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The Geochron world clock
Rob Evans
This article shall mainly be concerned with solving the following problem.

Let P denote an arbitrary point on the Earth’s surface. Then,
on the assumption that the Sun appears directly overhead at P ,
what is the equation (in terms of P ) of the boundary between
day and night on a map of the Earth’s surface that is based on
Mercator’s projection?

Readers of this magazine who have had a subscription for the last ten years
or longer can confirm that the above problem (slightly re-worded) is Problem
151.1. It appears after a description of the so-called ‘Geochron World Clock’.
In addition to giving the time in each of the world’s time zones, this clock
shows the boundary between day and night on a map of the world. The
author of Problem 151.1 made the assumption that this map is based on
Mercator’s projection.

The first thing to note about the problem is that the applicability of
Mercator’s projection to the mapping of the Earth’s surface depends on the
assumption that that surface is (perfectly) spherical. Thus, we begin this
article by making that assumption. In the remainder of this article, we shall
adopt the following notation and conventions.

The symbol S denotes the (perfectly) spherical surface of the Earth; N
and S denote the north and south poles respectively. An arbitrary semi-
circle whose endpoints are N and S is designated as being ‘the central semi-
meridian’. Points in S shall be located by means of a spherical coordinate
system. With regards to this coordinate system, θS and φ indicate longi-
tude and co-latitude respectively. Longitude is measured eastward from the
central semi-meridian. Co-latitude is measured southward from N . Fur-
thermore, we stipulate that θS ∈ (−180◦, 180◦] and φ ∈ [0, 180◦].

(N.B. Firstly, the term ‘co-latitude’ is a contracted form of the term
‘complement of latitude’. In other words, the co-latitude of a given point
in S is 90◦ minus the latitude of that point. Secondly, throughout this
article, despite appearances to the contrary, angles are always measured in
radians. The ‘degree’ symbol is used merely as a function symbol that is
written in superscript after the independent variable. Concretely, we have
that x◦ = 2πx/360 for each x ∈ R.)

The symbol Π denotes an arbitrary plane. In Π, an arbitrary point is
designated as being ‘the origin’, and is denoted by O. In Π, an arbitrary
pair of mutually orthogonal directions are designated as being ‘east’ and
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‘north’. Points in Π shall be located by means of both a rectangular coordi-
nate system and a polar coordinate system. With regards to the rectangular
coordinate system, x and y indicate displacement east and north of O re-
spectively. With regards to the polar coordinate system, θΠ and r indicate
bearing and distance from O respectively. Furthermore, we stipulate that
θΠ ∈ (−180◦, 180◦] and r ≥ 0.

Here, by definition, bearings are ‘angles of location’ that are measured
clockwise from north about O. With regards to the measurement of these
angles of location, the determination of which rotary sense is ‘clockwise’ is
made by the following requirement. Points east of O have a bearing equal
to 90◦.

With the preceding notation and conventions understood, the definition
of Mercator’s projection that we shall work with is as follows. Mercator’s
projection is the function m : S \ {N,S} → Π defined by the rule

(θS, φ) 7→ (x, y) = (θS, log cotφ/2). (See Figure MP1.)

Mercator’s projection has the following characteristic property. Every curve
in S\{N,S} that can be traversed by maintaining a given bearing is mapped
to a straight line in Π which can be traversed by maintaining the same
bearing. (See Figure MP2.) We shall not prove that our definition of
Mercator’s projection gives rise to this characteristic property. However,
(as readers can confirm) this is a relatively straightforward thing to do.

Here, by definition, bearings are ‘angles of travel’ that are measured
clockwise from north. With regards to the measurement of angles of travel
in S\{N,S} and Π, the determination of which rotary sense is ‘clockwise’ is
made by the following requirement. Easterly travel corresponds to a bearing
equal to 90◦.

In our solution to the above problem, we shall also need a definition
of stereographic projection. The definition of that projection that we shall
work with is as follows. Stereographic projection is the function s : S \
{N,S} → Π defined by the rule

(θS, φ) 7→ (θΠ, r) = (θS, cotφ/2). (See Figure SP1.)

From this definition, we can immediately see that stereographic projection
has the following particularly simple geometrical interpretation.

