d))) = π(µ((a, b, c, d))) for any
cell coordinates (a, b, c, d). For example, if π maps (a, b, c, d) to (b, c, d, a),
we have:

(a, b, c, d) (b, c, d, a)

(2− a, 2− b, 2− c, 2− d) (2− b, 2− c, 2− d, 2− a)
? ?

-

-

µ µ

π

π

How to solve 6-region sudoku puzzles

An interesting feature is the influence of a single digit on the rest of the
array. For instance, suppose the middle cell is a 1. Applying the basic rules
eliminates 1 from all cells marked ‘x’ in the array on the left, below. But
with a little more work you can prove—as explained in issue 214—that 1
is also forbidden in the cells marked ‘z’ (right-hand array).

1-free cells

. . . . x . . . .

. x . x x x . x .

. . . . x . . . .

. x . x x x . x .

x x x x 1 x x x x

. x . x x x . x .

. . . . x . . . .

. x . x x x . x .

. . . . x . . . .

More 1-free cells

z . z . x . z . z

. x . x x x . x .

z . z . x . z . z

. x . x x x . x .

x x x x 1 x x x x

. x . x x x . x .

z . z . x . z . z

. x . x x x . x .

z . z . x . z . z

I leave it for you to construct similar patterns where the 1 is placed
in other positions, and as a consequence you can prove that the two main
diagonals of a 6-region sudoku square contain the symbols 1–9. By the way,
this feature only works for 9× 9 puzzles. If you try it with a 16× 16 grid,
you will find that you can restrict the occurrence of 1s to 9 positions in 6
boxes, but since 6 < 9, the corresponding deduction cannot be made.

As with standard sudoku, because any permutation of the symbol set
is a valid symmetry operation a 6-region sudoku puzzle must have at least
eight starter digits. But but now the extra restrictions on the solution allow
the minimum to be attained. Indeed, the most elegant puzzles have eight
starter digits and 2-fold rotational symmetry, like Puzzles B, C, D and E,
below. And because 8 is even, the central cell, at coordinates (1, 1, 1, 1),
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will not contain a starter digit. However, it is easy to show that only the
missing symbol is valid in this position.

There is also a general principle which halves the work involved in solv-
ing a symmetric 6-region sudoku puzzle, but I expect you can figure that
out for yourself while you attempt Puzzles B, C, D and E. And of course
Puzzle A, a truly fiendish standard sudoku puzzle, whose unique solution
actually conforms to the 6-region rules!

7

4

2

9

1

6

8

3

9

8

3

1

5

7

4

2

Puzzle B Puzzle C

6

4

3

1

5

2

7

9

5

3 6

7 8

9 2

4

Puzzle D Puzzle E

Problem 217.4 – n2

John Bull
Where n is a positive integer, prove that (n+ 1)n − 1 is divisible by n2.



M500 217 Page 25

Problem 217.5 – Triangulating a triangle
Take any triangle and label its vertices A, B and C. Subdivide the triangle
into smaller triangles by adding new points in its interior or on its boundary
and adding new edges. Label the new points A, B and C in any way you
like subject to the restriction that points on the edge opposite vertex x of
the original triangle must not be labelled x.

Prove that the number of new triangles labelled ABC is odd (and there-
fore positive).
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Problem 217.6 – Triangle
Take any triangle and label its vertices A, B and C. Let a, b, c denote the
lengths of the sides opposite A, B, C respectively. Show that

log c = log a− b

a
cosC − b2

2a2
cos 2C − b3

3a3
cos 3C − . . . .

Problem 217.7 – Exponents
Find interesting positive rational numbers x and y such that xy/yx is an
integer. For instance,

24

42
=

(
3 3
8

)2 14(
2 1
4

)3 38 = 1.
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Cover : A decomposition into four mutually disjoint caps of size 20 of the 80

non-zero points of AG(4, 3), the affine geometry of dimension four over GF(3).

Points in AG(4, 3) are four-vectors of elements taken from {0, 1, 2}. Lines are

triples of points {X,Y, Z} where X + Y + Z = 0 with coordinate-wise addition

modulo 3. A cap is a set of points no three of which form a line. Twenty is the

maximum possible size of a cap in AG(4, 3). ADF


