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The class number of certain quadratic fields

Tommy Moorhouse

Introduction Paul Jackson’s article in M500 225 indicated a connection
between Wilson’s theorem and the class number of a related field. While
these terms might be unfamiliar it is interesting to look at where some of
Paul’s formulae might come from and what they mean. It is not possible to
give even a brief overview of the subject of ideal class theory here, but we
will work in such a way that no knowledge of this theory is required. The
interested reader is referred to [Alaca & Williams] and [Stewart & Tall] for
an introduction to algebraic number theory.

Along the way we will prove an interesting result about the parity of
class numbers h of certain fields, for which no knowledge of ideal class groups
is required, just a formula found by Dirichlet. For the sake of brevity we
will not consider the special case p = 3.

Dirichlet’s formula Dirichlet found a remarkable formula for the class
number of a quadratic number field. A quadratic number field is an ex-
tension of Q by a root of a quadratic equation such as x2 + 7 = 0. In this
case we write K = Q(

√
−7) and we can think of K as the smallest field

containing Q and a square root of −7.

Dirichlet’s formula for K = Q(
√
−p), where p is prime, is

h(K) =
−1

p

p−1∑
r=1

r(−p|r).

Here (−p|r) is the quadratic residue symbol modulo r (or if r = 2 the
Kronecker symbol – see [Alaca & Williams]). We can apply Dirichlet’s
formula to get an interesting result.

Theorem 1 If p is an odd prime and K = Q(
√
−p) then

h(K) ≡ 1 (mod 2) if p ≡ 3 (mod 4)

and
h(K) ≡ 0 (mod 2) if p ≡ 1 (mod 4).
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Proof We reduce Dirichlet’s formula modulo 2, multiplying both sides by
−p since (p, 2) = 1. This gives, reducing all the coefficients r modulo 2 and
using p ≡ 1 (mod 2),

h(K) ≡
p−1∑

r=1, r=2k+1

(−p|r) (mod 2).

Since (p, r) = 1 for all r < p and −1 ≡ 1 (mod 2), the sum simply counts,
modulo 2, the number of positive odd integers less than p. If p ≡ 3 (mod
4) this number is odd, while if p ≡ 1 (mod 4) the sum is even. This proves
the theorem.

Challenge Can you apply this method when K = Q(
√
−n) where n is

composite?

Paul Jackson quoted a formula given by Kenneth Ribet. It is possible
to derive this formula directly using Dirichlet’s formula. We want to find
the sum of the quadratic residues modulo a prime of the form p ≡ 3 (mod
4). It is easy to show that the sum is congruent to zero modulo p, but we
want the actual value, which we denote by mp. We have

mp =
∑

(r|p)=1

r

=
1

2

∑
r

r{(r|p) + 1}

=
1

2

∑
r

r(r|p) +
1

4
p(p− 1),

where the second line picks out the quadratic residues. The sum in the last
line is very reminiscent of Dirichlet’s formula, and we will see that this is
not a coincidence.

We will need to use the quadratic reciprocity law and the formulae for
(−1|r) and (2|r) (see [Apostol, Chapter 9]).

First, take the case r ≡ 1 (mod 4). Then

(−p|r) = (−1|r)(p|r) = (−1)(r−1)/2(r|p) = (r|p).

If r ≡ 3 (mod 4) we have

(−p|r) = (−1|r)(p|r) = (−1)(r−1)/2(−(r|p)) = (r|p).
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Thus (−p|r) = (r|p) when r is odd.

To handle the case of even r we need to use the results from [Alaca &
Williams, p. 246]. Since p ≡ 3 (mod 4) we need to consider two cases.

Case 1: p ≡ 3 (mod 8), in which case −p ≡ 5 (mod 8) and (−p|2) = −1

while (2|p) = (−1)(p
2−1)/8 = −1.

Case 2: p ≡ 7 (mod 8). Now −p ≡ 1 (mod 8) and (−p|2) = 1 while
(2|p) = 1.

