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Integer logarithms and related zeta functions
Tommy Moorhouse

Introduction

We have previously considered a function from the positive integers to the
natural numbers, denoted by κ, with the properties

κ(nm) = κ(n) + κ(m); κ(1) = 0.

This function has certain interesting properties, and we will see that we can
use it to define a number of auxiliary functions with which to explore the
properties of the integers. It is perhaps the simplest example of an integer
logarithm, namely a function sharing some of the properties of the usual
logarithm but having values in the integers. We will see how to generalize
κ in a natural way to include all integer logarithms. The main aim of this
article, however, is to introduce and very briefly explore some properties of
certain related partition (zeta) functions.

One reason for considering partition functions is that they point to a link
between number theory and physical systems. This link has been explored
in the context of Riemann’s ζ function and certain Dirichlet series, but the
particular functions we will define may be novel. Although the link with
physical systems is only touched on here it may well be that we can develop
analogies and insights by pursuing this connection. However, in this article
we complete our investigation of the use of integer logarithms to obtain
certain recurrence relations.

1 Definitions

We define κ as follows: we can express any positive integer as a product of
prime numbers in an essentially unique way (i.e. unique up to ordering). If
we agree to order the prime factors of an integer n by magnitude, and label
the smallest p1 and so on up to the largest pm say, we have

n = pk11 p
k2
2 · · · pkmm .

Now we define κ(n) as

κ(n) =

m∑
i=1

kipi.

This gives a well-defined function with the stated property. The generaliza-
tion to be used later in this article is to replace κ with the function, defined
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for some auxiliary function ξ (although not all choices of ξ will work),

Lξ(n) =

m∑
i=1

kiξ(pi).

In this notation κ = Lid where id is the identity function (an alternative no-
tation, based on that used in [1], is LN ). The reader may wish to check that
the more general functions do indeed share the integer logarithm property.

We now consider solutions to the equation Lξ(u) = n given n. From
the definition of Lξ in terms of the prime factorization of u we immediately

see that u corresponds to a unique ξ-partition of n: namely if u = Πr
i=1p

ki
i

then n = Lξ(u) =
∑
ξ(pi)ki which is an expression for the prime partition

of n:

n = ξ(p1) + ξ(p1) + · · ·+ ξ(p1)︸ ︷︷ ︸
k1

+ · · ·+ ξ(pr) + ξ(pr) + · · ·+ ξ(pr)︸ ︷︷ ︸
kr

.

Each prime partition of n corresponds to an integer u such that Lξ(u) = n,
so, denoting the number of ξ-partitions of n by PL(n), we have

|L−1ξ (n)| = PL(n),

where the set theoretic definition of L−1ξ is the set of all elements mapped
to n by Lξ. Now consider the product Πu∈L−1

ξ (n)u. We denote this simply

by ΠL(n). Then the reader may quickly check that

Lξ(ΠL(n)) = nPL(n).

The set L−1ξ (n) for given n is of particular importance in our study of the
zeta functions to be defined below.

2 The zeta function Zκ(s)

We define our first zeta function as

Zκ(s) =

∞∑
n=1

e−sκ(n).

In a sense this is the exact analogy of Riemann’s ζ(n) with log replaced
by our log-type function κ. We will show that Zκ is analytic on a certain
complex half-plane (from which we can deduce that the number of prime
partitions of an integer n is exponentially bounded). We will not give precise
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definitions of these phrases, but the idea is that PL(n) = o(eαn) in the
standard ‘little oh’ notation [1].

First we note that max(κ−1(n)) < 4n/3, which we prove below. From
this we deduce that κ(n) > 3

2 log 2 log n and find a bound for Z(s) in terms of

ζ(s). In fact since κ(N) > log(n) we deduce that Zκ(s) is analytic whenever
ζ(s) is, although we should be careful to check that the analytic continuation
of Zκ(s) can be defined over the same domain as ζ(n).

Lemma max(κ−1(n)) < 4n/3.

Outline of proof We consider the cases n ≡ 0 mod 3, n ≡ 1 mod 3 and
n ≡ 2 mod 3 separately. First let n ≡ 0 mod 3. Then n = 3k for some k and
κ(3k) = n. We will show that m0 = 3k is the largest such number. First
write n as n = 3(k − 5) + 3 · 5. This is the image of m1 = 3k−5 · 53, which
is smaller than m0 since m0/m1 = 35/53 > 1 (take logarithms).

Similarly for any prime p > 3 we can write n = 3(k − rp) + 3rp which
is the image of ms = 3k−rp · p3r. This is smaller than m0 since m0/ms =
3rp/p3r = (3p/p3)r > 1. This establishes the result for p > 3. Now write n
as n = 3(k − 2t) + 2.3t = κ(3k−2t · 23t) = κ(m2) and m0/m2 = 32t/23t =
(32/23)t > 1.

If n = 3k + 2 then m3 = 2 · 3k turns out to be the largest number such
that κ(m) = n, and if n = 3k + 1 then the largest number mapping to n is
4 · 3k−1. To obtain our upper bound, therefore, we choose 4n/3 > 4k. This
could be refined further, but it is sufficient for our needs. It follows that,
given an integer m, there is a lower bound on κ(m) (that is to say, κ(m)
cannot be smaller than some well-defined bound).