Firstly, imagine that Π has been rigidly moved so that we end up with
Π tangent to S, O coincident with S and the polar coordinate system of
Π ‘aligned with’ the spherical coordinate system of S. Put formally, this
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condition of alignment is as follows. For each θ ∈ (−180◦, 0], we have that

Πθ ∩Π = {(θΠ, r) ∈ Π : θΠ ∈ {θ, θ + 180◦}},

where Πθ denotes the plane in space which is defined implicitly by

Πθ ∩ S = {(θS, φ) ∈ S : θS ∈ {θ, θ + 180◦}}.

Secondly, with regards to the polar coordinate system of Π, define unit
length to be the length of the line segment NS. Then stereographic projec-
tion maps S \ {N,S} into Π according to the rule

X 7→ NX ∩Π,

where NX is the line which passes through N and X. (See Figure SP(GI).)

Note that stereographic projection has the following characteristic prop-
erty. Every circle in S\{N} is mapped onto a circle in Π. (See Figure SP2.)
We shall not prove that our definition of stereographic projection gives rise
to this characteristic property. However, as readers can confirm, with the
aid of the above geometrical interpretation of that projection this is a rela-
tively straightforward thing to do.

Let f denote the function that maps Π \ {O} into Π according to the
rule

(θΠ, r) 7→ (x, y) = (θΠ, log r).

Then, on inspection of the rules which define m, s and f respectively we
have

m(θS, φ) = f(s(θS, φ)) for each (θS, φ) ∈ S \ {N,S}.

The fact that this is so suggests the possibility that we can solve the above
problem by exploiting the aforementioned characteristic property of s.

A solution to the above problem now follows.

Let P denote an arbitrary point on S. Moreover, let OS denote the
centre of S. In turn, let ∂(P ) denote the boundary between day and night
on S when the Sun appears directly overhead at P . Moreover, let ⊥(P )
denote the plane in space which contains OS and which is orthogonal to the
line OSP .

Then, from considerations of symmetry which pertain to the geometry
of S we know that ∂(P ) is the great circle ⊥(P ) ∩ S. (Result ∂(P ))

Here, we assume that light from the Sun reaches the Earth as a parallel
beam of light.
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Consequently, from considerations of symmetry which pertain to the
definition of m we know that if P moves along a circle of constant latitude
in S (in the easterly direction) then m(∂(P )) moves rigidly in m(S\{N,S})
(in the easterly direction).

In reality, P only ever ‘moves’ along a circle of constant latitude in S at
the instants of the summer and winter solstices. And, of course, in reality,
P never ‘moves’ in the easterly direction! However, this is beside the point.
The above paragraph requires that we imagine that the Sun, and thus P ,
can be moved at will. Moreover, with regards to the corresponding rigid
movement of m(∂(P )) in m(S\{N,S}) (in the easterly direction) we need to
imagine that the set m(S\{N,S}) has been rolled up into an ‘infinitely long’
cylinder whereby for each y0 ∈ R we have that the point (x, y) = (−π, y0)
now coincides with the point (x, y) = (π, y0).

Moreover, from other considerations of symmetry which pertain to the
definition of m we know that if P ′ is the image of P under a reflection in the
equatorial plane then m(∂(P ′)) is the image of m(∂(P )) under a reflection
in the line y = 0. Consequently, without a real loss of generality we shall
continue this solution on the assumption that (θS(P ), φ(P )) = (0, α), where
α ∈ [0, 90◦].

Firstly, we shall consider the special case whereby

(θS(P ), φ(P )) = (0, 0); i.e. P = N.

From Result ∂(P ) we can immediately see that ∂(P ) (i.e. ∂(N)) is the great
circle φ = 90◦ (the equator). Consequently, from the definition of m we have
that m(∂(P )) is the line y = 0.

Secondly, we shall consider the special case whereby

(θS(P ), φ(P )) = (0, 90◦).

From Result ∂(P ) we can immediately see that ∂(P ) is the great circle θS =
±90◦. Consequently, from the definition of m we have that m(∂(P )\{N,S})
is the line-pair x = ±π/2. For this special case we have that {N,S} ⊆ ∂(P ).
However, m(N) and m(S) are undefined. So, in turn, m(∂(P )) is undefined.
Hence, we have to be content with finding m(∂(P ) \ {N,S}).

Having dealt with the above two special cases, we continue this solution
on the assumption that (θS(P ), φ(P )) = (0, α) where α ∈ (0, 90◦).

