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Two methods for partitions of integers
Tommy Moorhouse
Introduction

A partition of a positive integer n is an expression for n as a sum of positive
integers. The number of distinct partitions p(n) of n grows very rapidly
with n: for example p(10) = 42, p(100) = 190, 569, 292. This article gives
two methods for finding a recurrence relation for p(n), one based on an
expression for the exponential of a power series, the other employing an
integer logarithm function, which we denote by κ.

1 An exponential method for deriving recurrence relations

A recurrence relation is an expression for obtaining terms of a given type
from other terms of the same type. The expressions

un+1 = un − un−1,

vn+1 = vn + 1/vn−2

are both examples of recurrence relations. In order to solve the relations
we would need to know some initial values, e.g. u0, u1. This subject is well
developed and expositions can be found in many elementary texts.

One well-known method of solving recurrence relations involves forming
a ‘generating function’ from the terms as follows. Given a set of elements
ui, i = 0, . . . ,∞, we form the formal power series S(x) =

∑∞
i=0 uix

i, where x
is to be treated as a variable when manipulating the function S(x). Inserting
the initial values and substituting the other ui by their expressions in terms
of lower elements we find another expression for S(x) which may help us to
solve the recurrence relation. The reader may refer to elementary texts for
examples. Importantly, not all recurrence relations admit explicit solutions
and this is the case for the relation we derive below. In these cases computers
can be used to find very many of the terms, and this is the approach we
use.

In this article we will be concerned with obtaining a recurrence relation
for the terms in a generating function for the function assigning to an integer
n the number of partitions of n. Recurrence relations for this function
are known (see for example Apostol [1, Section 14.6]), but we will find a
simple expression and show how it can be coded into the computer language
Maple. The idea of a partition is examined further in the next section.

Naturally in order to make use of the available methods for solving
recurrence relations we need to find one. In the case of partitions of n we
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have a powerful tool in the generating function. We have

∞∏
i=1

1

(1− xi)
= S(x) =

∞∑
i=0

p(i)xi.

The proof is in Apostol [1]. For the purposes of this example all series are
treated as formal series and questions of convergence are not considered.
The pitfalls of such an approach are set out in many analysis texts (e.g.
Whittaker and Watson [2]), but we will not pursue a rigorous development.

We now examine a special case of a general recurrence relation. In
the sequel we will take H(x) to be log(S(x)), because we want to use the
trick of exponentiating to get back our original series (i.e. exp(log(S(x)) =
S(x)). Obviously there are some issues around the convergence properties
and whether the method is consistent, but we will leave these matters aside.
Thus we let H(x) =

∑∞
i=0 hix

i, and take

exp(H(x)) =

∞∑
i=0

eix
i.

We require that exp(H(x)) satisfy the usual exponential differential equa-
tion

d

dx
exp(H(x)) =

d

dx
(H(x)) exp(H(x))

and expand everything in terms of the hi and ei to find that

(i+ 1)ei+1 =
∑

j+k=i+1

ejhk.

Substituting the particular form of S(x) relevant to the partition function
into this gives, after collecting terms,

np(n) =
∑

j+k=n

σ(j)p(k).

Here σ(n) is the sum of the divisors of n and the sum over j and k involves
non-negative integers only. The following Maple code puts this to use.

with(numtheory);

part:= proc(n::integer) option remember;

if n <=1 then 1 else add(sigma(k)*part(n -‘k‘)/n,‘k‘=1..n)

fi;

end;
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The code runs reasonably quickly and could be used, for example, to check
identities involving partitions. It can also be readily adapted to other lan-
guages such as Java or Python if desired.

2 The function κ

We now introduce a function κ from the positive integers to the natural
numbers with the property

κ(nm) = κ(n) + κ(m)

for all pairs of integers n,m. This is an analogue of the logarithm, and can
be generalized to give a large family of functions with this property.

We can express any positive integer as a product of prime numbers in
an essentially unique way (i.e. unique up to ordering). If we agree to order
the prime factors of an integer n by magnitude, and label the smallest p1
and so on up to the largest pm say, we have

n = pk11 p
k2
2 · · · pkmm .