We readily find that κ(m) > α logm, where α = 3/2 log 2. This tells us
that |Zκ(s)| < |ζ(αs)| and that Z(s) is therefore analytic for a large range
of complex s. We will not pursue the details further here.

3 The transform Ef (n)

Of importance in what follows is the mapping (or κ-transform) defined for
any integral function f by

Ef (n) =
∑

m∈κ−1(n)

f(m),

where the sum is taken over all integers mapping to n under κ. For example,
if we have u(n) = 1 for all n then Eu(n) = P (n), the number of elements of
the set κ−1(n). Any integral function will have an associated ’transform’,
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namely the sum of the function to be transformed over the pre-image of (or
fibre over) the argument.

We will also make use of the Dirichlet transform (see [1] for the idea
behind this expression) of a function f defined by

f̂(n) =
∑
d|n

f(d).

The reader is invited to prove that for any ω we have

κ ∗ ω = ∇ω̂ − ∇̂ω.

This identity will form the basis of another exercise for the reader. We will
also need to consider functions related to Zκ, generally written as

F (s) =

∞∑
n=1

f(n)e−sκ(n).

We define a derivative on integer functions satisfying the Leibnitz rule over
the Dirichlet product, namely

∇f(n) = κ(n)f(n).

This will be used in the generalized form

∇f(n) = Lξ(n)f(n)

below. It is an exercise for the reader to show that Leibnitz’s rule does
indeed hold for all integer logarithms Lξ (and for log(n)). From this point
on we will generally shift our attentions away from κ to the more general
functions Lξ. We note that

F (s) =

∞∑
n=1

f(n)e−sκ(n) =

∞∑
n=0

Ef (n)e−sn

which we verify by collecting terms in e−sm for each m.

Some interesting identities are needed next. The three identities below
are simple consequences of the properties of κ, as the reader is invited to
show.
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1 κ-Transform of Dirichlet products Ef∗g(n) =
∑n
i=0Ef (i)Eg(n− i).

2 κ-Transform of Dirichlet transforms Ef̂ (n) =
∑n
i=0 P (i)Ef (n− i)

3 κ-Transform of derivatives E∇f (n) = nEf (n).

We prove these in a slightly more general context, namely when, instead
of κ, we have the integer logarithm function Lξ(n) =

∑
i kiξ(pi). It is eas-

ily checked that Lξ has many of the same properties as κ and, crucially,
the characteristic logarithm properties. The reader who wishes to continue
thinking in terms of the concrete example of the function κ will lose little
by doing so.

Identity 1 The result follows readily from the following lemma.

Lemma

∞∑
n=1

f(n)e−sLξ(n)
∞∑
m=1

g(m)e−sLξ(m) =

∞∑
n=1

f ∗ g(n)e−sLξ(n),

where f ∗ g(n) =
∑
d|n f(d)g(n/d) is the Dirichlet product.

Proof. First we note that the product can be rewritten as
∞∑
n=1

f(n)e−sLξ(n)
∞∑
m=1

g(m)e−sLξ(m) =

∞∑
n=1

∑
lm=n

f(l)g(m)e−sLξ(n),

since Lξ(l) + Lξ(m) = Lξ(lm) by the logarithm property. The product on
the right-hand side is just

∑∞
n=1 f ∗ g(n)e−sLξ(n).

The next step is to look at the definition of E
Lξ
f , where the notation is

intended to show which transform is being used. The superscript will be
dropped in what follows for ease of notation. It is clear that

∞∑
n=1

f(n)e−sLξ(n) =

∞∑
m=0

Ef (m)e−sm

by a counting argument. Then we must have, by the lemma,
∞∑
m=0

Ef (m)e−sm
∞∑
n=0

Eg(n)e−sn =

∞∑
k=0

Ef∗g(k)e−sk.

The final step is to note that

∞∑
m=0

Ef (m)e−sm
∞∑
n=0

Eg(n)e−sn =

∞∑
k=0

(
k∑
i=0

Ef (i)Eg(k − i)

)
e−sk.
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Identity 2 We observe that f̂ = f ∗u, where u(n) = 1 for all n. The result
follows at once from Identity 1.

Identity 3 We have ∇f(n) = Lξ(n)f(n) so that

E∇f (n) =
∑

m∈L−1
ξ (n)

∇f(m) = n
∑

m∈L−1
ξ (n)

f(m) = nEf (n).

The second equality follows from the fact that for all m ∈ L−1ξ (n) we have
Lξ(m) = n.

In our further explorations we can call on a catalogue of number-
theoretic functions including those listed for illustration below. The no-
tation largely agrees with Apostol (except for τ and κ).

I(n) = δ1i; (1)

u(n) = 1; (2)

N(n) = n; (3)

τ(n) =
∑
d|n

1; (4)

σ(n) =
∑
d|n

d. (5)

We have, for example, τ = û, u = Î and lots of other identities that we can
use to find the κ-transforms of these functions. The reader may like to show
that the κ-transform of the identity κ ∗ ω = ∇ω̂ − ∇̂ω is consistent (that
is, it gives an expression on each side of the equals sign that is true for all
relevant arguments.)