Thus, by the multiplicative properties of the quadratic residue symbol,
(p|r) = (r|p) when r is even, too. In summary

m =
1

2p

∑
r

r(−p|r) +
1

4
(p− 1)

= {−2h(K) + p− 1}/4,

which is just the formula quoted by Paul. As a byproduct we have the
alternative formula for the class number of Q(

√
−p) for p > 3, p ≡ 3 (mod

4):

h(K) =
−1

p

p−1∑
r=1

r(r|p).

Challenge Can you extend this result to the case p ≡ 1 (mod 4)?

References

T. Apostol, Introduction to Analytic Number Theory (5th printing),
Springer 1998.

S. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cam-
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I. Stewart and D. Tall, Algebraic Number Theory and Fermat’s Last Theo-
rem (3rd ed.), A. K. Peters 2002.

Problem 231.1 – Log 12

Let Sr =

∞∑
n=4, n composite

1

nr
. Show that

log 12 = 2 log π + S2 +
S4

2
+
S6

3
+
S8

4
+ . . . .
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The Pell number 5
Non-trivially 5 is the only odd Pell number one more than a perfect
square

Paul David Jackson
We show that non-trivially 5 is the only odd Pell number of the form X2+1,
where all odd Pell numbers are the sums of two squares. Also we see that
5 is the only odd Pell prime of this form.

Let Ci = pi/qi be convergents to
√

2, the first few being

1

1
,

3

2
,

7

5
,

17

12
,

41

29
,

99

70
,

239

169
,

577

408
,

1379

985
, . . . ;

then the qi, or the denominators, are Pell numbers. By observation, the first
few seem to obey the rule, that the squares of any two consecutive ones sum
to another number in the sequence. So for instance we have 12 + 22 = 5,
22 + 52 = 29, 52 + 122 = 169 and so on, with the sums 5, 29, and 169, all
having odd indices. In fact we have the relation

q2k+1 = q2k + q2k+1, k = 1, 2, 3, . . . ,

which can be proved using the standard identity Pm+n = PmPn+1 +
Pm−1Pn, valid for Pell numbers (see Mathworld, Pell Number, equation
6), by putting m = k + 1, n = k and swapping labels q, for P .

Now the odd indexed Pell numbers are all sums of two squares with
opposite parities and thus are odd. This is obvious, and can be seen by
considering the recurrence relation and the initial terms, being odd then
even; so the next term is twice an even term plus an odd, hence odd, and
then the next is twice an odd plus an even, hence even, and so on. Hence
if q2k+1 is prime and greater than 5, or the square of a prime, then it is
the sum of two squares in only one way, and as 1 occurs only once at the
beginning of the sequence of the denominators of the convergents to

√
2, we

see that these cannot be of the form X2+1. This leaves the case where q2k+1

is not of the same form as above. That is, when it is composite. Rather
than trying to factor these in some manner we consider another identity,

q2k+1 = 2pkqk+1 − (−1)k, k = 1, 2, 3, . . . ,

which can be proved using the standard identity U2n+1 = Un+1Vn−Qn, valid
for the Lucas sequence (see Mathworld, Lucas sequence, equation 47), with
Un(P,Q) = Un(2,−1), and Vn(P,Q) = Vn(2,−1). Then we set Un = qk,
and Vn = 2pk.
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So if there are any odd Pell numbers after 5 of the form a square plus
one then we would have q2k+1− 1 = z2, and this implies we have 2pkqk+1−
(−1)k − 1 a square. Now if k is odd we have 2pkqk+1 = z2 (which is true
for 5) and if k is even we have 2pkqk+1− 2 = 2(pkqk+1− 1) = 2pk+1qk = z2

using the standard identity

pkqk+1 − pk+1qk = (−1)k. (i)

In both cases we have supposed squares of the form 2ab, we show below
that the two factors a, and b are co-prime, so to have squares we would
need a = 1, and b = 2, the case for 5, or in general, as the as are odd, a a
square, and b twice a square. We show in general this is impossible.

Assume to the contrary that we have, b = 2b′ where b′ is a square. We
know that there are no cases for the first few convergents so this means we
can take b′ > 1. Now for both possibilities of k, qi is an even Pell number,
so we need to exclude the possibility that it is twice a square. As it is even
this means the index is even and for all even Pells we have the relation

q2s = 2psqs, s = 1, 2, 3, . . . .

