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Visualizing sections of the Hopf fibration
Tommy Moorhouse
Part I. The 3-sphere

Introduction The idea of the first part of this article is to give a straight-
forward and accessible account of the geometry of the sphere S3, which
‘lives’ in a real four-dimensional space. Our line of attack will be to work
by analogy with the 2-sphere, the surface of a ball in our familiar three-
dimensional space. We will present a concrete coordinate description of
S3 and use this to project onto our three dimensional space and to take
‘slices’ of S3. There are many other articles on the projection of the 3-
sphere into R3, and the main reason for including this is to make the article
self-contained.

Although S3 is a natural generalization of S2 it has a richer structure
than one might expect: it isn’t all spheres! We will look at the intriguing
Hopf fibration, one of the simplest non-trivial fibre bundles—if you don’t
know what this means we hope to give you an easy-to-digest and easy-to-
visualize explicit picture. If you do know something about bundles we hope
you will find the elementary treatment interesting.

The second part of the article explores a visual approach to studying a
map from S3 to S2 known as the Hopf fibration. We will look, in particular,
at some beautiful projections of ‘sections’ of this fibration to R3.

Definitions Almost all our work will be done in real three- and four-
dimensional spaces, where the distance function is the intuitive one. A
sphere is then the set of points a fixed distance from some fixed point. We
normally label spheres by their dimension, which may be taken as the num-
ber of independent coordinates needed to identify any point on the sphere.
Thus the 1-sphere (the circle) needs just one angular coordinate, for exam-
ple the angle measured anticlockwise from the positive x-axis. The point
(cos θ, sin θ) identifies uniquely any point on the unit circle. The 1-sphere
lives in a plane, which has two dimensions. We will take the viewpoint that
in general an n-sphere is embedded in (‘lives in’) an (n + 1)-dimensional
space, which may lie in a space of higher dimension, just as straight lines lie
in a plane: this point will be made clear later. We also include the 0-sphere,
which is just a pair of points, for example the points x = ±1 on the x-axis.

Coordinates and projections To identify the points on a 2-sphere (e.g.
the surface of a globe) we need points x, y, z such that x2 + y2 + z2 =
1. If we choose a fairly standard coordinate system using latitude and
longitude θ and φ with θ ranging from 0 (North pole) to π (South pole)
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and φ ranging from 0 to 2π (Greenwich meridian!) we find that the set
(x, y, z) = (cos θ cosφ, cos θ sinφ, sin θ) fits the bill.

Note that the coordinates at the North and South poles (N and S) are
a little odd: these points are not identified uniquely, since φ can take any
value at these points. This is not a massive flaw: we can always choose
coordinates that are ‘bad’ at a different pair of distinguished points if we
are interested in what is going on at N and S. For all other points the
coordinates are good.

On the 3-sphere we use coordinates

(x, y, z, w) = (cos θ cosφ, cos θ sinφ, sin θ cosψ, sin θ sinψ).

It is easily seen that these cover the unit 3-sphere and are good coordinates
for all but two points. We will call the intersection of S3 with any 3-plane
through the origin of R4 a ‘slice’ of S3 to distinguish it from any projection
that we will soon describe. These slices are analogous to the circles cut
from a 2-sphere by a plane (i.e. a 2-plane) through the origin. Clearly slices
correspond to the great circles on the 2-sphere. For example if we intersect
S3 with the 3-plane w = 0 (that is, we look for all the points on S3 with
last coordinate zero) we get the 2-sphere described in the coordinates given
above, since sinψ = 0. (It will be seen later what happens when we choose
sin θ = 0.)

We now want to project from the 3-sphere onto our three-dimensional
world, which we take to be the 3-plane w = 0. We can imagine the projection
to be the shadow cast by the 3-sphere when a point source of light sits at
one particular point on the sphere. If we project from (0, 0, 0, 1) we will
see most of the 3-sphere but anything passing through this point will be
projected to infinity. We will find that slices (analogous to great circles)
are projected onto ellipsoidal objects. Note that we take care to distinguish
between the ‘true’ objects living in S3 and their projections onto R3.