The zeta function ... is the generating function We can easily see
by the rearrangement of Z(s) into

Z(s) =

∞∑
m=0

P (m)e−sm

that Z is the generating function for P , but we are now in a position to
take an excursion into the use of the κ-type transforms that will help us see
how this generating function works and leads to a well-known alternative
form due to Euler. From now on we will use the more general logarithm
type functions Lξ, of which κ is a special case. In this case we write PL to
indicate that we are considering the more general functions.
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Take as our zeta function

Zξ(s) =

∞∑
n=1

e−sLξ(n)

and consider
d

ds
Zξ(s) = −

∞∑
n=1

Lξ(n)e−sLξ(n)

which we know (from our lemmas above) is equal to

−
∞∑
n=0

PL(n)e−sn,

writing PL(n) instead of |L−1ξ (n)|. Now we need a new result.

Lemma There is a recurrence relation for PL of the form

nPL(n) =

n∑
i=0

c(i)PL(n− i),

where the function c(i) is defined as a sum over all prime p as

c(i) =
∑
ξ(p)|i

ξ(p).

Proof. This follows by considering the set of all partitions of n as∑
j kjξ(pj). Then there are PL(n−ξ(2)) partitions in which ξ(2) appears at

least once, PL(n − 2ξ(2)) in which it appears twice and so on. Continuing
in this way we see that the power of 2 appearing in ΠL(n) is

PL(n− ξ(2)) + PL(n− 2ξ(2)) + · · ·

with a similar expression for the powers of each prime. Applying Lξ to
ΠL(n) we have

nPL(n) = ξ(2)(PL(n− ξ(2)) + PL(n− 2ξ(2)) + · · · )
+ ξ(3)(PL(n− ξ(3)) + PL(n− 2ξ(3)) + · · · )
+ · · ·
+ ξ(p)(PL(n− ξ(p)) + PL(n− 2ξ(p)) + · · · ).
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Collecting terms in PL(n− r) we see that the coefficient is just the sum of
those ξ(p) dividing r, counted once. This is the required recurrence relation.

Using the lemma we have

d

ds
Zξ(s) = −

∞∑
n=0

n∑
i=0

c(i)PL(n− i)e−sn.

From our earlier work we see that the term in the second sum is of the
type Ef∗Lξ(n), where c(i) = Ef (i). It is not difficult to show that the
function f(pr) = ξ(p) (non-zero only on prime powers) has the property
Ef (n) = c(n).

We now have
d

ds
Zξ(s) = −A(s)Z(s)

with

A(s) =

∞∑
n=0

f(n)e−sξ(n).

Since f is non-zero only for arguments that are prime powers we can rewrite
A(s) as

A(s) =
∑
p

ξ(p)

∞∑
r=1

e−srLξ(p),

where the first sum is over all primes and the second follows from the fact
that only powers of primes are represented in the sum since f vanishes for
other values of n. The crucial point is that Lξ(p

r) = rLξ(p), giving the
terms in the exponentials in the second sum. The second sum then reduces
to

e−sLξ(p)/
(
1− e−sLξ(p)

)
by summing the geometric series.

The solution to the differential equation for Z(s) is

Z(s) = Ke−
∫
A(s)ds

and ∫
A(s)ds =

∫
ds
∑
p

ξ(p)e−sLξ(p)

1− e−sLξ(p)
.

Noting that Lξ(p) = ξ(p) directly from the definition we can integrate at
once to find that

Z(s) =
∏
p

1

1− e−sξ(p)
.
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We can now ’plug in’ any suitable function ξ to obtain the generating
function Z(s). Interestingly, although some of our arguments are not strictly
reproducible for non-integral functions, setting ξ(n) = log(n) reproduces the
usual product representation of Riemann’s ζ function.

The zeta function as a partition function

Statistical thermodynamics makes use of a function, defined for a system
(or for an ensemble of systems), from which many of the thermodynamic
properties of the systems can be deduced. This is called the partition func-
tion [5] (a name which is particularly relevant in this context) and it can
be directly compared with our zeta functions. In this context the partition
function may be written as

q(β) =

∞∑
n=0

e−βεi .

Here, β is the conventional symbol for 1/kT , where k is the Boltzmann
constant, T is the ‘absolute’ temperature and εi is the energy of the i-th
state of the system in question. If εi = ε0κ(i) (taking care to shift the
sum to avoid the awkward argument 0) we begin to see a link between our
zeta function and the partition function of a ‘physical’ system. In fact if
we consider a system of non-interacting harmonic oscillators, one for each
prime p with energy spacing ε0p, it is tempting to suggest that the statistical
occupancy of a state of energy εn is just the prime partition function P (n).
This may be of limited practical use in the physics world, but the link
between basic thermodynamics and the κ-transform (and its relatives) begs
the question: is there scope for more exploration? The reader may wish to
start with [6].

Conclusion

Although the final results set out above can be readily obtained by other
means we have been able to explore some interesting properties of integer
logarithm functions. There is much entertainment to be had exploring these
functions further and hopefully the reader will feel ready to do so. The
books listed below fill in the required background. Apostol [3] in particular
is useful for those who want a quick introduction to number theory, while [1]
goes further and makes use of complex analysis to explore the ζ function and
its relatives. Although it could now be considered rather old fashioned in its
style, [2] is a thorough introduction to the techniques of complex analysis;
[4] is a more modern treatment with applications. This list is intended only
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as a glimpse at the kind of material that can be used as a reference for the
mathematics in this article.