Now if s is even then ps has the form square + 1 and so cannot be a square.
Thus even if qs, is twice a square, as ps, and qs, are co-prime, twice their
product cannot be a square, as of course neither is unity.

Lastly, say s is odd then q2s cannot be twice a square as both ps, and qs
are co-prime again and all of the odd indexed qi > 1 are not squares except
for 169 (Wells, page 133), which as its associated numerator 239 is not a
square does not lead to a q2s, being twice a square. So we see in general
that q2s is not twice a square.

Therefore we see that our supposed squares q2k+1−1 = z2 cannot exist.
So to complete the argument we show that in general the pairs of numbers
(pk, qk+1) and (pk+1, qk) are co-prime.

The convergents to
√

2 are in their lowest terms and satisfy the standard
relation (i). This has the form mx + ny = 1, implying that the two terms
of (i) on the LHS share no common factors with each other but not that
the pairs of numbers pk, qk+1 and pk, qk+1 are themselves co-prime, which
is what we want. But if we consider the consecutive convergents as rational
numbers to which we add an integer c, we obtain pi/qi + c = (pi + cqi)/qi.
That is if we write (i) in the form

pk
qk
− pk+1

qk+1
=

(−1)k

qk+1qk
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and then if we add zero = c− c to the LHS, we get

pk
qk

+ c− pk+1

qk+1
− c =

pk + cqk
qk

− pk+1 + cqk+1

qk+1
− c =

(−1)k

qk+1qk
,

which shows that the new convergents formed by adding a constant are also
co-prime.

This is a general argument that will apply to any convergents to an
irrational, but we have to relate it to the convergents to

√
2. We show that

the new numerators obtained by the addition of a constant are just the nu-
merators of the convergents to

√
2, but shifted relative to the denominators.

Now if k is odd we obtain the sequence of rationals (including the even
indexed values as well)

1

2
,

3

5
,

7

12
, . . . , sequence A

and if k is even we obtain the sequence of rationals (including the odd
indexed values)

3

1
,

7

2
,

17

5
, . . . . sequence B

Both of these are just the original convergents to
√

2, but with numerators
and denominators of the original terms shifted against each other, thus they
satisfy the same linear recurrence equations but with different initial terms,
which are still just the terms in the original numerators and denominators
to
√

2. Thus their continued fraction representations will have the same
repeated part, [a, b, . . . , 〈2〉].

If we invert each term in sequence A the property of being co-prime is
unaffected and we observe that the new sequence we obtain,

1

2
,

5

3
,

12

7
, . . . , sequence A′

can be got from the convergents to
√

2, by inverting then adding 1 to each.
We suspect that sequence A′ converges to 1 + 1/

√
2, and taking this ir-

rational number and using the continued fraction algorithm we obtain the
representation [1, 1, 〈2〉] for which we generate the convergents in the normal
manner, and we find that after the third, we have numerators and denomi-
nators of the form rk+1 = 2rk + rk−1, and we must get the same sequences
for these as we do for the continued fraction of

√
2 but shifted appropri-

ately relative to each other, as we do for sequence A′. Thus sequence A′ is
generated by [1, 1, 〈2〉], and does represent 1 + 1/

√
2.
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For sequence B we have a similar situation; this converges to 2 +
√

2 =
[3, 〈2〉]. We have the same linear recurrence relation for numerators and
denominators as for

√
2 but with initial terms p1 = 3, p2 = 7, and q1 = 1,

q2 = 2, so we will get the same sequences of numerators and denominators
as for convergents to

√
2 but shifted. We can obtain sequence B from

the convergents to
√

2 but this time by adding 2 to each. And we note in
passing that in general the continued fraction of c+

√
2 with c a non-negative

integer, is [c+1, 〈2〉]. In short as the convergents generated by the continued
fraction of an irrational have co-prime numerators and denominators, we
have shown that the continued fraction of 1 + 1/

√
2 generates sequence A′,

which implies that pairs of numbers pk, qk+1 are co-prime, and likewise the
continued fraction of 2 +

√
2 generates sequence B which implies that pk+1,

qk are co-prime. So we have shown that in general the pairs of numbers pk,
qk+1 and pk+1, qk are co-prime, and that non-trivially 5 is the only odd Pell
number of the form X2 + 1, where all odd Pell numbers are sums of two
squares.

