
* ISSN 1350-8539

M500 229

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������



The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends of the
Open University. By publishing M500 and by organizing residential weekends, the
Society aims to promote a better understanding of mathematics, its applications
and its teaching. Web address: www.m500.org.uk.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

The September Weekend is a residential Friday to Sunday event held each
September for revision and exam preparation. Details available from March on-
wards. Send s.a.e. to Jeremy Humphries, below.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. For details, send a stamped, addressed envelope to
Diana Maxwell, below.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors. We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to Tony Forbes, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation. If you use
a computer, please also send the file to tony@m500.org.uk.



M500 229 Page 1

Group cohomology: a simple set of examples
Tommy Moorhouse

Introduction

When a group acts on another, abelian, group we can often characterize
the action using certain related groups of maps. In this article we will
consider the multiplicative action of the group of primitive roots modulo
N (which we denote by S(N)) on the additive group ZN . Actually ZN
has the structure of a ring, and S(n) is the group of units in this ring.
We will find the cohomology groups H0(S(n),Zn) and H1(S(n),Zn), to be
defined below, for certain N . It is hoped that this introduction will lead
the interested reader to further exploration. Some of the later material is
based on exercises in [Lang].

Definitions Let ZN consist of the integers 0, 1, . . . , N − 1 with the
operation of addition modulo N . Let S(N) be the subset of positive integers
in ZN relatively prime to N , forming a group under multiplication. The
action of S(N) on ZN is given by the pairing

(σ,m) 7→ σm.

Since σ(m+m′) = σm+ σm′, 1m = m, and σ(θm) = (σθ)m this defines a
group action.

The zeroth cohomology group The cohomology group H0(S(N),ZN )
is just the subgroup of ZN fixed by the whole of S(N). This subgroup can
be found quite straightforwardly. If N is odd then 2 ∈ S(N). Since any
element of H0(S(N),ZN ), say m, is fixed by 2 we have 2m ≡ m (mod N),
so m ≡ 0 (mod N) and H0(S(N),ZN ) = {0}.

If N is even then all elements of S(N) are odd. Consider m = N/2.
This element is fixed by every σ ∈ S(N) since

σ
N

2
= (2σ′ + 1)

N

2
≡ N

2
(mod N).

In this case, then, Z2 ⊂ H0(S(N),ZN ). Now if N/2 is odd S(N/2) has
exactly the same number of elements as S(N), since φ(2N) = φ(N) for
all odd N . If σm = m we have σ′m′ ≡ m′ (mod N/2), where primed
quantities are reduced modulo N/2. But, from the work above, we know
that no element is fixed by every σ′.
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The first cohomology group H1(S(N),ZN ) is defined in terms of maps
ξ : S(N)→ ZN . We require that these maps satisfy

ξ(σθ) = σξ(θ) + ξ(σ). (1)

The reason for this condition will be explored later. Note that given a fixed
m ∈ ZN the map σ 7→ σm −m is a map from S(N) to ZN , and this map
satisfies condition (1) above. The elements of H1(S(N),ZN ) are those maps
satisfying condition (1) but not of this form. Now, from (1) we have

ξ(στ) = σξ(τ) + ξ(σ);

so
στξ(στ) = σ2τξ(τ) + τσξ(σ).

We define F (σ) = σξ(σ). Then

F (στ) = σ2F (τ) + τF (σ)

= τ2F (σ) + σF (τ)

by symmetry (since S(N) is abelian). Thus σ(σ − 1)F (τ) = τ(τ − 1)F (σ).
In the interesting case that τ and τ − 1 are both invertible we have

F (σ) = τ−1(τ − 1)−1F (τ)σ(σ − 1).

Since the left hand side is independent of τ we must have τ−1(τ−1)−1F (τ) =
a constant, say m, and so F (σ) = m(σ − 1), that is ξ(σ) = σm−m for all
σ ∈ S(N). This means that H1(S(N),ZN ) is trivial.

In particular, if N is odd then both 2 and 1 are invertible in S(N), so
we take τ = 2 to find that H1(S(2N + 1),Z2N+1) is trivial for all N .