Explicitly, consider a line parameterized by a time t passing through
(0, 0, 0, 1) at time t = 1 and through (cos θ cosφ, cos θ sinφ, sin θ cosψ,
sin θ sinψ) at t = 0. This line intersects the plane w = 0 when the vec-
tor

(0, 0, 0, 1) t+ (1− t)(cos θ cosφ, cos θ sinφ, sin θ cosψ, sin θ sinψ)

has zero in the last place. This happens when

t =
− sin θ sinψ

1− sin θ sinψ
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and here we have coordinates

(1− t)(x, y, z, w) =
(cos θ cosφ, cos θ sinφ, sin θ cosψ, 0)

(1− sin θ sinψ)
.

To see what this means, note that different values of ψ give different slices
of S3. These all intersect in the common equator (a 1-sphere) x2 + y2 = 1,
which corresponds to taking θ = 0. The great sphere corresponding to ψ = 0
is seen to project to a 2-sphere in our world. Other values of ψ still give
spheres on S3 but these project to ellipsoidal shapes passing through the
common equator.

There is another map from S3 to S2 of quite different character. The
coordinate description of S3 suggests another type of structure: if we fix
θ and let φ and ψ vary independently the points so described have the
character of a torus, the ‘product’ of two circles, often visualized as the
surface of a doughnut! However, these tori lie in R4 so we need to project
to w = 0 (for example). We will look at this more closely in Part II.

Part II: The Hopf fibration

The Hopf fibration seems to crop up almost everywhere in recent physics,
from twistor theory [1] and the asymptotic structure of space–time to mag-
netic monopoles [2] and representations of rotations in space [3]. The moti-
vation behind the study presented here was originally to get a simple visual
impression of this ubiquitous structure. The surprising images that emerged
lead to a more detailed consideration of the topology that constrains and
dictates the form of the images. Some elementary topological ideas are used
to explore this further.

Consider the (Hopf) map

π : (cos θ cosφ, cos θ sinφ, sin θ cosψ, sin θ sinψ)

7→ (cos θ cos(φ− ψ), cos θ sin(φ− ψ), sin θ).

The image is clearly a 2-sphere (lying in a different copy of R3) and every
point of S3 is mapped to a point of S2. The map is not one-to-one, however:
we can check that

(cos θ cosφ, cos θ sinφ, sin θ cosψ, sin θ sinψ)

and

(cos θ cos(φ+ α), cos θ sin(φ+ α), sin θ cos(ψ + α), sin θ sin(ψ + α))
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map to the same point for all α in [0, 2π]. Letting α vary over this range we
obtain, for fixed θ and φ, a circle that wraps once around the torus in S3.
The reader might like to draw this circle to see what it would look like on
an ordinary torus (doughnut) in our world. In the language of fibre bundles
this circle is a fibre of the Hopf map. It is said to lie over the image point in
S2. (It is perhaps easier, for the reader familiar with projective geometry,
to deduce the above from the map (z1, z2) ∈ S3 → [z1, z2] ∈ CP1 defining
the Hopf fibration: here S3 is the subset of C2 defined by z1z̄1 + z2z̄2 = 1.)

Projecting to z = 0 we find that the tori go to

1

1− sin θ sinψ
(cos θ cosφ, cos θ sinφ, sin θ cosψ).

If we fix θ we effectively set the radii of the torus in R4. The projection
of any of these tori is a genuine 2-torus in our world. These tori fill our
3-space, with each successive torus surrounding the previous one. There are
two ‘degenerate’ tori, corresponding to θ = 0, which is the unit circle in
z = w = 0; and to θ = π/2, the z-axis. A recent description of the situation
can be found in [3]. One finds that when the Hopf fibration is described in
the literature the four-dimensional situation is often not distinguished from
the three-dimensional projection.

Sections of the Hopf fibration In the language of fibre bundles, of which
the Hopf fibration is a simple example, a section of π is a map σ : S2 → S3

such that for any point p of S2 we have π(σ(p)) = p. We see that a section
maps p to a point in the fibre lying ‘above’ p. Suppose we fix θ. Then we
can think of all the points σ(p) as lying on the same torus (see the previous
paragraph to see what this means). Take the map in coordinates to be

(cos θ cosφ, cos θ sinφ, sin θ)

7→ (cos θ cosω, cos θ sinω, sin θ cosψ, sin θ sinψ).