References

http://mathworld.wolfram.com/PellNumber.html.

http://mathworld.wolfram.com/LucasSequence.html.

http://mathworld.wolfram.com/ContinuedFraction.html.
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Problem 231.2 – 45 degrees
Show that

π

4
=

∞∑
n=1

(−1)n+1

2n− 1

(
6

9n
+

7

49n

)
=

17

21
− 713

27783
+

33857

20420505
− . . . .

Problem 231.3 – No survivors
There are n people in a room. At each tick of the clock each person shoots
(dead) another person chosen at random. The game stops when the number
of players is reduced to 0 or 1. What’s the probability of no survivors?

I couldn’t resist taking a whack. The bat cracked and the ball shot straight
over the pitcher’s head, still picking up speed and altitude.

— Four Blind Mice by James Patterson [sent by Jeremy Humphries]



Page 8 M500 231

Solution 226.4 – Three squares
Let T be a triangle with sides a, b, c and in-circle radius r. Let
x be the side of the square such that (i) one side of the square
shares a common border with side a of T , (ii) the other two
vertices of the square lies on sides b and c of T . Define y and z
similarly in terms of sides b and c respectively. Show that

1

x
+

1

y
+

1

z
=

1

a
+

1

b
+

1

c
+

1

r
.

��
�
��

�
��

��

@
@

@
@
@

a

bc

x

Steve Moon
A

B C

R

D

EF

G H

J

K

L

r

x x

x

hx

Let the in-circle of 4ABC have centre R, radius r and be tangential to BC
at H, CA at J and AB at K. Let the corners of the square as defined by side
x be D, E, F and G. Let hx be the perpendicular from side BC to vertex
A, meeting BC at L. Then y and z are defined by cycling a→ b→ c→ a
once and twice respectively. Using the above diagram, points H, J , K and
R are fixed in all three cases. Points corresponding to D, E, F and G will
differ for y and for z. In general, hx 6= hy 6= hz.

Now 4ABC and 4AFE are similar (since EF ||BC). Hence

x

AF
=

a

c
; AF =

cx

a
.
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Also 4FBG and 4ABL are similar (FG||AL). Hence

x

BF
=

hx
c

; BF =
cx

hx
.

Since AF +BF = c, we have cx/a+ cx/hx = c. Therefore

1

x
=

1

a
+

1

hx
. (1)

If we repeat this for y and z, we get

1

y
=

1

b
+

1

hy
,

1

z
=

1

c
+

1

hz
. (2)

Adding (1) and (2) generates

1

x
+

1

y
+

1

z
=

1

a
+

1

b
+

1

c
+

(
1

hx
+

1

hy
+

1

hz

)
.

Returning to the diagram, the area of 4ABC is 1
2ahx. Also we can

make 4ABC from 4ARB, 4ARC and 4BRC, where, in turn, c, b and a
are the bases and r the vertical height. Hence we have another expression
for the area of 4ABC:

ar

2
+
br

2
+
cr

2
=

1

2
ahx.

Therefore

hx =
(a+ b+ c)r

a
;

1

hx
=

a

(a+ b+ c)r
.

Similarly for y and z we get
1

hy
=

b

(a+ b+ c)r
and

1

hz
=

c

(a+ b+ c)r
.

Therefore

1

hx
+

1

hy
+

1

hz
=

a

(a+ b+ c)r
+

b

(a+ b+ c)r
+

c

(a+ b+ c)r
=

1

r
.