The case N even We will make some preliminary observations and leave
further exploration to the reader. Now all σ ∈ S(N) are odd, say σ = 2σ′+1.
As before

σ(σ − 1)F (τ) = τ(τ − 1)F (σ),

(2σ′ + 1)2σ′F (τ) = (2τ ′ + 1)2τ ′F (σ),

σ′σF (τ) = τ ′τF (σ).

Again, if τ and τ ′ are both invertible, we can argue as in the case of odd
N . We find that

ξ(σ) = σ′m =
1

2
(σ − 1)m,
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where m is the constant ττ ′F (τ). Clearly if m is odd there is no element
of ZN such that ξ is of the form σm−m for all σ. Thus H1(S(N),ZN ) is
not necessarily trivial. On the other hand, if m is even then H1(S(N),ZN )
is trivial. We would therefore need to determine when there exist τ and τ ′

both invertible, and find the value of τ−1τ ′−1F (τ) in each case.

Where do the formulae come from? Cohomology is an essential tool in
many branches of mathematics. One area with which some readers may be
familiar is the application to surfaces (manifolds) in differential geometry.
There we have vector spaces of differential forms (0-forms, 1-forms etc.)
and a map d (actually a collection of maps, one for each p) from p-forms
to (p + 1)-forms, the exterior derivative. It is shown that d2 = 0 (i.e. that
d(dω) = 0 for any form ω), and this leads to the study of those forms for
which dω = 0 but ω 6= dη for any form η. This is the basis of the study of
the structure of the surface in terms of cohomology.

In the case of group actions of a group G on a set M the theory is built
up in exactly the same way. We have a collection of spaces {Ei} analogous
to the spaces of i-forms with maps between them, di : Ei → Ei−1 such that
di−1 ◦ di = 0. Here we choose our spaces Ei to be the sets of (i+ 1)-tuples
of elements of G:

Ei = {(x0, x1, · · · , xi)}

with G acting through g(x0, x1, · · · , xi) = (gx0, gx1, · · · , gxi). Here the tu-
ples are to be viewed as objects in their own right, and cannot be added
component-wise, although we can add n-tuples together to get another n-
tuple (although we don’t have an explicit formula). Our map d involves the
operation of addition:

di(x0, x1, · · · , xi) =

i∑
j=0

(−1)j(x0, x1, · · · , x̂j , · · · , xi)

where the hat indicates that the element is omitted from the tuple. This is
a sum of (i− 1)-tuples.

We now consider the set HomG(Ei,M) of maps (homomorphisms) f :
Ei → M satisfying f(gx) = gf(x) for g ∈ G, x ∈ Ei. Given f : Ei → M
we define δif = f ◦ di+1, which is a map from Ei+1 to M . That is, δif ∈
HomG(Ei+1,M). We see that δ works ‘in the opposite direction’ to d. It
is straightforward to show that δi+1 ◦ δi = 0, and we build our cohomology
groups from the complex

· · · → HomG(Ei,M)→ HomG(Ei+1,M)→ · · · .
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Now consider H0(G,M), the kernel of δ0. This is the set of maps from E0

into M , where E0 is the set of 1-tuples (x) where x ∈ G, with the action of
G on E0 x(x0) = (xx0). Now δ0f is a map from E1 into M given by

δ0f((x0, x1)) = f(d1(x0, x1)) = f((x1)− (x0)) = f((x1))− f((x0))

from the definition d1(x0, x1) = (x1)− (x0) and the fact that f is a homo-
morphism. But there is an element x of G such that x1 = xx0 (since G is
a group) and so, by the group action,

0 = δ0f((x0, x1)) = xf((x0))− f((x0)).

This holds for any x1 and, considering f as a map from G into M (via the
isomorphism (x) → x), we see that the first cohomology group H0(G,M)
corresponds to the set of elements m = f((x)) of M fixed by G (sometimes
denoted MG).

To find H1(G,M) we consider the kernel of δ1 modulo the image of δ0.
Here f : E1 →M , where E1 is the collection of 2-tuples (x0, x1) and

δ1f((x0, x1, x2)) = f((x1, x2))− f((x0, x2)) + f((x0, x1)).