Now we define κ(n) as

κ(n) =

m∑
i=1

kipi.

This gives a well-defined function with the stated property.

As an aside we note that κ may be extended to a function κQ on Q+ as
follows: if a, b ∈ Z then κQ(a/b) = κ(a)− κ(b). This is a group homomor-
phism from Q+? → Z as is easily shown. The kernel of this map is therefore
a subgroup of Q?. We will not pursue this further here.

3 Prime partitions and the function κ

Although not essential to the following argument, the function κ illuminates
the main points, and directs us to another tool for investigating partitions.
In this section we consider partitions of an integer into prime numbers, for
example 20 = 2+2+2+2+2+2+2+3+3.

We might ask about solutions to the equation κ(u) = n given n. From
the definition of κ in terms of the prime factorization of u we immediately see
that u corresponds to a unique prime partition of n: namely if u = Πr

i=1p
ki
i

then n = κ(u) =
∑
piki which is an expression for the prime partition of n:

n = p1 + p1 + · · ·+ p1︸ ︷︷ ︸
k1

+ · · ·+ pr + pr + · · ·+ pr︸ ︷︷ ︸
kr

.
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Each prime partition of n corresponds to an integer u such that κ(u) = n,
so, denoting the number of prime partitions of n by P (n) we have

|κ−1(n)| = P (n).

We have used the set theoretic definition of κ−1 as the set of all elements
mapped to n by κ. Now consider the product Πu∈κ−1(n)u. We denote this
simply by Π(n). Then it is immediately clear that

κ(Π(n)) = nP (n).

4 An expression for Π(n)

We can find an expression for Π(n) in terms of primes smaller than n. First
we note that 2P (n−2) divides Π(n) because there are P (n − 2) partitions
of n with at least one 2 appearing. There are P (n − 2 × 2) partitions
involving 2+2, but these only introduce another power of 2P (n−2×2) as we
have already counted the partitions involving one 2. Continuing in this way
we see that the power of 2 dividing Π(n) is

2P (n−2)+P (n−2×2)+···+P (n−2j)+···+P (n (mod 2)).

In general, the power of the prime p ≤ n dividing Π(n) is P (n− p) +P (n−
2p) + · · ·P (n (mod p)) and we have

Π(n) = Πp≤np
∑[n/p]

i=1 P (n−ip).

Applying κ we find

nP (n) =
∑
p≤n

p

[n/p]∑
i=1

P (n− ip).

We now collect terms in P (n− r) for a given value of r. Clearly if a prime
p divides r then there is a term pP (n − r) in the sum, and these are the
only terms that arise. Denoting by a(n) the sum of prime divisors (counted
once) of n we see that

nP (n) =
∑

j+k=n

a(j)P (k).

We must have P (0) = 1, P (1) = 0 for consistency, although the justification
for P (0) = 1 is not intuitive: here it derives from the fact that x0 has
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coefficient 1 in the generating function. The recurrence relation then allows
us to calculate as many of the P (n) as our stamina or computing power
allows.

5 General partitions

The power of the above method appears to stem from the unique prime
factorization of integers. We cannot find a unique factorization of integers
in terms of composites to deal with non-prime partitions in the same way.
On the face of it we have no chance of repeating the analysis with another
version of κ. In fact this is too pessimistic. Let us associate with each
partition of n a unique integer as follows:

n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k1

+ · · ·+ r + r + · · ·+ r︸ ︷︷ ︸
kr

→ pk11 · · · pkrr ,

where pi is the ith prime, counting from 2 ≡ p1. This is a well-defined rela-
tion with a well-defined inverse. To go further we discuss the generalization
of κ alluded to above. For any function f from the positive integers into
the integers we define (for n as above)

κf (n) =

r∑
i=1

kif(pi);

κ then corresponds to the identity function, and our new κ corresponds to
the function assigning to each prime its order in the list of primes, which we
denote by ζ: ζ(pi) = i. Then if m corresponds to a partition of n as above
we have κζ(m) = n. Importantly it can be shown that all the functions κf
behave like logarithms. We can now carry through exactly the same analysis
as in the prime case, finding that instead of a(n) the required multiplying
function is σ(n), as expected.