Hence
1

x
+

1

y
+

1

z
=

1

a
+

1

b
+

1

c
+

1

r
,

as required.
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Unrest on Tetra
Tommy Moorhouse
There is unrest on the planet Tetra. Tetra is a tetrahedral world, where the
inhabitants are confined to the two-dimensional surface. The inhabitants
have for many years intercepted television signals from Earth and have
become fascinated by old OU physics programmes. Inspired by the ideas of
general relativity, one great scientist and adventurer, Hingis the Insatiable,
has sought to prove that Tetra has curvature. He organized an expedition
around the planet on a path (path A of Figure 1), encircling one of the four
poles (the vertices of the tetrahedron). At the start of the expedition an
arrow was marked on the planet’s surface at an angle of θ to the path. A
second arrow was set to this angle and taken along on the expedition. At all
times during the expedition the movable arrow was kept at the same angle,
measured as follows.

Imagine that lines are drawn on the first of Tetra’s faces to be traversed,
parallel to the starting edge (Figure 2). The angle between the moving arrow
and the lines was kept constant as long as the expedition was on this face.
When an edge was encountered the imaginary lines were continued to the
next face by the method of Figure 3. That is, the tetrahedron was imagined
to be ‘flattened out’ without distorting the surface, the imaginary lines
were continued to the next face, and the tetrahedron folded up again. The
arrow was always kept at the same angle to the extended lines. When, after
months of toil, the expedition returned to the starting point, the movable
arrow was compared to the marked arrow and it was found that they made
different angles with the path. In fact, the arrows now pointed in opposite
directions, a change of π radians.

Hingis deduced that, since the change in the angle is a measure of the
curvature enclosed by the path, Tetra has a total curvature of 4π, the same
as a sphere.

Hingis’s findings have enraged his rival Grubor the Excitable. Grubor
is an advocate of the ‘Flat Tetra’ theory. His rival expedition took path B,
marking an arrow on the surface and taking one on the expedition as with
Hingis’ expedition. Back at the starting point over a year later the angle
between the two arrows was zero. Grubor says this proves the ‘Flat Tetra’
theory and that Hingis is a fraud. Hingis is unimpressed by this slur on his
integrity.

Civil war is imminent. Who is right? Is there any possibility of recon-
ciliation of the results?
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Where Mathematics Comes From
George Lakoff & Rafael Núñez,
Basic Books, 2000

Sebastian Hayes

So where does it come from according to these authors? The answer seems
to be: ‘. . . [from] concepts in our minds that are shaped by our bodies and
brains and realized physically in our neural systems’ (p. 346). One might
consider this a rather obvious, not to say bland, conclusion but it is not
a theory the mathematical establishment is going to accept any day soon.
Why not? Because it knocks out the ‘transcendental origin’ theory, other-
wise known as Platonism, to which practically all professional mathemati-
cians subscribe either openly or covertly. The authors point out that there
is no way such a claim could be tested, so it cannot really be considered a
scientific hypothesis.

The authors demonstrate fairly convincingly that many of the sophis-
ticated mathematical procedures we employ can be traced back to primi-
tive schemas, such as the ‘Container Schema’ which underlies Set Theory
and Boolean Logic, schemas which are themselves abstractions from phys-
ical sensations made by—wait for it—infants in arms. ‘Mathematics . . . is
grounded in the human body and brain, in human cognitive capacities, and
in common human activities and concerns’ (p. 358).

All this is, of course, not news to me since I have, off and on, been
advancing some such theory of the origin of mathematics in these pages
for the last thirty years, but it is nice to see some of the details of these
familiar cognitive ‘grounding metaphors’ fleshed out. The dreadful fact is
that mathematicians, pure just as much as applied, cannot get on without
metaphors culled from sensory experience, and, far from ‘transcending’ these
metaphors by abstraction, all too often mathematicians remain pathetically
tied to these conceptions, the ‘metaphor’ of the Number Line being the
most grotesque example. For, whatever numbers ‘really’ are, they certainly
are not points on a line and they are not at a specific distance from a
mathematical ‘origin’.