From Result ∂(P ) we can immediately see that ∂(P ) is a great cir-
cle which passes through the two points (θS = (0, 90◦ + φ(P )) and (θS =
(180◦, 90◦−φ(P )). Consequently, from the definition of s and the fact that
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s maps circles in S \ {N} onto circles in Π we have that s(∂(P )) is a circle
which passes through the two points (θΠ, r) =

(
0, cot((90◦+ φ(P ))/2)

)
and

(θΠ, r) =
(
180◦, cot((90◦ − φ(P ))/2)

)
.

However, from considerations of symmetry that pertain to ⊥ (P ) in
relation to the geometry of S we also know that ∂(P ) is invariant under
a reflection in Π0, where Π0 denotes the plane in space which is defined
implicitly by

Π0 ∩ S = {(θS, φ) ∈ S : θS ∈ {0, 180◦}}.

Consequently, from considerations of symmetry which pertain to the defi-
nition of s we also have that s(∂(P )) is invariant under a reflection in the
line {(θΠ, r) ∈ Π : θΠ ∈ {0, 180◦}}.

Finally, with respect to the ordering of points on the line {(θΠ, r) ∈ Π :
θΠ ∈ {0, 180◦}} we can make the following two deductions. Firstly, since
the cotangent function is positive on the interval (0, π/2) we deduce that
O lies strictly between the two points (θΠ, r) =

(
0, cot((90◦ + φ(P ))/2)

)
and (θΠ, r) =

(
180◦, cot((90◦ − φ(P ))/2)

)
. Secondly, since the cotan-

gent function is strictly decreasing on the interval (0, π/2) we deduce
that the centre of s(∂(P )) lies strictly between the two points O and
(θΠ, r) =

(
180◦, cot((90◦ − φ(P ))/2)

)
.

From the facts which are laid out in the last three paragraphs we know
that s(∂(P )) is the circle which passes through the two points (θΠ, r) =(
0, cot((90◦+φ(P ))/2)

)
and (θΠ, r) =

(
180◦, cot((90◦−φ(P ))/2)

)
and whose

centre lies on the open half-line {(θΠ, r) ∈ Π : θΠ = 180◦, r 6= 0}. Moreover,
O lies inside s(∂(P )). (See Figure s(∂(P )).1.)

We continue our solution as follows.

Let O′ denote the centre of s(∂(P )). Moreover, let X denote a variable
point on s(∂(P )). Then, from our description of s(∂(P )) we know that

|OO′| =
1

2

(
cot

90◦ − φ(P )

2
− cot

90◦ + φ(P )

2

)
, (1)

|O′X| =
1

2

(
cot

90◦ − φ(P )

2
− cot

90◦ + φ(P )

2

)
for all X ∈ s(∂(P )). (2)

However, from standard trigonometric identities we have

cot
90◦ ± φ(P )

2
= (1∓ t)(1± t), where t = tan

φ(P )

2
.
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Consequently, from equations (1) and (2) together with some straightfor-
ward algebraic manipulation we obtain

|O′X| =
1 + t2

1− t2
for all X ∈ s(∂(P )),

|OO′| =
2t

1− t2
, where t = tan

φ(P )

2
.

Hence, using the relevant half-angle formulae we have

|O′X| = secφ(P ) for all X ∈ s(∂(P )), and |OO′| = tan s(∂(P )).

(See Figure s(∂(P )).2.)

From an application of the law of cosines to triangle OO′X we obtain

s(∂(P )) = {(θΠ, r) ∈ Π \ {O} :

sec2 φ(P ) = r2 + tan2 φ(P )− 2r tan(φ(P )) cos(π − θΠ)}
= {(θΠ, r) ∈ Π \ {O} :

sec2 φ(P ) = r2 + tan2 φ(P ) + 2r tan(φ(P )) cos(θΠ)}
= {(θΠ, r) ∈ Π \ {O} :

r2 + 2r tan(φ(P )) cos(θΠ) + tan2 φ(P )− sec2 φ(P ) = 0}
= {(θΠ, r) ∈ Π \ {O} :

r2 + 2r tan(φ(P )) cos(θΠ)− 1 = 0}

=
{

(θΠ, r) ∈ Π \ {O} :

r = − tan(φ(P )) cos(θΠ) +
√

tan2(φ(P )) cos2(θΠ) + 1
}
. (3)

However, as was observed immediately prior to this solution we have that
m(θS, φ) = f(s(θS, φ)) for each (θS, φ) ∈ S \ {N,S}, where f is as defined
on page 3. Note that we can rewrite the rule for f as

f : (θΠ, r) 7→ (x, y) such that (θΠ, r) = (x, exp(y)).