Thus

f((x0, x2)) = f((x1, x2)) + f((x0, x1))

f((1, x−10 x2)) = f((x−10 x1, x
−1
0 x2)) + f(1, x−10 x1))

= f((1, x−10 x1)) + x−10 x1f((1, x2x
−1
1 ))

making use of the group action. Setting x = x−10 x1, y = x−11 x2 and g(x) =
f((1, x)) we can rewrite this result as g(xy) = g(x) + xg(y). This is the
condition we used above.

References and useful books

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1998.

[2] S. Lang, Algebra, Springer, 2002.

Problem 229.1 – Red and yellow vertices
Each vertex of a simple graph has odd degree. At time 0 you colour each
vertex either red or yellow. At time t + 1 each vertex of the graph adopts
the colour of the majority of its neighbours as they were at time t. Show
that the system either stabilizes or goes into a 2-cycle.

[Thanks to Emil Vaughan for this.]
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Solution 223.2 – Gun
If a gun has a maximum range of r on a level plain, what is it
from the top of a cliff of height h? Find a construction for θ,
the angle of elevation.

Steve Moon

-

6

y

x
r0

On level ground, fire the projectile with initial velocity u at angle θ to the
horizontal. It strikes the ground again at distance r. In the vertical (y)
direction, the flight time t is obtained from 0 = u(sin θ)t− 1

2gt
2, giving

t =
2u sin θ

g
.

In the x direction,

x = u(cos θ)t =
2u2(sin θ)(cos θ)

g
=

u2 sin 2θ

g
.

For maximum x,

dx

dθ
= 0 =

2u2

g
cos 2θ ⇒ θ =

π

4
.

Hence the maximum range is

r =
u2

g
. (1)

Now consider the projectile fired from height h at time 0, again with
initial velocity u. Assume the projectile lands on the ground at time t.
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Its vertical motion is given by −h = u(sin θ)t − 1
2gt

2. Its horizontal
motion is given by x = u(cos θ)t. Eliminating t, we obtain

−2hu2

g
=

2u2

g
x tan θ − x2 sec2 θ. (2)

Substituting (1) into (2) gives

−2hr = 2rx tan θ − x2 sec2 θ.

Hence
x2 − rx sin 2θ − hr(cos 2θ + 1) = 0. (3)

Let the maximum range be R. When x = R, dx/dθ = 0. Differentiating
(3) with respect to θ,

2x
dx

dθ
− r dx

dθ
sin 2θ − 2rx cos 2θ + 2hr sin 2θ = 0.

But when x = R, dx/dθ = 0; so

−2rR cos 2θ + 2hr sin 2θ = 0.

Therefore

tan 2θ =
R

h
, cos 2θ =

h√
h2 +R2

, sin 2θ =
R√

h2 +R2
.

Substituting into (3) with x = R, we have

R2 − rR2

√
h2 +R2

− hr
(

h√
h2 +R2

+ 1

)
,

which simplifies to

R2
√
h2 +R2 − hr

√
h2 +R2 − r(h2 +R2) = 0.

Therefore R2 − hr = r
√
h2 +R2, and on squaring,

R4 − 2hrR2 + h2r2 = r2(h2 +R2).

Hence
R =

√
r(2h+ r).
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Norman Graham
Given that tan 2θ = R/h and R =

√
r(2h+ r) [from Steve’s solution,

above], we can compute tan θ using the double-angle formula:

tan 2θ =
2 tan θ

1− tan2 θ
=

R

h
,

or
R tan2 θ + 2h tan θ −R = 0.

Solving yields

tan θ =
−2h+

√
4h2 + 4R2

2R
=
−h+

√
h2 + 2hr + r2

R
=

r

R
.

Hence the angle of elevation has the very simple construction indicated in
the diagram.

-

6

y

x
r R0

h ?

6

r

� -R
θ
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Solution 224.2 – Buried treasure
(i) Treasure has been buried at T , distances a = 2, b = 3 and c =
4 from three successive corners of a square field. Determine s,
the length of a side of the field. (This is No. 66 of The Canterbury
Puzzles by H. E. Dudeney.) For a = 2 and c = 4, find the range
of values of b if T is (ii) anywhere, or (iii) somewhere within
the field. (iv) Devise geometrical constructions to obtain the
answers.