Since σ is a section of π we must have ψ(p) − ω(p) = φ. Apart from this
essential restriction we are free to choose ω to be a continuous function of
θ and φ to define a section of the Hopf fibration. We will see that the φ-
dependence dictates the topology of the section in a well-defined way, while
the θ-dependence introduces what we might call a twist.

To get a feeling for the reason behind the condition ψ−ω = φ, fix θ and
note that the condition means that whatever curve our function marks out
on the surface of the torus defined by θ it winds at least once around the
torus (because φ grows from 0 to 2π), and cannot be shrunk to a point on



M500 227 Page 5

the torus. Thus it passes through each of the fibres of the Hopf map, and
does indeed define a section if it passes once through each fibre.

The simplest way to see this is to use the model of a torus as a rectangle
with opposite sides identified [Figure T1]. Thus when a curve runs off one
side of the rectangle it reappears on the opposite side: one could imagine
rolling the rectangle up to give you a model of the torus in three dimensions.
Using this picture [Figure T2] it is easy to convince oneself that any fibre
(parallel to the diagonal from lower left to upper right) meets a section
(that is, a curve winding n times around the horizontal (ω-) and n+1 times
around the vertical (ψ-) direction) in exactly one point. Some elementary
topology will consolidate this and is left as a challenge. A curve of this
type is said to be a (representative of a) homotopy class and cannot be
continuously deformed into a curve of a different class. Each integer n
defines a homotopy class, and these classes form a subset of the complete
set of homotopy classes of the torus. There is much more information about
homotopy in the literature.

In fact, the sections restricted to constant θ are knots (called ‘torus
knots’ in, for example, [5]). One can use this fact to produce images of the
torus knots by restricting the range of θ [Figure S1].

The simplest section arises for ω = 0, ψ = φ. In this case as φ varies
for fixed θ we see that the image of a small circle on the base 2-sphere
winds once around the torus. Varying θ and remembering that our section
is continuous (so points λ(p) and λ(q) are close together whenever p and
q are) we see that the projected section is a plane. If we allow ω and φ
to depend on θ we see that, since the restriction of any section to a torus
defined by fixed θ belongs to a fixed homotopy class and this cannot be
changed by a continuous map, the projected section is still a deformed (or
twisted) plane with the same topology.

Another simple section, independent of θ, arises when we take ω(p) =
2φ, ψ(p) = φ. The small circles on the base 2-sphere map to circles wrapping
once round the ‘big’ circle and twice round the ‘small’ circle of the torus.
Putting these together by varying θ we now get what looks like a plane with
a twist near the origin. Figure T3 shows what is happening in a model using
a stack of rectangular representations of the torus to give a tetrahedron. In
this figure the top and bottom surfaces of the tetrahedron are identified, as
are the sides. The section appears as a set of fins twisting from the vertical
to the horizontal: detailed interpretation is left to the interested reader.

We can play this game to produce surprisingly complex surfaces in R3,
choosing ω(θ, φ) = (n + 1)φ, ψ(θ, φ) = nφ. In this case we get a swirling
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n-leafed figure close to the origin, untangling to give n symmetrically dis-
tributed planes as we move away from the origin. We can also let the
sections depend on θ, giving more intricate flower-like surfaces [Figures S2,
S3].

We might wonder what happens ‘at infinity’ in R3. In fact it can be
shown that every ray from the origin can be considered to pass through a
single point at infinity when R3 is compactified to give S3 (much as the
2-plane is compactified to S2 by adding a single point at infinity). It turns
out that a transformation (inversion) interchanging the origin and infinity
in R3 preserves the form of all the sections, so the picture around infinity is
in a sense essentially the same as that close to the origin.