Consequently, from the above expression for s(∂(X)) we obtain
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m(∂(P )) = f
({

(θΠ, r) ∈ Π \ {O} :

r = − tan(φ(P )) cos(θΠ) +
√

tan2(φ(P )) cos2(θΠ) + 1
})

=
{

(x, y) ∈ f(Π \ {O}) :

exp(y) = − tan(φ(P )) cos(θΠ) +
√

tan2(φ(P )) cos2(θΠ) + 1
}

=
{

(x, y) ∈ (−π, π]× R :

y = log(− tan(φ(P )) cos(θΠ) +
√

tan2(φ(P )) cos2(θΠ) + 1)
}
.

In other words, m(∂(P )) is the graph of the function which maps (−π, π]
into R according to the rule

x 7→ y = log

(
− tan(φ(P )) cos(θΠ) +

√
tan2(φ(P )) cos2(θΠ) + 1

)
.

With regards to the description of m(∂(P )) obtained by the foregoing
solution we note the following. On the assumption that (θS(P ), φ(P )) =
(0, α), where α ∈ (0, 90◦), it is (as readers can confirm) a straightforward
matter to show that m(∂(P )) has all the properties of symmetry, tangency
and intersection that one would expect. (See Figure m(∂(P )).)

Figure S
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Figure MP1
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Figure SP1 6North
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Figure SP(GI)
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Figure SP2
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Figure s(∂(P )).1
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Figure s(∂(P )).2
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Figure m(∂(P ))

r r� -

?

6

?

6

?

6

r r

r r

−π π
rr r

−π
2

π

2

O
x (East)

y (North)

m(φ = (90− α)◦)

m(φ = 90◦)

m(φ = (90 + α)◦)

(θ(P ), φ(P )) = (0◦, α◦), where α ∈ (0, 90).



Page 12 M500 219

Solution 216.2 – Ramanujan’s continued fraction
As it is recounted by Kanigel, The Man who Knew Infinity (Aba-
cus, 1991), a Hindu friend of Ramanujan’s, Mahalanobis, when
he and Ramanujan were both at Cambridge, read out to him
a puzzle from Strand magazine about an inhabitant of Louvain
(which had just been burned by the Germans). This Belgian
lived in a house on a long street which was numbered 1, 2, 3, . . .
consecutively along his side of the street. The number of his
house had a curious property: the sum of all the house numbers
before it was the same as the sum of all the house numbers that
came after it. The magazine stated that there were more than
fifty houses and less than five hundred houses on that side of the
street. So what was the Belgian’s house number? Ramanujan
thought for a moment and then dictated the first few conver-
gents of a continued fraction which included all the solutions to
the problem (not just the one falling within the 50–500 range).

Tommy Moorhouse
The continued fraction most readily associated with this problem is the
infinite continued fraction expansion of

√
2.

The reasoning is as follows. Let N be the number of the last house in
the street. Then the sum of all the house numbers minus the number of
the Belgian’s house, n, is twice the sum of the house numbers up to (not
including) that of the Belgian’s house. That is

1

2
N(N + 1)− n = 2× 1

2
n(n− 1)

by the usual summation formula. This gives

N(N + 1) = 2n2

which tells us that N = 2α2 and N + 1 = β2 for some integers α and β. We
have chosen to associate the factor of 2 with N and we will see that this
makes essentially no difference to the conclusion.

Since (N + 1)−N = 1 we have

β2 − 2α2 = 1

which is an example of Pell’s equation (see Burton [1]) which can be solved
in terms of the convergents of the continued fraction expansion of

√
2. We
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write down a list of the convergents pi/qi = Ci and select those such that
p2
i − 2q2

i = 1 (the other convergents satisfy p2
i − 2q2

i = −1 and are related
to the other choice for N and N + 1). From above we see that

n = αβ, N = 2α2.

For example C1 = 3/2 giving n = 6, N = 2 × 22 = 8 with the sum 15.
C3 = 17/12 leading to n = 204, N = 288 with a sum of 20706. All the
relevant solutions show up in the list of convergents. The maths program
Maple will find some very large solutions!

[1] D. M. Burton, Elementary Number Theory, McGraw–Hill, 1997.