Dick Boardman

rT

C

B A

D

x

y

4

23

s

s

r

r

Let the corners of the square be A, B, C, D. Let the distance from T to
BC be x. Let the distance from T to AB be y and let s be the side of the
square. Then
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x2 + y2 = 9,

(s− x)2 + y2 = 4,

(s− y)2 + x2 = 16.

On eliminating x and y we obtain

37− 20s2 + s4 = 0.

Hence

s =

√
10 + 3

√
7 ≈ 4.23524, x ≈ 2.70791, y ≈ 1.29122

and

s =

√
10− 3

√
7 ≈ 1.43623, x ≈ 2.45879, y ≈ −1.71883

are the solutions for T inside and outside the square. Graphically the prob-
lem is solved by dividing all of the lengths by s and using the following
lemma, which is proved at the end.

Lemma Given two fixed points A and B and a variable point P such that
AP/BP , call it t, is constant. The locus of P is a circle whose centre C is
on AB such that AC/AB = t2/(t2 − 1) and whose radius is t/(t2 − 1).

For the construction, we construct a figure with a unit square and a
point T (the treasure) so that AT = 2k, BT = 3k and CT = 4k and then
scale the figure to find the required side of square.

Applying the lemma to points A and B we get that the locus of T is a
circle with centre on AB. In this case t = 3/2; so we need lengths of 9/5
for the centre and 6/5 for the radius. These are easily constructed using
ruler and compasses. Applying the lemma to points C and B we get that
the locus of T is a circle with centre on BC. Now t = 4/3, so that we need
lengths of 12/7 for the radius and 16/7 to find the centre. Again, these are
easily constructed.

These two circles cut at two points, one inside and one outside the
square, and these are the solutions for T . Re-scaling this diagram gives

the side of the square to be
√

10 + 3
√

7 for the point inside the square and√
10− 3

√
7 for the point outside the square.

Next we consider the maximum and minimum values for TB while TA
and TC remain at 4 and 2. Applying the lemma to points A and C, the
locus of T is a circle whose centre is on AC extended and the ratio is 2. This
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circle cuts the sides BC and CD. Within the square, the treasure lies on
this arc, so that the maximum TB is where it cuts CD and the minimum
where it cuts BC.

If T is on BC then the triangle TCA has sides 4/s, 2/s and
√

2 and an
angle of 45 degrees at C. Applying the cosine rule gives s = 1 +

√
7. Thus

the minimum value for TB is
√

7− 1.

When T is on CD, the triangle TCA has the same sides and angles so
that s is also 1 +

√
7. In the triangle BCT , BC = s and CT = 2 and there

is a right angle at C, hence the maximum of BT is
√
s2 + 4.

In order to find the maximum and minimum values for TB outside the
square, we need to return to the original equations (1)–(3) to replace the
right hand side of (1) with (TB)2. If we consider a 3-dimensional space with
x, y and s axes, then each of these equations is a cylinder and the points we
require are the intersections of these cylinders. The intersection of (2) and
(3) is a solid. A point on the surface of the solid is a solution to one equation,
a point on the edge of the solid is a solution to two equations. Suppose we
use a value for TB less than the minimum. This will not intersect any of
the edges and hence there is no real solution. A hole has been cut through
the solid, corresponding to such a cylinder. We now increase the value
of TB until it just touches one of the edges. There will now be two real
solutions and they will be the same. We now increase the value of TB and
the cylinder will cut the edges twice, giving two real solutions. If we further
increase the value of TB, the two solutions will converge until they coincide
again. At this point, the cylinder will completely enclose the solid. This
will be the maximum value. These values occur where s =

√
10 and the

maximum and minimum values for TB are
√

18 and
√

2.

Proof of the lemma Let A = (0, 0), B = (1, 0) and P = (x, y); AB
is on the x-axis. Let AP/BP = t. Now (AP )2 = x2 + y2 and (BP )2 =
(1− x)2 + y2. Hence

x2 + y2

(1− x)2 + y2
= t2,

x2 + y2 − 2xt2

t2 − 1
+

t2

t2 − 1
= 0.

This is the equation of a circle whose centre is on the x-axis such that
AC/AB = t2/(t2 − 1) and whose radius is t(AB)/(t2 − 1). QED.