6 General log-type functions

The functions κf are all functions from the positive integers to the positive
integers (here we do not consider the generalization to Q? mentioned above).
All these functions share the ‘logarithm property’ κf (ab) = κf (a) + κf (b).
In fact any ‘integer logarithm’ L is of the form κf for some f . The proof is
based on a recurrence relation for L, namely∑

d|n

L(d) =
1

2
τ(n)L(n),
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where τ(n) is the number of divisors of n. The proof is straightforward
because

∑
d|n L(d) = L(Πd|nd) by the logarithm property. If τ(n) is even

we see that the divisors of n come in pairs so that the product is nτ(n)/2

and applying L gives us the result. The case of τ(n) odd is only slightly
more involved.

We rearrange the relation as

L(n) =
1

τ(n)/2− 1

∑
d|n,d<n

L(d),

which is of the required form. Note that this is undefined if n is prime, so
we need to specify the values of L at the primes: but this is just specifying
a function f on the primes and hence L = κf .

7 Conclusion

We have examined two routes to the recurrence relation for the prime parti-
tions of an integer. On the way we have introduced a set of integer logarithm
functions about which much more could be said. It may be possible to ex-
tend the methods to various kinds of partition such as partitions into odd
integers and the interested reader may like to pursue this.
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Problem 218.1 – Wands
Having just returned from a night on the town Harry and his friends cast
spells to ward off the effects of excessive drinking. But in the confusion on
leaving the club they had each picked up a wand at random from the pile
that was given back to them. Also the magic isn’t perfect, and when it
fails the caster will turn into a toad (albeit one without a hangover). The
probability of the spell working properly is p with one’s own wand and zero
with someone else’s wand.

Show that the probability of them all turning into toads is approxi-
mately e−p. What is the expected number of toads created by this es-
capade?
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The topologist’s dream
Eddie Kent
A topologist, it is said, is someone who can’t tell a cup of coffee from a
doughnut. Bear that in mind.

This story was published on April 1st, but that doesn’t make it nec-
essarily untrue. Dr Robert Bohannon, described in the press release as a
molecular scientist (i.e. one made of molecules), has observed a serious gap
in the market. He clearly noticed, possibly while driving to work, how dif-
ficult it is to eat a doughnut and drink a cup of coffee at the same time.
Hence he has presented the world with the caffeinated doughnut. He calls
it Buzz Donuts.

His earlier attempts were less than completely successful; in fact he said
of them ‘They were terrible, absolutely horrid,’ and ‘It would just make you
puke.’ But eventually he hit on a process that could mask the bitter taste
of the induced alkaloid. The dream becomes reality.

Now, of course, all we are waiting for is doughnut flavored coffee. Some-
thing sweet and sticky that deposits sugar and jam down your front as you
drink.

If you don’t believe me visit www.buzzdonuts.com.

Goldbach’s conjecture
Hugh McIntyre
The beautiful simplicity of the Goldbach conjecture has appealed to me for
many years and I’ve doodled with it off and on. It beats counting sheep for
sleeplessness. Lately I have come to the conclusion that the conjecture is a
special case of a wider conjecture.

Define a set G(k) as containing the even integers which can be repre-
sented as the sum of two non-equal odd primes in precisely k ways, k being
a positive integer or zero. For example, G(1) = {8, 10, 12, 14, 38, . . . }.

Goldbach’s conjecture is that the set G(0) is empty.

Regardless of the truth or otherwise of this conjecture, does there exist
a non-empty set G(k) for every k > 0?

And, are all the G(k) finite sets?

‘Topology is the study of topological spaces.’ [Textbook definition]
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Solution 212.3 – 100 seats
Simon Geard
I solved this problem by writing a small program to simulate the situation
(below). This showed that the solution—the probability that the last person
gets their seat—is 0.5.