Conclusion We have looked at what might seem at first a rather daunting
mathematical construction, the Hopf fibration, and extracted a very explict
picture of the sections projected to three dimensions. I personally was
surprised by the intricacy of the projected sections, the connection with
torus knots, and the application of elementary topology. (An introduction
to elementary topology can be found in [4] or many of the articles to be
found on the internet.) I am sure there is scope for further investigation.
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Figure S1(
cos 2s cos t

1− sin t sin 3s
,

sin 2s cos t

1− sin t sin 3s
,

sin t cos 3s

1− sin t sin 3s

)
,

0 ≤ s ≤ 2π, 0 ≤ t ≤ π

7
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Figure S2

Figure S3
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Problem 227.1 – 25 steps
Tony Forbes
You and your opponent play a game. You place your markers at a position
called START and your objectives are to travel step by step along a path to
reach a place called FINISH, which is 25 steps away from START. You take
turns to create a random ordered pair of integers (n1, n2), 1 ≤ n1, n2 ≤ 6,
by throwing a pair of dice and for each of i = 1, 2 in that order, either move
your token up to ni steps forwards, or move your opponent’s token up to
ni + 2 steps backwards.

An example. You go first. You throw (3, 2). In the absence of any
better alternative, you might as well move your token 5 places forward.
Your opponent throws (6, 1). He has several choices. He can move his token
7 places forward, or (using the 6) move you back 5 places to START and
then himself 1 forward, or move himself 6 forward and you 3 back.

What’s the expected length of such a game?

I was going to make the additional assumption that both players play
sensibly, but unfortunately I’m not sure I know what ‘sensibly’ means.

This is based on a game marketed under the name Enigma. I
should point out that the rules stated above correspond only to the non-
deterministic parts of the game. There is also an element of skill involving
the asking and answering of questions set in riddle format.

I actually did some experiments. Let us assume that both players adopt
the strategy of moving their opponent’s token at least ni+1 steps backwards
whenever a sensible opportunity arises to do so. This could happen when-
ever the opponent is at least ni + 1 steps from START. It seems to me the
best way to play. By using the backwards option you are maximizing the
use of your throw whilst still giving yourself a chance of reaching FINISH.
But remember that it is not sensible to move your opponent any number of
steps backwards if you yourself are within n1 + n2 steps of winning.

However, under this strategy a typical game is going to last an awfully
long time. Just to give a small sample of what might happen, here are the
numbers of rounds for some typical games:

2621160, 1828738, 588450, 1031936, 2346550, 209041, 479808, 593392.

This would also apply to the real game unless there is an extremely sig-
nificant difference between the abilities of the players with regard to the
element of skill, where a player must answer correctly a randomly selected
riddle to earn the right to throw the dice.
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Problem 227.2 – Conspiracy theory
Colin Reid
A conspiracy theory is sweeping across the internet. Believers in the con-
spiracy theory persuade others by means of peer pressure: if at least half
of a gullible person’s friends believe the theory, that person will soon be-
lieve the theory him/herself, and once someone believes the theory, they will
never stop believing it. Non-gullible people will never believe the theory,
no matter how many of their friends do. Assume friendship is unchanging,
and that nobody is born or dies over the time span under consideration.

The average gullible person has x friends who are not gullible, and
initially, the average believer in the conspiracy theory has y friends who are
not believers. Initially, the proportion of gullible people who believe the
theory is p.

1. Suppose py < x. Show that at least one gullible person will never
believe the conspiracy theory.

2. At some stage, Jon Ronson (who is not gullible) writes a blog entry
which discredits the theory. Every gullible person reads the blog entry—the
effect on them is as if Jon is now one of their friends. (The blog entry has
no effect on Jon’s existing friends, or on people who already believe.) At
this point, there are m believers, who each have on average z non-believer
friends (not counting Jon). Show that the number of believers will now
never exceed m(z + 1).