From my point of view, the book does not go far enough, since it (just)
stops short of developing a truly empirical theory of mathematics, largely
because of the excessive importance the authors give to what they call the
Basic Metaphor of Infinity (BMI)—for if there is one mathematical concept
that is not grounded in our sensory experience (except in a strictly privative
sense), it is infinity.
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Also, the book is too long—nearly 500 large pages—though anything
shorter would have been dismissed by the establishment as superficial. For
all that, this is a very welcome book and a brave one too, since the authors
remark at one point, with commendable understatement, that ‘it is not un-
usual for people to get angry when told that their unconscious conceptual
systems contradict their fondly held conscious beliefs’ (p. 339). Out of con-
text, you might think Lakoff & Núñez were referring to hardline Creationists
from the Bible Belt in America—but no, ‘people’ in this quote simply means
professional mathematicians.

Solution 228.3 – Another arithmetic progression
The three sides of a triangle are in arithmetic progression with
common difference 1. The largest angle exceeds the smallest by
90◦. What are the sides?

Brian Howlett
Define the triangle as having sides a− 1, a and a+ 1 and smallest angle A.
Then the largest angle is A+ 90◦ and the third angle is 90◦ − 2A.

Now use the cosine rule in the form cosA =
b2 + c2 − a2

2bc
, using the

usual notation. So for the smallest angle we have

cosA =
a2 + (a+ 1)2 − (a− 1)2

2a(a+ 1)
=

a+ 4

2(a+ 1)
.

For the third angle, since cos(90◦ +A) = − sinA, the cosine rule gives

− sinA =
a2 + (a− 1)2 − (a+ 1)2

2a(a− 1)
=

a− 4

2(a− 1)
.

Now, making use of the well-known formula sin2 α+ cos2 α = 1, we have(
a− 4

2(a− 1)

)2

+

(
a+ 4

2(a+ 1)

)2

= 1.

Algebraic manipulation, left as an exercise for the reader, reduces this to
a4 − 5a2 − 14 = 0. So (a2 + 2)(a2 − 7) = 0. Of the four solutions, only
a =
√

7 satisfies the triangle problem. Hence the required triangle has sides√
7− 1,

√
7 and

√
7 + 1.

Also solved by Sebastian Hayes, Steve Moon and Norman Graham.
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Two Millennia of Mathematics:
From Archimedes to Gauss
George M. Phillips,
Canadian Mathematical Society, Springer, 2000.

Eddie Kent
‘In an ideal university the staff would supplement the standard courses by
offering lectures in which they talked about topics which they particularly
loved . . . ’ begins a review of this book in the LMS Newsletter. No doubt;
but of course attending these lectures wouldn’t propel you through any
exam. For that you need something like the M500 Weekend. However, once
over that hump this book is fun to read.

Professor Phillips’s supervisor at Aberdeen was Edward Wright, of
Hardy & Wright An Introduction to the Theory of Numbers and of Ab-
erdeen’s Sir Edward Wright Building. Apart from a few years at Southamp-
ton he stayed for most of his career at St Andrews University. He wears
a Mackenzie tartan tie and speaks Doric, a language that is not difficult
to read once you grasp that, for instance, ‘Tatatitore’ means ‘Goodbye to
Torry’.

As a preliminary, George enters the debate over whether results in math-
ematics are created or discovered. He compares Bach, Shakespeare and
Gauss, all figures of comparable status in their fields, and points out that
of the three only the work of Gauss does not retain his individual identity.
All his achievements would sooner or later have been discovered by someone
else. This book then is an account of those discoveries that have interested
the author in particular, and of how they came about. Often, he maintains,
found by ordinary mortals. (Oh, to be so ordinary.)

The chapters are (1) From Archimedes to Gauss [going from π to the
AGM], (2) Logarithms, (3) Interpolation, (4) Continued fractions [Fibonacci
pops up here], and (5) More number theory [travelling from primes to sums
of cubes, and including the story of F. N. Cole who at a meeting of the
American Mathematical Society in 1903, without saying a word, multiplied
193707721 by 761838257287 to show that the product is the 67th Mersenne
number]. Each chapter gives the history of its subject, starting quite inno-
cently but digging deeper into complexity and rigour until by a very few
pages into the chapter you start to wish you were sitting comfortably with
pencil and paper. All of the mathematics follows logically if sometimes a
little unexpectedly, and there are many curious incidents and accidents that
are a sheer delight to read. To enjoy this book you must love mathematics.
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The book is excellently produced, as one would expect from Springer,
with a bright shiny cover and acid-free pages. It has an index and a bib-
liography (containing 11 items by G. M. Phillips, an indication that the
subjects are those close to George’s heart); altogether coming to 223 pages.
It follows the irritating custom of numbering each type of object separately,
so you get section 2.1, equation 2.1, figure 2.1, etc., but I suppose some
people like this and can handle it. Another irritation is that although the
book is clearly aimed at people who can handle mathematics, it nevertheless
feels obliged to point out that a useful table of logarithms would have more
than five entries. But that is me wearing my editorial hat.