Also solved by Norman Graham, Tony Moulder, Chris Pile and Steve
Moon.
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Pythagorean squares
Chris Pile
As a postscript to Solution 224.2 – Buried treasure, even though it has
nothing to do with treasure, buried or otherwise, except that the numbers
3 and 4 form the two short sides of a Pythagorean triangle, I offer this
construction.

The triangles are created as (a+ b)2 − 4ab = (b− a)2 to give an infinite
sequence of squares. The small square in the centre has side 1.

7 = 4 + 3 72 − 4 · 4 · 3 = (4− 3)2 = 12 42 + 32 = 52

17 = 12 + 5 172 − 4 · 12 · 5 = (12− 5)2 = 72 122 + 52 = 132

31 = 24 + 7 312 − 4 · 24 · 7 = (24− 7)2 = 172 242 + 72 = 252

49 = 40 + 9 492 − 4 · 40 · 9 = (40− 9)2 = 312 402 + 92 = 412

71 = 60 + 11 712 − 4 · 60 · 11 = (60− 11)2 = 492 602 + 112 = 612

97 = 84 + 13 972 − 4 · 84 · 13 = (84− 13)2 = 712 842 + 132 = 852

. . . . . . . . .
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Solution 223.2 – Mud
Mud flies off the hindmost point of a wheel rolling at a uniform
speed. Will it hit the wheel again if it leaves the wheel in the
same direction as the hindmost point (a) at the same speed, (b)
slower, (c) faster? As usual, all this takes place in a vacuum.

Norman Graham
(a) Let a be the radius of the wheel
and v the speed of its centre, O. Then
the angular velocity of O about N , the
point of contact with the ground, is
ω = v/a. If P is the hindmost point
of the wheel, then PN = a

√
2, the

velocity of P is a
√

2 and its angular
velocity about N is v

√
2.

-r
O v

qN
�
�
���qP

@
@
@
@
@@

Since PN is at 45◦ to the horizontal, the mud has components of velocity
v horizontally and v vertically. hence the path of the mud will be a parabola
with constant horizontal velocity v. This is the same as that of the hindmost
point of the wheel. Therefore the mud will always be directly above the
hindmost point, which it will strike again!

(b) The horizontal component of the mud’s velocity will be less than
that of the hindmost point, so it will drop behind the wheel.

(c) Let v1 (> v) be the initial vertical component of the mud’s velocity.
After time t the height above level of O is v1t − 1

2gt
2. This is zero when

t = 2v/g. The distance the mud travels to a point at the level of O is 2v21/g.

Hence the mud will strike the front of the wheel if
2v21
g

= 2a+
2v1v

g
; that is,

when v1 = 1
2v +

√
( 1
2v)2 + ag. If v1 is less than this critical value, the mud

will strike the wheel again, but if it is greater, the mud will fall in front of
the wheel.

Problem 229.2 – Tank
I am driving a tank and I have to make a circular tour of various military
bases along a given route. I can arrange to have my tank transported to a
starting point of my choice. Initially my (fuel) tank is empty, but distributed
along the route there is sufficient fuel to complete my tour. Show that I
can choose my starting point so that I can complete the whole journey and
return to the waiting tank-transporter without running out of fuel.
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Problem 229.3 – Harmonic triangle
Norman Graham
Behold an array of fractions.

1

1
1

2

1

2
1

3

1

6

1

3
1

4

1

12

1

12

1

4
. . .

The first fraction in row n is
1

F (n, 1)
=

1

n
, and the rth fraction is

1

F (n, r)
=

1

F (n− 1, r − 1)
− 1

F (n, r − 1)

for r = 1, 2, . . . , n. Find a general formula for F (n, r). Hence show that
each row is symmetrical about the centre; i.e. F (n, r) = F (n, n− r + 1).

Problem 229.4 – Balls
There are bn balls, n each of b different colours. They are arranged in a line
in b blocks of n.⊙⊙⊙⊙⊙⊙⊗⊗⊗⊗⊗⊗⊕⊕⊕⊕⊕⊕
A move is to take a ball from the line, place it somewhere else in the line
and close up the gap.⊙⊙⊗⊙⊙⊙⊙⊗⊗⊗⊗⊗⊕⊕⊕⊕⊕⊕
What is the minimum number of moves necessary to create a line with
no two adjacent balls having the same colour? Prove that the answer is
≥ 1

2b(n − 1). So that in the example, where b = 3 and n = 6, we are
asserting that at least 7.5 moves are required. See if you can do it in eight.