Kiwi fruit
Tony Forbes
I had an interesting experience in a supermarket involving apple juice. I
purchased (amongst other things) seven litres at 84p each, buy one get one
free. So they charged me for seven, refunding the cost of three. A day or
two later I went back to claim the eighth. After I explained the state of my
senility the sales assistant was very co-operative. First she told me to get a
litre of the same brand of apple juice. She put it through her cash register,
placed it in a bag and handed it back to me. Then she gave me 84 pence!
I protested, of course, arguing that all I wanted was the free eighth litre.
But she argued more forcefully that by acquiring the eighth carton I was
entitled to a refund of 84p. A queue was developing and I became reluctant
to continue the debate. So I took the money and left. Who was right?
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Problem 227.3 – Pentagonal numbers
Tony Forbes
We want to consider numbers (3r2− r)/2, where r is an integer. These take
on two forms depending on the sign of r. When r is positive you get the
truly pentagonal numbers. You can see by looking at the following picture
how these objects fit into the scheme of things—the rth pentagonal number
is the number of dots in the rth iteration of the third diagram from the left:
1, 5, 12, 22, . . . .
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On the other hand, if r is negative, the resulting numbers are nearly but
not quite pentagonal. However you can make a pentagon if you agree to
double one of the sides by drawing a row of dots just below the base of the
main pentagon. Combining both types of numbers, together with r = 0,
gives this sequence of pentagonal-like numbers:

P = (0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, . . . ).

That’s the background. Now for the problem.

Which arithmetical progressions avoid P?

In other words, for which values of a and b, a > 0, 0 ≤ b < a does the set
{at+ b : t = 0, 1, 2, . . . } avoid all the elements of the sequence P?

A good place to start is where a is prime. For instance, when a = 23
it looks as if the avoiding arithmetical progressions occur when b = 4, 6, 9,
10, 13, 14, 16, 18, 19, 20, and 21.

When the province of British Columbia noticed that the log tables in the
provincial parks were rotting in the rain, they replaced them all with stone
tables. It caused near extinction of the snake population. This was because
most of the snakes were adders, and they needed log tables to multiply.
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Problem 227.4 – Ten coins
Tony Forbes
You and someone else play a game. You begin by placing ten coins in a
line. Then you and your opponent take turns to remove a coin from one of
the ends of the line. When all the coins are removed, the player with the
most amount of money wins.

(i) Devise a general strategy which will guarantee that the player who goes
first never loses.

(ii) Investigate ways of optimizing your winnings.

For example, suppose you lay out a pound coin and nine 1p pieces as
follows.

��������
�����������������������1p 1p £1 1p 1p 1p 1p 1p 1p 1p

Then if you go first, you can get the pound. You take a penny from the left.
He must now take a penny from the right; otherwise the pound becomes
available to you on your next turn. Thereafter you and he take pennies
from the right until he is forced to expose the pound.

What we would be interested to see is a general strategy of some kind.
By the way, there is no rule that the coins must be legal tender. Values like
−163p, 0p, 32

27p, πp, 1729p and so on are perfectly legitimate.

You might also like to have a go at this next specific example involving
two pounds and eight pennies.

��������
��
��
��������������������1p 1p £1 £1 1p 1p 1p 1p 1p 1p

It seems to be obvious that you cannot grab both pounds for yourself. For as
soon as you take one you expose the other for your opponent. Is it possible
to force a draw? Is it possible to do any better than forcing a draw?

Now what if the two pound coins are separated?

��������
�������
�����������������1p 1p £1 1p £1 1p 1p 1p 1p 1p



Page 14 M500 227

Solution 224.1 – Three rolling spheres
If the times to roll down an inclined plane are t1 for a hollow
sphere, t2 for a solid sphere and t3 for a ‘semi-solid’ sphere (solid
except for a central hole of half the radius), prove that

t1 : t2 : t3 =

√
5

3
:

√
7

5
:

√
101

70
≈ 1.291 : 1.183 : 1.201.

Steve Moon

&%
'$q rO
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XXXXXz
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�
��

i

j

Establish a system of coordinates with unit vectors i and j, parallel and
perpendicular to the plane respectively.

When the object is rolled a distance x down the plane it has turned
through angle θ about O. Therefore x = rθ and by differentiation with
respect to time, ẋ = rθ̇. When the centre of mass O lies at xi + rj the
velocity of the centre of mass is ẋi and the angular velocity about O is θ̇.

By conservation of energy, the object has kinetic energy (translational
plus rotational) equal to its potential energy loss. hence

1

2
mẋ2 +

1

2
Iθ̇2 = mgx sinα.

Then use ẋ = rθ̇,
1

2
mẋ2 +

1

2

Iẋ2

r2
= mgx sinα,

and differentiate with respect to time,

mẋẍ+
Iẋẍ

r2
= mgẋ sinα,

and tidy for ẍ,

ẍ =
mg sinα

1 + I/(mr2)
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down the plane.