Theoretically I suggest considering the probability q that the last person
does not get their seat. Suppose there are just two seats in the aeroplane;
then q = 0.5. Let Qn be the probability that the nth person takes the
last seat. Then Qn = 1/n2 since they can only choose the last seat if their
allocated seat is occupied. Thus

q =
1

n
+
n− 1

n

1

(n− 1)2
+ · · ·+ 2

3
· 1

22

=
1

n
+

1

(n− 1)2
1

(n− 1)(n− 2)
+ · · ·+ 1

3 · 2

=
1

n
+

(
1

n− 1
− 1

n

)
+

(
1

n− 2
− 1

n− 1

)
+ · · ·+

(
1

2
− 1

3

)
=

1

2
.

It follows that the probability that the last person does get their seat is also
0.5.

! Simulation of the aeroplane problem

!

! N seats on an aeroplane and N people to fill them, each with a

! unique ticket number. Passengers proceed one at a time to their

! seats. The first person ignores their ticket number and chooses

! a seat at random. All subsequent people sit at their seat if it

! is available, otherwise they choose a seat at random. What is

! the probability that the last person can sit in their allocated

! seat.

!

! This simulation program is written in Fortran. To build it

! you’ll need a Fortran compiler. If you haven’t got one get g95

! from http://www.g95.org.

!

! To run the program with 10 seats type at a command prompt

!

! aeroplane 10



M500 218 Page 9

!

! # seats % availability % std.dev

! 2 50.035 0.4830

! 3 49.931 0.4910

! 4 50.022 0.4979

! 5 50.026 0.5639

! 6 50.023 0.5229

! 7 50.030 0.5292

! 8 49.962 0.4597

! 9 50.021 0.5095

! 10 50.081 0.4409

!

module simulate

public :: hasSeat, tidy

private

integer :: nseats = 0

logical, allocatable :: seatOccupied(:)

contains

subroutine tidy

if (allocated(seatOccupied)) deallocate(seatOccupied)

end subroutine tidy

logical function hasSeat(ns)

! Run the simulation once and return .true. if the final seat

! is available

implicit none

integer, intent(in) :: ns

integer :: c

integer :: i

nseats = ns

if (.not. allocated(seatOccupied)) then

allocate(seatOccupied(ns))

end if

seatOccupied = spread(.false.,1,nseats)

! Random choice of 1st passenger

c = selectSeat()

if (c == 1) then

hasSeat = .true. ! Everyone else can sit as allocated

return

end if

if (c == nseats) then

hasSeat = .false. ! Last seat now occupied

return

end if
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seatOccupied(c) = .true.

! Other passengers

do i=2,nseats-1

if (seatOccupied(i)) then

! Seat occupied so choose another one at random

c = selectSeat()

if (c == nseats) then

hasSeat = .false. ! Last seat now occupied

return

end if

seatOccupied(c) = .true.

else

! Seat available

seatOccupied(i) = .true.

end if

end do

hasSeat = .not. seatOccupied(nseats) ! Seat available

end function hasSeat

integer function selectSeat()

! Choose a random unoccupied seat

implicit none

real :: h

do

call random_number(h)

selectSeat = 1+nint((nseats-1)*h)

if (.not. seatOccupied(selectSeat)) exit

end do

end function selectSeat

end module simulate

program aeroplane

use simulate

implicit none

integer, parameter :: N = 10000 ! Number of trials in a simulation

integer, parameter :: L = 100 ! Number simulations

integer :: c ! Count of the number of times in a

! trial the seat was available

integer :: ns ! Number of seats in the trial

integer :: nargs ! Number of arguments

character(len=10) :: arg ! Holder for the first argument

real*8 :: mean ! Mean of results

real*8 :: stdev ! Standard-deviation of results

real*8 :: results(L)! Results vector

integer :: i, j, k ! Dummy loop counters
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! Get the number of seats from the command line (default to 100)

nargs = command_argument_count()

if (nargs >= 1) then

call get_command_argument(1,arg)

read(arg,*) ns

else

ns = 100

end if

write(*,’(a)’) ’# seats % availability % std.dev’

if (ns < 0) then

k = -ns

call runSimulation

else

do k=2,ns

call runSimulation

end do

end if

contains

subroutine runSimulation

! Do the L simulations

do j=1,L

c = 0

! Do the N trials

do i=1,N

if (hasSeat(k)) then

c = c+1

end if

end do

results(j) = dble(c)/N

end do

mean = sum(results)/L

stdev = sqrt(dot_product(results,results)/L - mean**2)

write(*,’(3X,i3,8X,f7.3,8X,f6.4)’) k,mean*100,stdev*100

call tidy

end subroutine runSimulation

end program aeroplane

‘Wet hair; apply shampoo; work into a lather; wash out; repeat.’