I make no pretence to judge the mathematics; in fact I had trouble
enough following most of it (look how long I’ve taken), but I was cheered
by the Samuel Johnson quotation – ‘Sir, I have found you an argument; but
I am not obliged to find you an understanding.’ Sam can always be relied
on. And so can George, who seeks to express sometimes difficult ideas with
impressive simplicity.

Problem 231.4 – Four tans
Prove that

tan 70◦ = tan 20◦ + 2 tan 40◦ + 4 tan 10◦.

Problem 231.5 – Four cos and four sins
Prove that

cos4A

cos2B
+

sin4A

sin2B
= 1 ⇒ cos4B

cos2A
+

sin4B

sin2A
= 1.

Problem 231.6 – Three arctans
Suppose a, b, c > 0. Prove that

arctan

√
a(a+ b+ c)

bc
+ arctan

√
b(a+ b+ c)

ca
+ arctan

√
c(a+ b+ c)

ab
= π.

What if there is no restriction on a, b and c?

Errors using inadequate data are much less than those using no data at all.
— Charles Babbage
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Solution 227.7 – Pentagonal numbers
Let P = {0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, . . . }
be the set of (generalized) pentagonal numbers, that is, integers
of the form (3r2 ± r)/2, r = 0, 1, 2, . . . . Which arithmetical
progressions avoid P?

Steve Moon
For a range of (a, b), I had a look for patterns, with the following results for
arithmetic progressions at+ b, t = 0, 1, 2, . . . , a > 0, 0 ≤ b < a.

b for which no member of P generated
a (for at+ b < 1000)
1 –
2 –
3 –
4 –
5 3, 4
6 –
7 3, 4, 6
8 –
9 –

10 3, 4, 8, 9
11 3, 6, 8, 9, 10
12 –
13 3, 4, 6, 8, 10, 11
14 3, 4, 6, 10, 11, 13
15 3, 4, 8, 9, 13, 14
16 –
17 3, 4, 8, 10, 11, 13, 14, 16
18 –
19 4, 6, 8, 9, 10, 11, 14, 17, 18
20 3, 4, 8, 9, 13, 14, 18, 19
21 3, 4, 6, 10, 11, 13, 17, 18, 20
22 3, 6, 8, 9, 10, 14, 17, 19, 20, 21
23 4, 6, 9, 10, 13, 14, 16, 18, 19, 20, 21
24 –
25 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19, 21, 23, 24
26 3, 4, 6, 8, 10, 11, 16, 17, 19, 21, 23, 24
27 –
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Observations.

(a) No solutions for primes 2 and 3.

(b) No solutions for values of a of the form 2m3n, m,n = 0, 1, 2, . . . .

(c) For a prime, a = p, p ≥ 5, there are (p− 1)/2 values of b.

(d) For a of the form a = pk, p prime, p ≥ 5, k an integer, solutions can
be generated by taking values of b which are solutions for a = p and then
adding p to each b, subject to generated values of b for a = pk having b < a;
e.g.

a = 5 −→ b = 3, 4;

a = 10 −→ b = 3, 4 +5
−→ 8, 9;

a = 15 −→ b = 3, 4 +5
−→ 8, 9 +5

−→ 13, 14.

So, if we can generate values of b which cause the arithmetic progression
to avoid P, we can generate solutions for any composite a not of the form
a = 2m3n.