This acceleration ẍ is a constant; so using ‘s = ut + 1
2at

2’, a standard
equation of motion, where u = 0 and t is the time to travel distance s, we
get

x =
1

2

g sinα

1 + I/(mr2)
t2.

Therefore

t =

(
2x

g sinα

(
1 +

I

mr2

))1/2

.

Now (2x/(g sinα))1/2 is the same for each type of object. Therefore

t = K

(
1 +

I

mr2

)1/2

for some constant K.

Introducing subscripts 1 for a hollow sphere, 2 for a solid sphere and 3
for a semi-solid sphere, we have the following moments of inertia,

I1 =
2

3
m1r

2, I2 =
2

5
m2r

2

and

I3 =
2

5
m3

(
r5 − (r/2)5

r3 − (r/2)3

)
=

2

5
m3

31r5

32

8

7r3
=

31

70
m3r

2.

Hence

t1 : t2 : t3 =

(
1 +

I1
m1r2

)1/2

:

(
1 +

I1
m2r2

)1/2

:

(
1 +

I1
m3r2

)1/2

=

(
1 +

2

3

)1/2

:

(
1 +

2

5

)1/2

:

(
1 +

31

70

)1/2

=

√
5

3
:

√
7

5
:

√
101

70
.

An explosive device was found in a can of Alphabetti Spaghetti. A
spokesman from the bomb squad said that if it had detonated, it could
have spelt disaster. [Sent by JRH]
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Solution 221.4 – Eleven bottles

Three people, A, B, C, are stuck in a lift over the weekend.
They have 11 bottles of water, four supplied by A and seven
by B, which are to be shared equitably. C donates £11 for the
water. How is it to be divided between A and B? The same
thing happens the following weekend, but this time A has three
bottles and B has eight. Again, £11 is to be split between A
and B.

Jimmy Mellon
An interesting problem that you have ripped out of a book. Unfortunately,
the book has framed the problem in terms that are part of the continuum of
wobbly logic that stretches from the pretium justum of medieval theologians
to today’s ‘Fair Trade’ coffee. Fairness is not (despite what mathematicians
may feel about the origins of probability theory) an objective, rational prin-
ciple. Your ‘problem’ is however easily resolved if restated in market terms.

The market is closed (it is in a lift!); supply is fixed (11 bottles which,
like you, I presume to be equal). Access to the bottles is determined by
agreement to be 11/3 per person (thus assuming that equitable means equal
shares). It is disposed at a ‘price’ (£3 per bottle) which is set by C’s
initiative (it may be arbitrary or, e.g. it may be the actual cost of the
bottles in the supermarket) and agreed by A and B. (If it is not agreed by
all three, then the market has to resolve the problem by bids and we will no
longer have equitable meaning equal but shares determined by willingness
to purchase and to sell.)

It is an imperfect market, but it clears itself. So for the first weekend
A has one-third of a bottle more than his quota. This he disposes of to C,
who hands over £1; and likewise C secures three and one-third bottles for
£10 from B.

The second weekend, A needs two-thirds of a bottle to complete his
quota. He buys it for £2 from B. C needs three and two-thirds bottles, so
he buys them from B for £11.

For each weekend then, A, B and C have each £11-worth of water, and
those who have supplied it have been compensated at the ‘going rate’.
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Phillip Whettlock
This is how I’d approach the problem if I were C ...

C buys the bottles of water from A and B, paying a proportionate
amount. So A now has £4, B has £7 and C has the 11 bottles of water.

They now decide to share the water. Having establish the price of a
bottle of water as £1, C sells 11/3 of a bottle to each of A and B. Thus,

A buys 3.67 bottles worth of water and has £0.33 left.

B buys 3.67 bottles worth of water and has £3.33 left.

C has the remaining 3.66 bottles worth of water and £7.34.

In the case of the second weekend, if C again buys all the water to begin
with, A does not have enough money to buy an equal share of water. A
now has £3, but requires £3.67 to buy an equal share.