[Instructions on a bottle of hair shampoo]
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Russell’s attic
Tony Huntington
Eddie Kent [M500 214: Russell’s attic is a room containing countably many
pairs of shoes and countably many pairs of socks. It is easy to see that there
are countably many shoes, for instance by matching the left shoes to the
odd numbers and the right shoes to the even numbers. But can you say
how many socks there are?] has once again raised a subtle and intriguing
problem full of apparent paradoxes. He has, perhaps deliberately, omitted
to mention whether we are to assume that the shoes are all the same style,
and the socks all identical. This leaves it open for us to consider a number
of different cases before arriving at a general solution. So, considering first
the shoes . . .

As Eddie rightly says, the left shoes can be associated with the odd
numbers, and the right shoes with the even numbers. If we assume that
the shoes were originally purchased in pairs, then their total must be even.
However, if we allow for different shoe styles, it does not follow that the
total number of odd numbers and even numbers thus produced is equal. I
would challenge his assertion that the number of shoes is thus countable,
but would accept that the missing shoes are ‘accountable’ (one disappeared
about three in the morning staggering home from Kevin’s stag night, and
another was thrown from the window at a wailing cat one night, for example,
although these two shoes did not come from the same pair). What we can
assert is that the total number of shoes will always be even.

Now considering the socks . . .

First assume that all of the socks are identical and have been washed at
least once. Then there must be an odd number of socks. Now allow all of
the socks to exist in pairs where each pair is uniquely distinguishable from
every other pair. If all of the socks have been washed at least once, then
not only will the total number of socks be odd, but the subset of unmatched
socks will also have an odd number of members.

For a mathematical explanation of what is underlying these phenom-
ena, I would commend to readers: Sock Dynamics and Other Domestic
Mathematics by Ivor Gudideer. In this treatise, the author explains the
significance of ‘Tight’s Equation’, which has a remarkable similarity to
Schrödinger’s Equation. It is a differential equation, and so has steady-
state and transient solutions, and it has an Imaginary part which makes it
Real. It also successfully explains the probability of a shoe or sock being
in a particular place without any guarantee that when you look there you
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will find it. The transient solutions to Tight’s Equation are particularly
interesting (the assertions above are, of course, the steady-state solutions)
as they can be applied to the case where: you have an odd sock, you throw
it away, and you still have an odd number of socks. With the current in-
teresting discussions in M500 on mathematics and causality, science and
religion, I find Tight’s Equation a more satisfying explanation of the Real
World than the invocation of a ‘Sock Heaven’ where missing socks go to
during the washing process.

None of this discussion leads us closer to answering the fundamental
question: ‘Can we count the socks?’, but at least we now know that if we
can count the socks, and the answer is even, then there will always be one
more (probably under the bed unless you have looked there) to make the
total odd.

[See page 14 for more about socks and the counting thereof.]

Mutually touching cylinders
John Smith
Here is an old open problem. The Web attributes it to Littlewood in 1968.

What is the largest number of congruent, infinitely long, circular
cylinders that can be arranged in 3-d Euclidean space so that
each cylinder is touching each other? Is it 7?

A guess as to the likely answer can be obtained by counting degrees of free-
dom. Each cylinder has 4 degrees of freedom. For N cylinders to mutually
touch, there are constraints on N(N − 1)/2 degrees of freedom. Any final
arrangement can be translated, or rotated to give a new arrangement. So a
final arrangement has 6 degrees of freedom.

Thus the likely answer is the maximum integer N for which 4N−N(N−
1)/2 ≥ 6, which gives N as 7.

From the internet I see that András Bezdek has shown that the maxi-
mum number is at most 24. But as yet there are no known arrangements
of seven or more cylinders. Some twenty odd years ago I heard it suggested
that the problem might be tackled using computer algebra. This must be
even more true now.