The physical chemistry text [5] is an excellent introduction to several
essential areas of chemistry, including a nice exposition of quantum mechan-
ics in familiar terms, with a decent guide to thermodynamical ideas. Knauf
[6] is a quite recent overview of some of the links between number theory
(via the ζ function and its relatives) and statistical mechanics. Born [7] is
a classic text covering a wealth of classical and quantum physics including
quantum statistics at a very accessible level, although it may seem dated in
parts.

References and Useful Books

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1998.

[2] Whittaker and Watson, A Course of Modern Analysis (fourth edition),
Cambridge University Press, 1927.

[3] D. M. Burton, Elementary Number Theory, McGraw–Hill, 1997.

[4] J. W. Dettman, Applied Complex variables, Dover Publications, 1984.

[5] P. W. Atkins, Physical Chemistry, Oxford University Press, 1978.

[6] A. Knauf, Number Theory, Dynamical Systems and statistical mechanics:
Lecture Notes, Max Planck Institute, 1998.

[7] A. Born, Modern Physics (out of print?)

Solution 217.2 – Chords and regions
We have n points situated irregularly on the circumference of
a circle. They are joined by straight lines in all possible ways.
What is maximum number of regions into which the lines divide
the circle?

A. J. Moulder
Method 1. My U3A Mathematics Group leader has passed the following
solution to this problem.

Let Rn be the number of regions for n points on the circumference. By
drawing, the first few values we obtain are

n 1 2 3 4 5

Rn 1 2 4 8 16

but R6 is 31 instead of the expected 32. Proceeding further we get the
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following values from which we can construct a difference table.

n 0 1 2 3 4 5 6 7 8

Rn 1 1 2 4 8 16 31 57 99

D1 0 1 2 4 8 15 26 42
D2 1 1 2 4 7 11 16
D3 0 1 2 3 4 5
D4 1 1 1 1 1

Thus a quartic expression is suggested. Suppose it is an4 + bn3 + cn2 +
dn+ e. For n = 0, Rn = 1; so e = 1, and from the other values of n we get

n = 1: a+ b+ c+ d = 1, n = 2: 16a+ 8b+ 4c+ 2d+ 1 = 2,
n = 3: 81a+ 27b+ 9c+ 3d = 4, n = 4: 256a+ 64b+ 16c+ 4d+ 1 = 8.

These can be expressed in matrix form Ax = h, where

A =


1 1 1 1

16 8 4 2
81 27 9 3

256 64 16 4

 , x =


a
b
c
d

 , h =


0
1
3
7

 .

The system of equations can be solved by Gaussian elimination to give

a =
1

24
, b =

−6

24
, c =

23

24
, d =

−18

24
, e = 1.

Hence

Rn =
1

24
(n4 − 6n3 + 23n2 − 18n+ 24).

As a check on this result, Method 2 uses combinatorics as follows.

The circle with no points has one region. Each time a chord between two
points is added, the number of extra regions is one more than the number of
intersections the chord makes with those already there. The total number
of regions is then 1 + number of chords + number of intersections; i.e.

Rn = 1 +

(
n

2

)
+

(
n

4

)
, n > 0.

This can be resolved by using the definition

(
n

r

)
=

n!

r!(n− r)!
to give the

same expression as above.

His parting comment was that this is a very old question.
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Stuart Walmsley
Preamble

The maximum possible number of regions occurs when the number of in-
tersections is minimized; that is, when no more than two lines intersect at
a point. The problem is analysed assuming that the configuration has this
property. The irregular placing of the points helps to ensure this.

Networks and Euler’s relation

The figure which results from the construction in the problem is a network
with three kinds of components:

vertices: points of intersection;

edges: line segments (not necessarily straight) joining two vertices;

regions: areas bounded by perimeter of edges.

If the numbers of vertices, edges and regions in the system are denoted by
V , E and R, Euler has shown that

V − E +R = 1.

Here it is R that is required, and the relation becomes

R = 1 + E − V.

The strategy followed here is to derive formulae for V and E and hence
obtain R.

The number of vertices V

There are two sets of vertices: those on the circle and those within it. Their
numbers will be denoted by C and I respectively. Clearly C = n since the
problem is defined by the n points on the circle.

The straight lines in the system join all possible pairs of points on the
circle. Each internal vertex is characterized by being the intersection of two
of these straight lines and so can be labelled uniquely by the set of the four
points at the ends of these lines. The number of such vertices is then the
number of ways of choosing four objects from a set of n objects; that is,

I =
n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4
.

The total number of vertices is then given by

V = C + I = n+ I.
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The number of edges E

The number of edges can be found by counting the number of edges at
each vertex and halving, on the basis that each edge is terminated by two
vertices.

The n vertices on the circle are each the terminals of straight edges from
the directions of the other n − 1 points, together with two circular edges
from the two adjacent points on the circle. This gives a contribution to the
total number of edges of n(n+ 1)/2.

The vertices within the circle (I in number) are each at the intersection
of two straight lines and therefore four edges. In this way, the associated
edges total 4I/2 = 2I, and the total number of edges is

E =
n(n+ 1)

2
+ 2I.

The number of regions R

The number of regions can now be obtained from the Euler relation:

R = 1 + E − V

= 1 +
n(n+ 1)

2
+ 2I − n− I

= 1 +
n(n− 1)

2
+
n(n− 1)(n− 2)(n− 3)

24
.