Solution 212.2 – Area of a triangle

Draw a triangle with side lengths a, b and c. Extend the sides
to infinity in both directions. Draw the circles, each of which
touches the three (extended) sides. One of these is inside the
circle (the in-circle); let this have radius r. The other three
circles lie outside the triangle; join their centres to make a big
triangle. Prove that the new triangle has area abc/(2r).

John Bull

Maybe a slight exaggeration, but in the 1950s problems of this nature arose
in GCE syllabus A, and were tackled in the 5th form. About 80 percent of
what follows can be found in school text books of the time (see references).
The final 20 percent would have been thrown down as a challenge to students
who had finished all the exercises, to keep them quiet until the others catch
up. Initial results below are ‘well known’.

Focus on the initial triangle and one of the ex-circles as shown in the
diagram. Labelling follows a common convention where the side of length
a is opposite point A, and so on. Similarly, ex-centre Ib is opposite point
B. Radii are r, ra, rb, rc.

Define the semi-perimeter s = (a + b + c)/2. Observe that BDCH
and BFAJ are tangents to both in- and ex-circles, so that BD = BF and
BH = BJ . Also observe that CKEA is a tangent to both circles, so that
CH = CK, AJ = AK, CE = CD and AE = AF .
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Some algebra on the perimeter of triangle ABC gives BD = BF = s−b,
CE = CD = s− c and AE = AF = s− a, as shown. Further algebra using
BH = BJ gives CH = CK = s−a and AJ = AK = s− c, as shown. Also,
note that BH = BJ = s.

Triangle ABC is made up of three smaller triangles AIB, BIC and
CIA whose areas are easy to compute (using base × height / 2), so that
triangle ABC has area 4ABC = rc/2 + ra/2 + rb/2 = rs.

Triangle CIbA has area4CIbA = brb/2, and there are two other similar
triangles contributing to the large triangle IaIbIc. We now need rb in terms
of r, and this can be found from the similar triangles BHIb and BDI, giving
rb = rs/(s− b). Results for other ex-circles and triangles follow similarly.

Putting all the bits together, we have the area of the specified triangle
as:

4IaIbIc =
rs

2

(
2 +

a

s− a
+

b

s− b
+

c

s− c

)
.

This is a perfectly good result but not in the required form, so there is
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a little more work to do.

Observe that CI bisects the internal angle C, and CIb bisects the ex-
ternal angle C. As these angles lie on the same straight line HD, we
conclude that the internal and external radii CI and CIb are perpendic-
ular. Hence ∠HIbC = ∠DCI, ∠HCIb = ∠DIC and triangles HIbC and
DCI are similar. Ratios of sides give rrb = (s − a)(s − c). Eliminate
rb between this and the earlier result R − B = rs/(s − b) and we derive
sr2 = (s− a)(s− b)(s− c). This bonus is Heron’s formula, usually given as
area 4ABC = rs =

√
s(s− a)(s− b)(s− c). We might simply have quoted

it, but at least this way we prove all our results.

Substituting this in our earlier result we have

4IaIbIc =
(s− a)(s− b)(s− c)

2r

rs

2

(
2 +

a

s− a
+

b

s− b
+

c

s− c

)
=

1

2r

(
2(s− a)(s− b)(s− c)

+ a(s− b)(s− c) + b(s− a)(s− c) + c(s− a)(s− b)
)
.

The rest, as they say, is algebra. Using the definition of s, amazingly this
reduces to

4IaIbIc =
abc

2r

as required.

One might imagine we are now finished, but not so. The above method
is a traditional route to the solution, but a result so simple and elegant
suggests more to discover; something with the tedious algebra inherent.
Observations that might offer clues are: (1) that the triangles CIaB, IcAB,
CAIb are all similar to each other (angles equal in the orders given), and (2)
that the small triangle formed by joining the points where the in-circle of
triangle ABC touches the sides is similar to the large triangle IaIbIc whose
area we are trying to find. The in-circle of triangle ABC is the circumcircle
of this small triangle, and we know that the area of a triangle ABC is
abc/(4R), where R is the circumradius. Where next?
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Problem 214.1 revisited – River crossing
There is a river and a rowing boat which can carry at most two
people. A number of married couples are on one bank and they
want to cross to the other side of the river. For the usual reason
a woman must never be in the presence of a man who is not her
husband unless her husband is also present.

(i) Arrange a crossing schedule for one married couple.
(ii) Arrange a crossing schedule for two couples.
(iii) Arrange a crossing schedule for three couples.
(iv) Can four couples cross the river?
(v) Show that any number of couples can cross if there is an

island in the middle of the river.