A picture or description of 6 cylinders is probably worthy of publication
in M500. A picture of seven or more could win a remark in the history of
mathematics.
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Solution 206.3 – Odd socks
Out of n different pairs of socks in a drawer, r socks are removed
at random. What is the probability of obtaining d matched
pairs? What if two pairs are identical?

Norman Graham
Let e be the number of unmatched socks (removed or remaining) and let f
be the number of matched pairs left in the drawer. Then

e = r − 2d and f = n− d− e = n− r + d.

The number of selections of r socks from 2n is

2nCr =
(2n)!

r!(2n− r)!
,

the number of ways of dividing n pairs into d, e and f is

n!

d! e! f !
,

and the number of ways of choosing one from each of e pairs is 2e.

Therefore the number of selections with d pairs is

n! 2e

d! e! f !
=

n! 2r−2d

d! (r − 2d)! (n− r + d)!
= F (n, r, d),

say. Hence the probability required is F (n, r, d) / 2nCr.

To prove that the probabilities add up to 1, it is required to show that∑
d F (n, r, d) = 2nCr. But 2nCr is the coefficient of xr in (1 +x)2n and this

is equal to the coefficient of xr in (1 + 2x + x2)n. Using the multinomial
expansion

(a+ b+ c)n =
∑

d+e+f=n

n!

d! e! f !
af be cd,

this is ∑
d

n!

f ! e! d!
(2x)ex2d =

∑
d

F (n, r, d)xr,

since e = r − 2d.

If two pairs are identical, the solution is obtained by expanding

(1 + x)4(1 + x)2n−4 = (1 + 4x+ 6x2 + 4x3x4)(1 + 2x+ x2)n−2.
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The coefficient of xr is then the sum over all values of d of

F (n− 2, r, d) + 4F (n− 2, r − 1, d) + 6F (n− 2, r − 2, d− 1)

+ 4F (n− 2, r − 3, d− 1) + F (n− 2, r − 4, d− 2).

Similarly, for two sets of pairs use the expansion

(1 + x)4(1 + x)4(1 + x)2n−8.

These results are understood more readily by using a concrete example.
For n = 8 and r = 7, the probabilities are given by the following table.

d = 0 d = 1 d = 2 d = 3

Pairs all different 0.090 0.470 0.391 0.049

Two pairs identical 0.022 0.369 0.518 0.091

Two sets of two pairs identical 0.0 0.213 0.621 0.166

Problem 218.2 – Central binomial coefficient
Show that the number of decimal digits in the binomial coefficient

2·10nC10n =

(
2 · 10n

10n

)
=

(2 · 10n)!

(10n!)2

is approximately equal to the integer formed from the first n digits of log10 4
after the decimal point.

Indeed, for n = 1, 2, . . . ,

(
2 · 10n

10n

)
has 6, 59, 601, 6019, 60204, 602057,

6020597, . . . digits, whereas

log10 4 = 0.6020599913279623904 . . . .

The integral of t squared dt
From one to the cube root of three

Times the cosine
Of three π over nine

Is the log of the cube root of e.

[Solution 217.3:
∫ 3√3

1
t2dt · 12 = 1

3 .]
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Solution 216.2 – Ramanujan’s continued fraction
As it is recounted by Kanigel, The Man who Knew Infinity (Aba-
cus, 1991), a Hindu friend of Ramanujan’s, Mahalanobis, when
he and Ramanujan were both at Cambridge, read out to him
a puzzle from Strand magazine about an inhabitant of Louvain
(which had just been burned by the Germans). This Belgian
lived in a house on a long street which was numbered 1, 2, 3, . . .
consecutively along his side of the street. The number of his
house had a curious property: the sum of all the house numbers
before it was the same as the sum of all the house numbers that
came after it. The magazine stated that there were more than
fifty houses and less than five hundred houses on that side of the
street. So what was the Belgian’s house number? Ramanujan
thought for a moment and then dictated the first few conver-
gents of a continued fraction which included all the solutions to
the problem (not just the one falling within the 50–500 range).

Norman Graham
Let x be the house number required and z the number of further houses.
Then

x−1∑
i=1

i =

z∑
i=1

(x+ i).