It will be seen that this can conveniently be rewritten in terms of the bino-
mial coefficients (

n

j

)
=

n!

j!(n− j)!
as

R =

(
n

0

)
+

(
n

2

)
+

(
n

4

)
,

which gives a neat form for the result.

The other results, V and E, can also be written in this form:

V =

(
n

1

)
+

(
n

4

)
,

E =

(
n

1

)
+

(
n

2

)
+ 2

(
n

4

)
.
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Expressions that maintain their form under multi-
plication
Dennis Morris
Quadratic expressions of the forms

x2 + y2, x2 − y2

maintain their form when multiplied together:

(a2 + b2)(c2 + d2) = a2c2 + a2d2 + b2c2 + b2d2 = (ac− bd)2 + (ad+ bc)2,

(a2 − b2)(c2 − d2) = a2c2 − a2d2 − b2c2 + b2d2 = (ac+ bd)2 − (ad+ bc)2.

So do cubic expressions of the form

x3 + y3 + z3 − 3xyz :

(a3 + b3 + c3 − 3abc)(d3 + e3 + f3 − 3def)

= (ad+ bf + ce)3 + (ae+ bd+ cf)3 + (af + be+ cd)3

− 3(ad+ bf + ce)(ae+ bd+ cf)(af + be+ cd).

There are such non-trivial expressions that maintain their form under mul-
tiplication in all powers. They are easy to find.

Choose any group and write its Cayley table with the identities on the
leading diagonal. For groups of order four and above, there is more than
one way to do this, but all ways work. Copy that Cayley table into a matrix
in which each element of the group becomes an independent variable. For
example, the group C4: 

a b c d
b a d c
d c a b
c d b a

 ,
where we have put the variable a in place of the identity. (The groups do not
have to be commutative; the matrices do not have to be commutative.) Each
variable configuration is effectively one of the permutation matrices that
form the particular group. In the case of C4, these permutation matrices
are


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 ,


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0


 ,
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and such a set of permutations is closed under multiplication—it is a group.
Thus, such matrices maintain their form under matrix multiplication. For
example:


a b c d
b a d c
d c a b
c d b a



e f g h
f e h g
h g e f
g h f e

 =


W X Y Z
X W Z Y
Z Y W X
Y Z X W


 ,

where
W = ae+ bf + ch+ dg, X = af + be+ cg + dh,

Y = ag + bh+ ce+ df, Z = ah+ bg + cf + de.

The determinant of such a matrix and the determinant of the product of
two such matrices are of the same form, and the determinant of a product
is equal to the product of the determinants. Thus, the determinants are
expressions whose form is maintained under multiplication. In the case
above, we have

(a4 + b4 − c4 − d4 − 2a2b2 + 2c2d2 − 4a2cd+ 4abc2 + 4abd2 − 4b2cd)

× (e4 + f4 − g4 − h4 − 2e2f2 + 2g2h2 − 4e2gh+ 4efg2 + 4efh2 − 4f2gh)

= W 4 +X4 − Y 4 − Z4 − 2W 2X2 + 2Y 2Z2

− 4W 2Y Z + 4WXY 2 + 4WXZ2 − 4X2Y Z.

That this expression will factorize to

(a4 + b4 − c4 − d4 − 2a2b2 + 2c2d2 − 4a2cd+ 4abc2 + 4abd2 − 4b2cd)

=
(
(a+ b)2 − (c+ d)2

)(
(a− b)2 + (c− d)2

)
wherein we find the quadratic expressions at the start of this article is
because the group C4 contains a C2 subgroup.

Although the expressions above have unity coefficients, this is not nec-
essary. For example the matrix with quadratic determinant:[

a b
jb a

]
maintains its form under matrix multiplication, and the matrices with cubic
determinant have two such free parameters (but we must not divide by zero),
and so the expression

a3 + jkb3 +
j2

k
c3 − 3jabc
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maintains its form under multiplication.

Such expressions are the distance functions of n-dimensional geometric
spaces where n is the power of the expressions. (By geometric space, we
mean a rotation matrix containing n different trigonometric functions and
a distance function (not necessarily a metric).)

Reference: Dennis Morris, Complex Numbers—The Higher Dimensional
Forms: The Unification of Groups, Algebra, and Geometry & The Nature
of Space, ISBN: 978-0-955600-30-2.

Thirty-five years of M500
ADF
Good grief, it really has been that long. M500 began life as the Solent
M202 Newsletter. No. 1 was published in 1973; according to founding editor
Marion Stubbs: At 2300 hrs., precisely, 16 February, 1973, Southampton,
England, 51◦ N, 1◦25′ W (born out of despair)—24 copies, together with
an application form to join the Solent OU Mathematics Self-Help Scheme,
dashed off in four hours flat for an M202 tutorial.

Of course, it was an instant success. M202, Topics in Pure Mathematics,
was, to say the least, challenging; perhaps the most difficult course the
Maths Faculty had to offer at the time, and the Newsletter was just the
kind of thing that struggling, geographically isolated students needed.