Erratum. The first display on page 4 of M500 228 should read

(Lg + Lg′)(1) = Lg(0) + Lg′(0) = 0 + 0 = 0,

not (Lg + Lg′)(0) . . . .
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Professor Pile’s prime pathway
Chris Pile

When I last visited the eponymous self-styled professor I found him super-
vising the building of a pathway around his country estate. The pathway
was about 1m wide and already more than 400m long. The professor was
beside a large stack of buff-yellow tiles and a smaller stack of orange terra-
cotta tiles. Each tile was 10cm square and the path was 11 tiles wide,
constructed mainly of yellow. The professor explained that the rows of tiles
were effectively digit positions from 0 to 9 with an extra position 10 (du-
plicating 0) to give a symmetrical edge along the path. All the orange tiles
that I could see were in two lines along the path in positions 1, 3, 7 and
9, but there were many gaps between them. He explained that every tile
represented a number, N , from the start of the path in rows, and whenever
N was prime it was an orange tile. Every ten rows there was a wider joint
between the tiles to make a 1m ‘century block’.

The first century block was exceptional in that there was an orange tile
in positions 2 and 5 of the first row, but thereafter these positions were
yellow. The first tile was yellow because 1 is not considered a prime. I
strolled along the path, noting that after the first block there were never
more than two orange tiles together and the number of orange tiles in each
block tended to decrease. There were some centuries that had no orange
tiles in one of the lines. Every century block appeared to be different and
I wondered whether the pattern within a block would ever be repeated.
There was one block with only four orange tiles but I could not find any
block totally devoid of them. I asked the professor if that would occur.
“Not for about 4km,” he replied. I could see that the path had a long way
to go and the professor was keen to progress the task.

(1) When will the pattern within a century block be repeated?

(2) When will a century block consist of all yellow tiles?

(3) Is there any patterned block that is symmetrical about the 5-line?

(4) Is there a block which is the same when rotated 180◦?

(5) Apart from the first two, are there any further blocks with more
than 17 orange tiles?

(6) Apart from the first, which is in some sense rather special, what is
the maximum possible number of orange tiles that can appear in a century
block?
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The start of the ‘prime pathway’. Century-blocks 1–4:
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A paucity of primes after 107m. Centuries with no prime ending in 7 and
no prime ending in 1. Blocks 108–111:
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Relatively sparse centuries with only five or six primes. Blocks 187–190:
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Relatively dense region after 400m. Blocks 423–426:
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Problem 229.5 – Red and yellow points
Given 2n points in the plane, no three collinear, n red and n yellow. Can
you connect the reds to the yellows in pairs by non-crossing straight lines?
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Solution 225.1 – Toroidal planet
There is a planet which has the shape of a (solid) torus. You are
standing somewhere on its innermost circle. Depending on the
parameters of the torus, do you stay attached to the ground, or
do you drift upwards, attracted towards the rest of the planet
arched out above you?

Tommy Moorhouse

My initial expectation of how
gravity behaves in the toroidal
system was that gravity would be
nullified in the central plane as it
is inside a uniform hollow sphere.
However, a little thought shows
that this is not the case. Gravity
obeys the inverse square law in
the sense that two masses sepa-
rated by a distance x experience
an attractive force of

r
O rPQ
Q
QQh

θ

@
@

@
@@I

R

F (x) = − GMm

x2
.

In the interior of a uniform hollow sphere the gravitational attraction
of any part of the sphere wall upon a mass is exactly balanced by the
attraction from the parts of the shell on the opposite side. This involves
areas of the internal surface, and this introduces a quantity of dimension
[length]2, essentially cancelling the 1/x2 factor in the force law. In the case
of the torus there are no areas involved, and the masses on opposite sides
of the ring can only introduce a factor of dimension [length], which cannot
cancel the 1/x2 dependence.