Therefore

1
2x(x− 1) = zx+ 1

2z(z − 1),

x2 − x = 2zx+ z2 + z,

z2 + z(2x+ 1)− (x2 − x) = 0,

z =
1

2

(
−(2x+ 1)±

√
(2x+ 1)2 + 4(x2 − x)

)
.

The negative sign does not apply since z is positive. Therefore

z =
1

2

(
−(2x+ 1)

√
8x2 + 1

)
.

For integral z, this has a solution if and only if 8x2+1 is a perfect square,
say y2. Now y2 = 8x2 = 1 is a Pell equation whose solutions (yn, xn) are
(for selected n) the nth convergents of

√
8; i.e.

yn
xn

= a1 +
1

a2+

1

a3+
. . .

1

an
,
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where √
8 = a1 +

1

a2+

1

a3+
. . . to ∞.

But √
8 = 2 + (

√
8− 2) = 2 + 4/(

√
8 + 2).

Therefore a1 = 2. Also

1
4 (
√

8 + 2) = 1 + 1
4 (
√

8− 2) = 1 + 1/(
√

8 + 2);

hence a2 = 1. And
√

8 + 2 = 4 + (
√

8− 2) = 4 + 4/(
√

8 + 2),

giving a3 = 4. Similarly, a4 = 1, a5 = 4, . . . , a2m = 1, a2m+1 = 4 for
m ≥ 1.

The simplest way of calculating (yn, xn) is to use the formulae

(y0, x0) = (1, 0), (y1, x1) = (a1, 1),

and for n > 1,

yn = anyn−1 + yn−2, xn = anxn−1 + xn−2.

The results for n = 0 to 12 are in the following table; y2n − 8x2n = 1 for all
even values of n. The solutions to the problem are x = 1 (trivial), 6, 35,
204, 1189, 6930, . . . . The answer to the Strand problem is x = 204. Then
y = 577 and z = 84.

n an yn xn y2n − 8x2n
1
2 (yn − 1)− xn yn/xn

0 1 0 1 0
1 2 2 1 -4 2
2 1 3 1 1 0 3
3 4 14 5 -4 2.8
4 1 17 6 1 2 2.833 333
5 4 82 29 -4 2.827 586
6 1 99 35 1 14 2.828 571
7 4 478 169 -4 2.828 402
8 1 577 204 1 84 2.828 431
9 4 2786 985 -4 2.828 426 396

10 1 3363 1189 1 492 2.828 427 250
11 4 16238 5741 -4 2.828 427 103
12 1 19601 6930 1 2870 2.828 427 128
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Further comments

Since
√

8 = 2.828 427 125, the last column demonstrates that as n → ∞,
|yn/xn −

√
8| → 0 and yn/xn −

√
8 are alternately plus and minus.

Both an and y2n−8x2n have a cycle of 2 and y2n−8x2n = 1 is only satisfied
for n even.

For other values of k instead of 8, there will always be a cycle of r,
say, of the values of an for

√
k. If r is even, y2n − kx2n = 1 is satisfied for

n = ri (all values of i). If r is odd, y2n − kx2n = 1 for n = 2ri, but −1 for
n = (2i+1)r. Also r = 1 for k = square + 1 (e.g.

√
10 = 3+ 1

6+
1
6+

1
6+ . . . )

but r is even for most other values of k.

A Latin square puzzle
Tony Forbes
No, it’s not sudoku.

Fill in the blanks such that every row and column contains each
of the symbols 1, 2, 3, 4, 5, 6, 7, 8, 9.

1 2

3

8

4

9 6

7

5

7 5

1

5

8

8

7 9

1

3

4

2

8 3

9

6

5 2

2

6

8

3 4

I have observed that I find these puzzles quite difficult to do. But the
computer says this one is easy—in the sense that no backtracking is required.
Anyway, see how you get on. Remember to be on your guard against making
illegal inferences according to the familiar sudoku rules. The division of the
diagram into 3 × 3 boxes is just to make the thing look pretty; it has no
significance.
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Letters to the Editor

Constants

Dear Tony,

I enjoyed Issue 216 of the M500 magazine, especially as 216 is the only
cube which is the sum of three consecutive cubes:

216 = 63 = 33 + 43 + 53.