The self-help scheme became ‘MOUTHS’ (Mathematics OU Telephone
Help Scheme) and the newsletter spread in all directions. When issue 6 went
out in July, 1973, readers were invited to supply a new title as it was no
longer restricted to the Solent, nor to M202. Peter Weir suggested ‘M500’
for reasons: (1) Why not? (2) A top-level course in communications. Full
credit. (3) It’s an overview of OU maths. (4) Why not? [sic] (6) [sic] I
thought of it. By Issue 7, the first to bear the name ‘M500’, readership had
risen to about 200, and later it rose to over 500 when the Faculty allowed
M500 to be publicized in the maths stop presses.

The distinctive logo, shamelessly modelled on the OU shield, first ap-
peared on M500 59.

The editorship has remained remarkably stable throughout the last 35
years. Marion did everything for the first few issues. Eddie joined her from
Number 25 and thereafter Eddie edited while Marion published. Jeremy
was recruited as Problems Editor and later took over from Eddie at M500
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68. Seventeen years later Jeremy handed the job to me at M500 157.

“Out of all the [undergraduate mathematics] magazines I’ve seen, you’re
the best,” was the unsolicited comment of an eminent mathematician. It’s
because you the readers are the contributors. If you look at other similar
publications, you will often notice a pretty obvious division: authors are
superior omni-cognate beings, readers are inferior mortals. However, there’s
no such class distinction in M500. Readers and writers are equal.

We will continue to flourish if you keep up the good work. You have
done very well to keep the thing going for such a long time against all the
competition—many, many thanks. You have demonstrated that the entire
resources of the Internet can never provide an adequate substitute for a real
paper journal dropping through your letter-box. But do keep the articles
coming; as usual, be as informal as you like and write to us about anything
to do with mathematics and at any level.

Solution 218.4 – Repeated differentiation

Show that
dn

dxn

(
log x

x

)
=

(−1)n n!

xn+1

(
log x−

n∑
r=1

(
1

r

))
.

Steve Moon
We use induction. Let P(n) be the proposition

dn

dxn

(
log x

x

)
=

(−1)n n!

xn+1

(
log x−

n∑
r=1

(
1

r

))
.

Clearly P(1) is true. Suppose P(k) is true. Then we have

dk+1

dxk+1

(
log x

x

)
= (−1)kk!

xk+1/x− (k + 1)xk
(

log x−
∑k
r=1

)
(xk+1)2

= (−1)k(k + 1)!
1/(k + 1)−

(
log x−

∑k
r=1

)
xk+2

=
(−1)k+1(k + 1)!

xk+2

(
log x−

k+1∑
r=1

)
.
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Dingbats
It wasn’t all fun and games at the recent M500 Winter Weekend. To give
you some idea of the challenging tasks that were presented, here’s a selection
of puzzles contributed by Tracey Cool. See how many you can get before
looking up the answers.

1 0 0
0 1 0
0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 [
1 0
0 1

]
�
�
E
E

�
�
E
E

�
�
E
E

t cos 0
∞∑
n=0

2

2n ∞∑
n=0

1

2n

17
√

64 7(9− 1)

47× 23
3× 8

3(3 + 5)

37× 43/219

(
16

2

)
d
[
4
∫ 1

0

√
1− x2dx

]
dt

e

π2

2
√
2Γ(1/6)

E s s e n t i a l :

1

n

n∑
j=1

xj

1

n− 1

n∑
j=1

(xj − x)2

[
x
y

]
7→
[
a b
c d

] [
x
y

]
+

[
p
q

]

♥

∞∑
n=0

1

n!
− ♂
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j

xj P(X = xj)∫ ∞
−∞

xf (x) dx

(g ◦ f)′(α) = g′(f(α))f ′(α)

CHOH(CH2OH)2 + 3 HNO3


 CHONO2(CH2ONO2)2

+ 3 H2O

Winter Weekend Organizer

Winter Weekend Organizer

Winter Weekend Organizer

r̀a
èà

f(x) =
1

σ
√

2π
exp

(
(x− µ)2

2σ2

)
−∞ < x < ∞

22
22

22
22

22
22 ((((

((((
((((

((

∫ [
v
du

dx
+ u

dv

dx

]
dx

☼
PP

PP
PP

PP
PP

~

r
@@I

f(x) =
dx

dt

lim f(x) = c
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Problem 220.1 – Marbles and fruit
Tommy Moorhouse
Twins Alia and Amjad love fruit but, being twins, hate it when they don’t
have the same amount. Every week they stay with their grandfather Bilal.
Their favourite game at Grandad’s is ‘making rectangles’, which Bilal de-
vised himself. He sets a large tray on the floor, the tray having a rectangular
array of indentations, each of which can hold a marble. He scoops out at
random a number (which we will call n) of marbles from a large bag. Then
each of the twins in turn puts all the marbles into the tray to form a perfect
rectangle. The first twin always starts with the rectangle consisting of a
single row (1 × n) and the last always finishes with the (n × 1) rectangle.
(k×m) rectangles are distinguished from (m× k) rectangles if k and m are
different. Every time one of the twins produces a new rectangle a piece of
fruit goes into the kitty. This continues until all the possibilities have been
exhausted (Bilal knows how many possibilities there are given n).

Bilal then uses his patent marble collector to return the marbles to the
bag. It works as follows: if there are three or more marbles in the tray the
collector returns three to the bag and starts again. Otherwise it leaves the
marbles in the tray and Bilal has to put them back by hand. Thus after
each game there will be one, two or no marbles left in the tray.