It is not too hard to carry out the complete calculation by integration.
We make the simplifying assumption that all the mass of the torus can be
considered to lie in a ring of radius R defining the axis of the torus. This
can be rigorously justified, but for our purposes it is a convenient modelling
assumption. We choose the line from the centre of the circle through the
particle to be the vertical. The set-up shown in the diagram makes it clear
that only the net vertical force is required, because there is no lateral force,
by symmetry. The first step is to calculate how the distance from an internal
point to the ring varies with the angle θ made by the line joining the point
to the ring and the line joining the point to the centre. This is just plane
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geometry. The result is

l(θ) = (h−R) cos θ +

√
R2 cos2 θ + (2hR− h2) sin2 θ

and the mass of the ring element is µl(θ)dθ, where µ is the mass per unit
length of the ring. Next the force on the particle due to the mass of the ring
element is calculated (it is actually easier to calculate the net force due to
diametrically opposite elements). This gives (wrapping up all the constants
G,µ, etc. into K)

K

l(θ)
− K

l(θ + π)
=

2K(R− h) cos θ

h(2R− h)
.

Projecting onto the vertical (i.e. multiplying by cos θ) and integrating from
0 to π one finds that inside the torus, in the same plane, the force on a
particle is given by

~F (~r) =
K~r

R2 − r2
.

This is a purely radial force which is zero at the centre of the circle defined
by the torus axis and increases steadily towards the ring. Objects in the
ring plane within the ring will fall towards the torus.

In the ring plane but outside the ring the calculation is similar, but the
θ integration runs from 0 to θM = arcsin(R/r) and the result is

~F (~r) =
K~r

R2 − r2

{
arcsin

(
R

r

)
+
R

r2

√
r2 −R2

}
.

Note that since r > R the sign of the force shows that it is attractive, and
objects will fall towards the ring. As r →∞ this reduces to

~F (~r) = − K~r

r3
,

which is the usual asymptotic result that a body exerts a gravitational force
as if it were a point of the same mass situated at its centre of mass.

The force has no angular component; so objects moving in orbits will
tend to spiral down towards the ring. Meteor showers would be quite inter-
esting events on the toroidal planet!

‘Twenty per cent of people are habitually late. If there are ten people in a
room, two of them won’t be there yet.’ — Man on R4 [sent by JRH]
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Solution 226.2 – Eight sins
Show that

sin4 π

20
+sin43π

20
+sin47π

20
+sin49π

20
+sin411π

20
+sin413π

20
+sin417π

20
+sin419π

20
=

13

4
.

Stuart Walmsley
The strategy is to express the left-hand side of the basic expression in terms
of cos 2π/5 = cos 8π/20 and cos 4π/5, whose values are known:

cos
2π

5
=

√
5− 1

4
, cos

4π

5
= −

√
5 + 1

4
.

Since sin4 jπ/20 = sin4(20− j)π/20, the left-hand side reduces to

2

(
sin4 π

20
+ sin4 3π

20
+ sin4 7π

20
+ sin4 9π

20

)
.

Since sin4 jπ/20 = cos4(10− j)π/20, it becomes

2

(
sin4 π

20
+ sin4 3π

20
+ cos4

3π

20
+ cos4

π

20

)
.

But

sin4 x+ cos4 x+ sin2 2x = sin4 x+ cos4 x+ 2 sin2 x cos2 x = 1,

so that the left-hand side becomes

4− sin2 2π/20− sin2 6π/20 = 4− cos2 2π/5− cos2 4π/5

= 4−

(√
5− 1

4

)2

−

(√
5 + 1

4

)2

=
13

4

and the result is proved.

Also solved by Steve Moon

Problem 229.6 – 50 coins
Fifty 50-pence pieces lie on a circular table-top with no overlap and max-
imally, in the sense that there is no room for a 51st coin. Show that 200
coins will cover the table.
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Algebra for beginners
Chris Pile

(1) Solve each of the following equations for x.

(i) mxy = cash.

(ii) xday = now.

(iii) frx = cargo.

(iv) cax = dog.

(v) kitx = cat.

(vi) bax = fundamentals.

(vii) xt = jumbo.

(viii) x′t = does not.

(ix) xd = strength.

(x) wx = heavy.

(xi) xous = devout.

(xii) fx = rhubarb tart.

(2) Solve each of the following equations for roman numeral r.

(i) r = FrE− I.

(ii) r − 1 = ELErEN− SErEN.