ADF
Nobody has sent an answer to this. Obviously the difficult part is (iv). I
claim that it’s impossible to arrange a crossing for four couples. Unfortu-
nately the only proof I have is a hideously complicated case-by-case analysis
which I wouldn’t want to inflict on you. I suspect there may be a clever,
laterally thinking manner in which to view the problem. If you have an
elegant solution to (iv), we would certainly like to publish it.

Now, when I said that nobody has sent an answer, what I really meant
was that nobody answered the intended problem. Admittedly I now see that
the wording is slightly ambiguous. So let’s clarify. When the boat docks, it
counts as part of the bank. Otherwise, (iv) has a trivial solution, as several
readers pointed out. Well, my excuse is that surely there are enough clues
as to the correct interpretation. Apart from the actual wording of part
(iv), which suggests a negative answer, one must imagine the problem in a
real-life setting. A simple rowing boat could not possibly provide adequate
protection for a woman from the men on the river bank while her husband
is on the other side.

Problem 219.1 – Walk
John Spencer
You start facing North, you walk a mile then turn through d degrees, walk
another mile, then turn through 2d degrees, walk another mile then turn
through 3d degrees, and so on.

If d is a prime greater than 5, how far have you travelled by the time
you next face North?
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Problem 219.2 – Balanced sudoku puzzles
Tony Forbes

6 8

4

1

5

7

7

3 6

8 5 2

3

5

6

2 5 8

6 3

7

7

5

1

4

8 6

Look at the sudoku puzzle, above. You will notice that it is symmetric;
that is, symbols only appear in pairs of diametrically opposite cells. Most
published puzzles have this property for no good reason I can think of other
than that they look pretty.

If you look more closely, however, you will see that the symbols in pairs
of diametrically opposite cells are always identical. Well, nearly always.
The only exception is the pair {3, 6} in the central 3× 3 box. This leads to
a very interesting problem.

Either (i) Construct a sudoku puzzle where all pairs of diametrically
opposite cells have identical symbols; or (ii) prove that (i) is impossible.

For the record, I suspect that (ii) might be easier.

Problem 219.3 – Circumcircle
A triangle has sides which are the three roots of the cubic

x3 − ax2 + bx− c.

Show that its circumcircle has radius

c√
4a2b− 8ac− a4

.
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Symmetry and the Monster
by Mark Ronan
Oxford University Press

Dennis Morris
This book is a very easy read. I thoroughly enjoyed it. It is concerned
with the history of the classification of the 26 sporadic groups, of which
the Monster is the largest. It is full of interesting biographical information
about the mathematicians that contributed to the understanding of the
sporadic groups. There is almost no mathematics that is not written in
simple prose. Only a general overview of the sporadic groups is given. It
culminates with comments on Borcherd’s proof of the Monster Moonshine
theorem for which he was awarded a Fields Medal recently.

Given that the only likely readership of this book is people who know
what a group is, the author weakens the text by using non-technical terms
like ‘atoms of symmetry’ instead of ‘finite simple groups’. Further, un-
derstanding sporadic groups requires profound technical expertise, and no
attempt is made to present this expertise—it would not be an easy read if
such an attempt was made. Nonetheless, it is a good look at this area of
mathematics. It is light bedtime reading.

Problem 219.4 – Pairs
Let T be the set of triples {x, y, z} where x, y and z are distinct integers
such that x+ y + z = 0. Characterize those pairs of integers which are not
contained in some member of T .

Solution 215.1 – Pythagoras’s theorem
A triangle has sides of length a, b and c opposite angles α, β and
γ respectively. Prove that sgn(α+ β − γ) = sgn(a2 + b2 − c2).

Use the cosine rule to obtain a2 + b2 − c2 = 2ab cos γ, note that γ = π −
α− β and observe that ab is positive. Then, as John Spencer points out,
sgn(α+ β − γ) = sgn(π − 2γ) = sgn(cos γ).

Now devise similar extensions to other familiar trigonometric formulae.

Rearrange the letters of TRIANGLE and you get INTEGRAL. Similarly,
as we have already seen in M500 196, TWO PLUS ELEVEN becomes ONE
PLUS TWELVE. Are there any other anagrammatically related mathemat-
ical concepts? [Ken Greatrix]
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Do you know your left from your right?
Ian Adamson
The axioms of a group G are usually given as follows.