At the end of the game the fruit is shared out as equally as possible.
The twins are happy if they both get the same number of pieces of fruit but
always fall out if there is an odd piece left over.

Bilal has noticed that the twins never seem to fall out if the patent
marble collector leaves exactly two marbles in the tray. Prove that this
‘rule of thumb’ is true for all n. Bilal suggests that whenever there is one
marble left in the tray the twins will fall out. What can you say about this?

Problem 220.2 – Two ingots
I [ADF] found this in a book of lateral thinking mind-bending puzzles.

A woman wishes to transport two gold ingots and herself across a bridge.
She weighs 100 kg. The ingots weigh 10 kg each. However, the bridge will
support only 117 kg. How does she do it?

The problem here in M500 is not to get the answer that was given in
the back of the book—she juggles the gold bars whilst she walks across the
bridge—but to explain why this solution works, or not, if indeed it does, or
doesn’t.
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Problem 220.3 – Three integers
Tony Forbes
Find all solutions in positive integers a, b, c of

a(a− 1)

2
+
b(b− 1)

2
+
c(c− 1)

2
= ab+ac+bc =

(a+ b+ c)(a+ b+ c− 1)

4
,

where a ≡ 1 (mod 6) and b ≡ c ≡ 3 (mod 6).

The problem occurs in the determination of possible parameters for the
existence of type B 3-colourable Steiner S(2, 4, v) systems. See Zoe’s Design
at http://anthony.d.forbes.googlepages.com/ZoeDes.pdf.

Problem 220.4 – RATS
This is like that problem where the number 196 plays a significant role. See,
for example, 196 revisited, M500 205.

Take any positive integer, p. Reverse its decimal digits to get q. Add
to get p+ q and then sort the digits to get p∗. Repeat.

Thus RATS: Reverse, Add, Then Sort. For example, if you start
with 77, you get 77, 145, 668, 1345, 6677, 13444, 55778, 133345, 666677,
1333444, 5567777, 12333445, 66666677, 133333444, 556667777, 1233334444,
5566667777, 12333334444, 55666667777, 123333334444, and thereafter the
terms continue to expand with 5566. . . 667777, 1233. . . 334444, . . . .

Investigate John Conway’s conjecture: Either the sequence goes into a
closed cycle, or it enters the divergent sequence 1233334444, 5566667777,
12333334444, 55666667777, . . . .

Problem 220.5 – Biseptic
Tony Forbes
I’m a bit worried about the title of this problem because the Shorter Oxford
gives as the only meanings of ‘septic’ the ones that are familiar to patholo-
gists and plumbers. But that’s irrelevant—all you have to do is solve

x14 + 508x4 = 9171655.

Answers to pp 18–19: {transcendental meditation, A Fine Romance, three dimen-

sions, chain reaction, identity parade, Max Bygraves, e-mail, speed limit, pirate,

bell tower, uv lamp, Rising Damp, primates, Great Expectations, vital statistics,

original sin, walk the plank, Tea for Two}.
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Letters to the Editor

Non-commutative algebras and quantum entanglement
Dear M500,

I bring to the attention of readers interested in QM, and who are rather
more au fait with non-commutative algebras than I am, the important arti-
cle ‘Quantum Untanglement’ by Mark Buchanan, New Scientist, 3 Novem-
ber 2007. One of the problems with quantum mechanics is that, seemingly,
it allows what Einstein called ‘spooky action at a distance’. If we have
a pair of so-called entangled photons, which are quite easy to produce in
the laboratory, quantum mechanics dictates that the total spin must cancel
out, so if you measure one of them and its spin is ‘up’, the other one’s spin
will always be ‘down’ and vice-versa. So what? The odd thing is that in
principle the two paired photons can be light years apart and experiments
have confirmed the predictions of QM when measuring paired photons which
could not ‘communicate’ with each other except by sending information at
a speed greater than that of light.

Not only this, QM says that, prior to an ‘act of measurement’, all phys-
ical systems exist in a superposition of possible states, only collapsing into
one, and only one, state when they interact with a different system. ‘Hid-
den variable’ theories, however, claim that there is a deeper level of reality
which is unambiguous and more like what we are used to.

Where does algebra come in? Because Bell famously ‘proved’ that ‘hid-
den variable’ theories could not yield results compatible with experiment,
while orthodox QM could and did. But now, Joy Christian has challenged
Bell’s theorem. In brief, the argument seems to be that Bell assumed that
the supposed ‘hidden variables’ would behave according to the rules of com-
mutative algebras and did not consider the possibility of non-commutative
algebras—Hamilton’s quaternions, for example, are non-commutative. If
we do this, Christian argues, a lot of the spookiness of QM disappears. If
you’re up to that level, see ‘Disproof of Bell’s theorem by Clifford algebra
dots’ by Joy Christian (www.arxiv.org/abs/quant-ph/0703179) or check into
the more readable NS article via http://archive.newscientist.com.