So, C says, then A can pay the owed money next week, when they get
stuck in the lift again!

Dick Boardman
There is a long tradition of puzzle setters including useless information in
their puzzles whose purpose is to confuse the solver. This has been done
here. First, two extra assumptions, all the water has been consumed and
A, B and C drank equal amounts. The normal principle is that each person
should pay for what he has consumed and someone who pays more shall
receive a refund.

Each person is assumed to have drunk 11/3 bottles of water. The cost
of a bottle of water is not stated but we may reasonably assume that C
knows it and has based his contribution on it, i.e. 11/3 bottles cost £11.00.
That is, each bottle costs £3.00.

For the first weekend, B has contributed 7 bottles costing £21.00 and
has consumed 11/3 bottles (£11.00). He is therefore due for a refund of
£10.00. B has contributed 4 bottles (£12.00) and consumed 11/3 bottles
(£11.00). He is due for a refund of £1.00. Thus C’s contribution should be
split £1.00 to A and £10.00 to B.

For the second weekend, B has contributed 8 bottles (£24.00) and con-
sumed 11/3 bottles (£11.00) so he is due for a refund of £13.00. A has
contributed 3 bottles (£9.00) and drunk 11/3 bottles (£11.00). He must
therefore contribute a further £2.00. Thus B should receive £11.00 from C
and £2.00 from A.
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Tony Forbes
I confess that I am not at all happy with the way market forces have been
allowed to creep into the previous discussions. C is merely acting charitably.
Nobody is buying anything. Nobody is selling anything. If C had kept
her money, there would be no problem—A and B would then share £0
equitably at no loss to either party. In the actual problem it must surely be
a fundamental principle that neither A nor B should be forced to part with
any money.

One could go with the recommended solution for the first week (£1 to
A, £10 to B), but let B have just the entire £11 for the second week. How-
ever, this introduces a hideous discontinuity in the derivative of the amount
of money received by A as the number of bottles he supplies decreases con-
tinuously from 11 to zero. What we must seek is a simple general solution
which works equally well for all splits.

Let us see if we can remove the discontinuity and smooth things out.
Suppose A contributes a bottles and B contributes 11 − a bottles. In the
case a = 0 it is clear that B should get the whole amount of C’s money,
£11. Similarly, at the other extreme, where a = 11, A must get £11. And
if A and B supplied the same number, 5.5 bottles each, who would argue
against the splitting of C’s money equally: £5.50 to A and £5.50 to B?

So what’s the simplest function that passes through the three points
(0, 11), (5.5, 5.5) and (11, 0)? Well of course, it’s a straight line. Thus I
am forced to conclude that the only correct answer to the problem is the
‘wrong’ answer. Split the money in proportion to bottles supplied: £4 to A
and £7 to B for the first week, £3 to A and £8 to B for the second week.

This solution works for all values of a in the range zero to 11, and
in every case both A and B receive non-negative amounts of money. On
the other hand, this is not true if A, for instance, were to turn up with a
negative number of bottles. Then the solution offered would require B to
accept £(−a) from A in addition to the £11 from C. A just reward for A.

Problem 227.5 – Laces
Your journey involves walking at your normal constant walking pace partly
along fixed ground and partly along a moving travelator. But you must stop
for a short while to tie your shoe laces. Where is the best place to do this?
Surprisingly, it does make a difference—as you can confirm by working the
problem. However, what we really want is an elementary observation that
makes the answer obvious.
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Solution 224.3 – Inspecting the column
A column of soldiers of length a is marching steadily along a
road, when an officer on horseback rides at uniform speed from
the rear to the front and back again while the column moves
distance b. How far does the officer move?

Norman Graham
Let x be the distance the column has moved by the time the officer X
reaches the front. Let the speeds be u for the soldiers and v for the officer,
v > u.

X - v
- u

x

X

b

X

The time for the officer to reach the front is

x

u
=

x+ a

v
.

The time to return to the rear of the column is

b− x
u

=
x+ a− b

v
.

Therefore
u

v
=

x

x+ a
=

b− x
x+ a− b

,

which can be solved to get

x =
1

2

(
b− a±

√
a2 + b2

)
.