Problem 216.5 [Solve x = 3 ex
2/214] was a neat way to approximate π.

A good approximation to another constant is

2(5/2)
2/5

.

Yours sincerely,

Patrick Walker

Dear Editor,

In issue 216, page 19, you refer to ‘the fundamental mathematical con-
stants’ {π, e, i, φ}. It seems to me that the constants {π, i} are of no great
significance in algebraic fields other than the euclidean complex numbers.
I allow that π appears in the sums of many real number series. Outside of
euclidean space, φ cannot be any geometric constant, but it is associated
with Fibonacci numbers. And e is fundamental in all all algebraic fields.
Are the other mathematical constants as fundamental as e?

Dennis Morris

Solution 216.5 – Equation
Solve the equation x = 3 ex

2/214.

John Spencer

Equation x = 3ex
2/214 returns a value for x very close to π. The Newton–

Raphson method can be used to find a solution, or one can note that

3ex
2/214 =

∞∑
n=0

3 · x2n

n! · 214n
.

If π is substituted for x in the right-hand expression, the series sums to
3.1415990924 . . . , which is π to five decimal places.
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Farewell Norma
Judith Furner
Back in the dark mists of time, flushed with their success at running the
September Revision Weekend, the M500 committee decided to run a Fun
Weekend in January. At that very first Winter Weekend, which took place
in Retford, the committee were joined at the dinner table by one Norma
Rosier, who provided us with oranges. It was immediately apparent that she
would be a useful committee member and she was duly cultivated. Before
long she had offered assistance to Eddie with indexing the magazine. On
the 16th June 1984 Norma was co-opted on to the committee. She was a
valuable and helpful member and after two years the committee accepted
her resignation with great regret. She was moving to the wilds of Lewis,
and felt that she could not usefully remain on the committee.

We struggled along without her, and a year later begged her to return.
In due course she was again co-opted and Judith was immensely grateful for
her assistance with the Revision Weekend. Indeed, she was so efficient that
in 1989, when pressure of her own work forced Judith to tender her resigna-
tion as Weekend Organizer, it was agreed that Norma would be appointed,
with a handover time of two years. Norma organized the Weekend, with
one year’s break, until 1997, when pressure of her work, in turn, forced her
to resign. However she was already organizing the Winter Weekend, which
she continued to do until 2004. Norma was also the OUSA representative
and ensured that the M500 Society’s interests were heard.

It was with the greatest regret that this year the committee once again
accepted Norma’s resignation. We had to agree that although Lewis was
within reach of committee meetings in the UK, Canada really was too far.
Norma was an industrious and conscientious member of the committee.
Her sharp mind and wit were much appreciated, as were her integrity and
common sense. She is much loved and her absence is keenly felt.

Problem 218.3 – Nearly an integer
ADF
Let

α =
3

√
1

2

(
27 + 3

√
69
)
, β =

(
α

3
+

1

α

)2000

.

Show that β is within 10−120 of an integer.
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M500 Winter Weekend 2008

A Weekend of Mathematics
and Socializing

Join with fellow mathematicians for a weekend of fun and a
look at some interesting, unusual and recreational mathematics.
The traditional Winter Weekend will be held at Florence Boot
Hall (largely in the bar) of Nottingham University from the
evening of 4th January 2008 to Sunday afternoon 6th Jan-
uary 2008. Scheduled subjects are:

Mel Starkings: Expect to be Entertained
Rob: Rob’s (esoteric) Quiz
Glynn: Probably Something on Probability
Tom Roper: Non-Euclidean Spaces
Dick Boardman: Cells and Patterns
Dennis Morris: The Higher-Dimensional Natural Spaces

Cost: £180 to M500 members, £185 to non-members.

For a booking form, send a stamped addressed envelope to

Diana Maxwell.

Problem 218.4 – Repeated differentiation
Show that

dn

dxn

(
log x

x

)
=

(−1)n n!

xn+1

(
log x−

n∑
r=1

(
1

r

))
.
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