Yours,

Sebastian Hayes
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Re: Problem 212.3 – 100 seats
Dear Tony,

In the interests of brevity I’ve developed a C program to replace the
Fortran program in M500 issue 218 [Solution 212.3 – 100 seats, pages 8–
11]. It runs the 100 seats simulation 220 times.

int c=0,s[100],i,j,a;

r(){int a=100;for(;a>99;a=rand()&127);return a;}
main(){srand(time(c));for(i=1<<20;i--;)
{for(j=0;j<100;s[j++]=0);s[r()]++;
for(j=98;j;j--){for(a=j;s[a];a=r());s[a]++;}c+=!*s;}
printf("%g\n",c*1.0/(1<<20));}

It will compile on any ANSI compiler, but there might be some warnings.

Sincerely,

Emil Vaughan

M500 218
Thanks for M500 218. Most interested in the story of Dr Robert Bohannon
and his caffeinated doughnut. In this, he is merely following the work of
Dr Urban Panic, accounted a promising topologist in his youth but whose
later career was dedicated to the development of novel snacks.

In 1995 Dr Panic, irritated by having dropped a piece of toast on the
floor butter side down, conceived the idea of Möbius toast, which would
always fall on the same side. He devised a laser slicer-toaster which would
cut as many as four Möbius slices from a large loaf, toasting each one as it
sculpted the form; once early problems of crumb fires had been disposed of
with a vacuum extractor, the device was widely hailed in the catering press.
However, buttering experiments failed to produce the hoped-for result, and
the project was abandoned.

After this setback, Dr Panic turned his attention to doughnuts. His first
creation was a jam doughnut which would always keep the jam clear of the
consumer’s fingers. The resulting design, in the form of a jam-filled Klein
bottle, did not live up to expectations and was never marketed.

In 2001 Dr Panic began another series of experiments along the line
later pursued by Dr Bohannon: combining coffee and a doughnut in one
easy-to-consume snack. He reasoned that, since a ring doughnut is topo-
logically the same as a coffee cup, it should be possible to fill an ordinary
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doughnut (suitably protected with edible varnish) with coffee. Again, the
early promise of this radical concept was never fulfilled, and Dr Panic has
now wound up his company, TopoSnax plc, and has retired to his villa in
Antibes. It is good to know that he has a worthy successor.

Best wishes,

Ralph Hancock

Equation 216.5
Dear Tony,

Somehow I missed this problem when it was published [Problem 216.5–
Equation: Solve x = 3 exp(x2/214)].

Since an exponential is present, I realized that a second solution could
be possible, x = 20.2 approx. This illustrates one of the pitfalls which I
learned about in M101 (about 1986), whereby solutions tend towards the
‘dominant’ value.

Regards,

Ken Greatrix

Dear Tony,

This equation has two solutions, x ≈ π and x ≈ 20.24245. I solved
the equation graphically with y = x and y = exp(x2/214) to find the two
intersection points. Wrongly, possibly, I assumed there must be a ‘mathe-
matical’ solution, and hence did not offer my solution. Is there a rigorous
way to get the two answers?

Regards,

Basil Thompson

No. I am at least 100 percent certain that there is no solution in terms
of rational numbers and elementary functions thereof. There is nothing
particularly special about x = 3 exp(x2/214) except that . . . well, see if
you can guess. It is merely one of a small collection that I have built up
over a number of years. To make these interesting equations public I am
drip-feeding them into M500 on a semiregular basis. You have seen some
before. Look out for the next one! — ADF
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Latin squares
Tony,

Solution [to the latin square puzzle in M500 218]? No problem! Or so
I thought. I put the square into my solving program and pressed the ‘go’
button—it failed. Then I realized that it’s not a sudoku puzzle—you did
warn me, but I took no notice. Even so . . . .

I’ve noted on these occasions that you seem to be reluctant to use the
name ‘Sudoku’ for your puzzles. So, thinking that the name may be copy-
righted or patented I did a search on the ‘ole wibbley-wobbley-way’. . . .
The modern version of Euler’s latin square using the term ‘Sudoku’ was
coined by Kaji Maki, but he failed to copyright or patent the idea—wishing
it to be spread very widely in a short space of time.

If you wish to spread your analytical expertise to another number-in-cell
type of problem then attached is a ‘new’ idea called number workout. It’s
published every Saturday in the Daily Mail Weekend magazine.

Regards,

Ken Greatrix

The rest of the page was originally meant for the puzzle sent by Ken. It’s
a rectangularish array of 78 triangles grouped into hexagons. Some of the
triangles have numbers in them and you must fill in the others. Then I
[ADF] became afraid of getting clobbered by one of the Mail’s henchmen
for stealing it. So in its place you will have to put up with the following.

Late Arrivals at the Mathematicians’ Ball
Ladies and gentlemen, will you please welcome

Mr and Mrs Micks and their children Hamil, Tony and Dinah;
Mr and Mrs Lizing–Transformation and their daughter Norma;
Mr and Mrs d’Oku–Puzzle and their daughter Sue;
Mr and Mrs Ear–Dependence and their daughter Lynne;
Mr and Mrs Strophe–Theory and their daughter Katie;
Mr and Mrs Isis and their children May, Trix and Al;
Mr and Mrs Nomical–Unit and their daughter Astra;
Mr and Mrs Centric–Coordinates and their son Barry;
Mr and Mrs Imum–Likelihood and their son Max;
Mr and Mrs Lation–Coefficient and their daughter Corrie;
Mr and Mrs Stick–Modulus and their daughter Ella;
Mr and Mrs O’Lute and their daughter Eve.
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