(iii) r = Sr + III.

(iv) r = sir + iv.

(v) ert = way out.

Answers. In the interests of neatness they have been sorted into numerical order.

1,
√
π, 2, π, IV, V, 6, 8, 9, IX, 10, x, 11, xi, 12, 42, 80.

Concerning the Golden Ratio of Fibonacci numbers, φ = 1
2 (
√

5 + 1)
= 1.6180339887498948482.... As is well known, we have

cos
π

5
=
φ

2
, sin

π

5
=

√
3− φ
2

, eiθ = cos θ + i sin θ.

Combining these gives

eiπ/5 =
φ

2
+ i

√
3− φ
2

.

Is this useful? Dennis Morris
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Magic moments
Tony Huntington
Once upon a time, a long time ago, there was a magic clock. I know that
it was a magic clock as there was a sign next to it in the watchmaker’s
shop window which read: Magic Clock. As befitted its name, it was a
strange looking device . . . it had but a single hand. No face, no case, no
mechanism, no pendulum; nothing but a solitary hand mounted on a central
pivot. Slowly the hand rotated as its point showed the passing of the hours.

Of course, as befits a magic clock, this was no ordinary hand. It was,
maybe 6 inches long (I said this was a long time ago—it was in my childhood
many years BM1 and had a cross-section that was perhaps 3

4 of an inch
square. As I have previously remarked, the end which indicated the hours
came to a point. The other end remained a mere 3

4 of an inch thick, but
blossomed out into a squat cylinder of perhaps 2 inches diameter. The whole
was covered with mystical, silvery tracery patterns wherein, for all I know,
maybe the magic itself dwelt.

That such a clock could move at all (given that it had no apparent
means of motivation) may seem remarkable enough, but there is still more
wonder and magic to relate. As I have said, the hand was mounted on a
central pivot, but what I have omitted so far to mention was that the hand
was freely pivoted. Just a gentle push from an index finger would set it
spinning around and around. And yet . . . no matter how often, or how
hard, or in which direction it was spun, it always eventually settled down
to point to the correct time again and resume its slow, patient rotation.

In later life as the innocence of childhood faded, I devised an explana-
tion of what I had witnessed (although I was never able to check it with
the clockmaker). My explanation (you may well have thought of others
involving Oofle Dust, phases of the moon, or auras from pyramids that are
equally valid) is something like this.

First, imagine that the hand is pivoted exactly at its centre of gravity.
In such a circumstance, the slightest touch would set it spinning until air
resistance and friction in the bearings of the pivot eventually brought it to
a halt, but in a random orientation.

Now consider what might be inside the cylindrical blunt end. Suppose
there was something like a watch mechanism (I am talking about a proper,
wind-up watch mechanism—a digital watch won’t do the trick) with just an
hour hand, and there was a small weight on the end of the hour hand. This
small weight is enough to perturb the centre of gravity of the hand away
from the central pivot. If the hand is set spinning, then eventually it will
settle down with its centre of gravity directly below the pivot.

1BM: Before Metrication
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Now I ask you to accept my proposed mechanism, and your quest is to
determine under what circumstances this mechanism could keep good time.
To help (???) you in your quest, consider that the clock is actually made
out of weightless beams whose mass is concentrated at single points. The
mechanism then reduces to something like this.

Assuming that mass, m, moves with a uniform angular velocity relative
to its pivot point, what is the relationship between L1, L2, L3, M , m, a,
and b which results in beam (L1+L2) also revolving with a uniform angular
velocity (or the best approximation to uniform that can be achieved)?

Tony Forbes writes—Some time ago, before Kirsty Young started running
things, I found myself listening to Desert Island Discs on Radio 4. On the
island was Nobel prize-winning physicist Sir Peter Mansfield, FRS, famous
for his ground-breaking work on imaging by nuclear magnetic resonance.
After six classical pieces his seventh choice of music was to be: “A popular
song from the 1950s . . . .” As soon as those words were uttered I made a
guess at the title and, to the astonishment of all those present (including
myself), I got it right! However, Sue Lawley and Sir Peter decided not to
explore the technical details of magnetic moments, the obvious link between
nuclear magnetism and Perry Como singing Magic Moments.
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