(1) Closure: ∀a, b ∈ G, ab ∈ G.
(2) Associativity: ∀a, b, c ∈ G, (ab)c = a(bc).

(3) Existence of identity: ∀a ∈ G,∃e ∈ G satisfying ea = a = ae.

(4) Existence of inverses: ∀a ∈ G,∃a′ ∈ G satisfying a′a = e = aa′.

Now (3) and (4) could be rewritten so that only right identity and
inverses are postulated and we can then prove existence of left identity and
inverses. Thus (3) and (4) would become

(3′) ∀a ∈ G,∃e ∈ G satisfying a = ae;

(4′) ∀a ∈ G,∃a′ ∈ G satisfying e = aa′.

But what if right identity and left inverses are postulated? Do you think
we could then prove existence of also left identity and right inverses?

You can’t!

Proof. Consider the set {a, b} where aa = a, ab = a, ba = b, bb = b.

a b
a a a
b b b

Now here there is no left identity or right inverse. Both a and b are right
identities, a is the left inverse of both a and b with respect to a; b is the
left inverse of both a and b with respect to b. Closure is obvious from the
multiplication table and you can check associativity.

Supplies are running low again. We really want articles of, say, 2-
6 pages on mathematical topics and preferably aimed at undergraduate
students. Also I note that there are quite a lot of outstanding problems
whose solutions could generate interesting publishable material. So we need
you out there to get writing.

‘If life is a vector space, then what is its basis?’ [Cheng Ku]
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Ladders
ADF
Draw a diagram similar to the one on the
right. There are n ≥ 2 vertical lines (uprights)
and a positive number of horizontal segments
(rungs) which can go anywhere you like pro-
vided that they link two uprights and are pair-
wise disjoint. In the picture the rungs link
adjacent uprights but this is not necessary.

The collection of two uprights and the
rungs that link them is called a ladder, al-
though the ones that I have seen builders use
have their rungs more or less evenly spaced.
The whole diagram is then a collection of
closely coupled ladders in the sense that ad-
jacent ladders share an upright. Number the
uprights i = 1, 2, . . . , n.

Now for each i, trace a route from from
the base of upright i to the top of upright j,
say, according to the following rules.

(a) You must always travel upwards or
horizontally, never downwards.

(b) If whilst going upwards you meet a
junction between a rung and the upright, you
must make a ±90◦ turn onto the rung.

The amazing fact is that two distinct
starting points always lead to two distinct end
points. See if you can prove it.

Thanks to Robin Whitty for showing me this construction. Like the
river-crossing problem on page 16, this, too, has practical application.

Suppose three people are to spend the night in a flat. There is a bed,
a sofa and a floor. Who gets which? Draw a diagram with three uprights
labelled with the names of the persons at the bottom and the words ‘bed’,
‘sofa’, ‘floor’ at the top together with about 30 rungs distributed at random
amongst the ladders. Now individuals can trace their routes up the ladders
to decide how they are to spend the night.
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Mondegreens
ADF
The word mondegreen was coined by Sylvia Wright to describe an uninten-
tional misrepresentation of a poem, song or other literary work. Apparently
the term originates from her own mishearing of the Scottish ballad The Bon-
nie Earl of Murray:

Ye Highlands and ye Lowlands,
O where have ye been?
They have slain the Earl of Murray,
And Lady Mondegreen.1

Note that a mondegreen is supposed to be the result of a genuine misunder-
standing rather than a deliberate parody such as While shepherds washed
their socks 2 by night. Here are some more, including some of mine, and all
genuine.

From the hymn Keep Thou My Way:

Kept by Thy tender care,
Gladly, the cross-eyed bear.3

From another Scottish ballad:

Speed bonnie boat, like a bird on the wing,
“Onward,” the sailors cry.
“Larry the Lamb 4 that’s born to be king
Over the sea to Skye.”

From another song about ships and the sailing thereof:

Somebody calls you, you answer quite slowly;
A girl with colitis goes by.5

From a long-running TV advert for washing-up liquid:

Now hands that judicious 6 can feel soft as your face
With mild green Fairy Liquid.

And for years I was convinced that Elvis Presley sang

Warden threw a party in the county jail.
Prison van’s siren 7 began to wail.

Now it’s your turn. ...

1laid him on the green 5kaleidoscope eyes
2watched their flocks 6do dishes
3Gladly the Cross I’d bear 7The prison band was there and they
4Carry the lad
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