Hence the distance travelled by the officer is

(x+ a) + (x+ a− b) = a±
√
a2 + b2.

Solved in a similar manner by Steve Moon (with identical notation!) and
Tony Moulder.
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Oliver Atkin
Eddie Kent
Arthur Oliver Lonsdale (A. O. L.) Atkin, who died recently, had a connec-
tion with M500. He was responsible for Problem 157.3, Binomial coeffi-
cients, and for the intelligent primality test offer in 155 26. He was also
mentioned by Tony Forbes in connection with titanic twin primes.

He was born in Liverpool in 1925 and read mathematics at Cambridge.
After graduating he tried to join the army, but was recruited to Bletchley
Park instead. When the war ended he acquired a doctorate and a wife,
Raynor. He went on to learn programming on Atlas and to develop a
technique for solving numerical problems with a computer.

As he pointed out, using a machine in mathematics can just produce
lists which might be pretty and impressive but don’t give much insight. His
aim was to look for happy accidents. ‘The computer’s role,’ he wrote, ‘was
merely to find an accident relevant to a known general theorem. However,
inspecting the tables . . . O’Brien and I observed the following: If 24n − 1
is divisible by 13m and p(n) [the partition function—the number of ways of
expressing the integer n as a sum of positive integers] is divisible by 13m,
then so is p(N), where

24N − 1 = r2(24n− 1) and r ≥ 5 is prime.

This in its turn enabled us to make a more general conjecture as to a
multiplicative property of p(n) in relation to divisibility by powers of 13,
which I have recently proved.’ And thus was developed one more component
of the structure Andrew Wiles was later to use to crack FLT.

During his career Atkin, together with Daniel J. Bernstein, developed
the Sieve of Atkin. This is related to the sieve of Eratosthenes, but does
some preliminary work and then marks off multiples of primes squared,
rather than of primes.

In the 60s he went to America, eventually becoming professor emeri-
tus at the University of Illinois at Chicago where he was equally adept at
computing and playing the organ.

He died on December 28 from complications after a fall at his home;
he was 83 and leaves two children and five grandchildren. His wife died in
1970.

. . . Meanwhile, those of us who can compute can hardly be expected to keep

writing papers saying ‘I can do the following useless calculation in two seconds’,

and indeed what editor would publish them? [Oliver Atkin]
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Letters to the Editor

Morse
Your piece on palindromes in morse (M500 224 17) reminded me of a game
I used to play with a friend at school. You would be given a word in morse,
but with the dots and dashes run together with no spaces. You had to guess
the word.

Our favourite was EGG, which in morse is · − − · − − ·.
I had another friend who was sent to Loughborough during his National

Service to learn to send and receive morse at high speed. It drove him
mad, literally. He was admitted to mental hospital, and then transferred to
teleprinters, which were considered much less demanding.

John Reade

I was intrigued by ‘Palindromes in morse’. I don’t think it is valid to produce
a palindrome of continuous dots and dashes that can be split into letters
arbitrarily. Morse is, and has to be, sent with tiny breaks between the
letters, or it would be unreadable. This makes the problem of constructing
a palindrome that works in English and morse rather a restrictive one, since
you can only use the symmetrical letters E I S H T M O K P R X. A
palindrome that works only in morse is easier, because you can use the
mirror-image pairs A/N B/V D/U F/L G/W Q/Y. But you can’t use C J
Z, which have no mirror images. The longest sequence I could get, which
sort of makes sense, is

O, a tiger! Do quail wait in Goa? No waiting. Find you’re wit? No.

Maybe something a bit more coherent will come to mind.

There is a discussion of morse code in songs at rateyourmusic.com/board
message/message id is 1383238, with quite a few examples, including The
Beatles’ Strawberry Fields Forever, which starts with the morse for JOHN.

Ralph Hancock

Problem 227.6 – Snellius’s formula
Prove Snellius’s formula: for small |x|,

3 sin 2x

2(2 + cos 2x)
≈ x,

the difference being approximately 4x5/45. Then see if you can invent even
more bizarre approximations to the identity function.
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