It is easier to find the values of b which do generate members of P for
prime a ≥ 5; then the set we need is the complement, there being a total of
p possible values of b, including 0.

For (a, b) generating at+ b ∈ P for some t, we have

3r2 ± r
2

≡ b (mod a = p), p ≥ 5.

Since gcd(p, 2) = gcd(p, 3) = 1 and 24 = 23 · 3 we can multiply both sides
of the congruence by 24 to obtain 36r2 ± 12r ≡ 24b (mod p) and complete
the square to get

(6r ± 1)2 ≡ 24b+ 1 (mod p).

Now we need the quadratic residues of p. There are (p−1)/2, given by evalu-

ating 12, 22, 32, . . . ,
(
1
2 (p−1)

)2
modulo p. If you continue beyond

(
1
2 (p−1)

)2
to (p − 1)2, you get no new solutions; the numbers appear twice. We also
need 02; so there will be (p + 1)/2 quadratic residues. Hence, for a = p,
there will be p − (p + 1)/2 = (p − 1)/2 values of b that generate at + b
avoiding P.

We next proceed by finding the set of solutions to 24b+ 1 ≡ s, where s
is a quadratic residue of b, or zero, and then the complement of this set is
what we want. By way of example, take a = 23, the same as in the original
statement of the problem.
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02 ≡ 0 (mod 23) −→ 24b ≡ 0 −→ b = 22
12 ≡ 22 ≡ 1 (mod 23) −→ 24b ≡ 1 −→ b = 0
22 ≡ 21 ≡ 4 (mod 23) −→ 24b ≡ 4 −→ b = 3
32 ≡ 20 ≡ 9 (mod 23) −→ 24b ≡ 9 −→ b = 8
42 ≡ 19 ≡ 16 (mod 23) −→ 24b ≡ 16 −→ b = 15
52 ≡ 18 ≡ 2 (mod 23) −→ 24b ≡ 2 −→ b = 1
62 ≡ 17 ≡ 13 (mod 23) −→ 24b ≡ 13 −→ b = 12
72 ≡ 16 ≡ 3 (mod 23) −→ 24b ≡ 3 −→ b = 2
82 ≡ 15 ≡ 18 (mod 23) −→ 24b ≡ 18 −→ b = 17
92 ≡ 14 ≡ 12 (mod 23) −→ 24b ≡ 12 −→ b = 11
102 ≡ 13 ≡ 8 (mod 23) −→ 24b ≡ 8 −→ b = 7
112 ≡ 12 ≡ 6 (mod 23) −→ 24b ≡ 6 −→ b = 5

Hence, terms in P are generated by 0, 1, 2, 3, 5, 7, 8, 11, 12, 15, 17, 22, and
P is avoided by b = 4, 6, 9, 10, 13, 14, 16, 18, 19, 20, 21.

To show how to generate b for composite a, here is an example for
a = 35, the smallest a which is the product of two distinct primes ≥ 5.
Since 35 = 5 · 7, we can generate values of b from the results for a = 5 and
a = 7.

a = 5→ (3, 4), (8, 9), (13, 14), (18, 19), (23, 24), (28, 29), (33, 34);

a = 7→ (3, 4, 6), (10, 11, 13), (17, 18, 20), (24, 25, 27), (31, 32, 34).

Some results are duplicated, but we predict b not generating members of P
for a = 35 with b =3, 4, 6, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 23, 24, 25,
27, 28, 29, 31, 32, 33, 34. Hence we predict these values of b will generate
members of P: 0, 1, 2, 5, 7, 12, 15, 16, 21, 22, 26, 30. The quadratic residues
of 35 are 1, 4, 9, 11, 14, 15, 16, 21, 25, 29, 30 plus 0.

24b ≡ 0 (mod 35) −→ b = 16 24b ≡ 15 (mod 35) −→ b = 21
24b ≡ 1 (mod 35) −→ b = 0 24b ≡ 16 (mod 35) −→ b = 5
24b ≡ 4 (mod 35) −→ b = 22 24b ≡ 21 (mod 35) −→ b = 30
24b ≡ 9 (mod 35) −→ b = 12 24b ≡ 25 (mod 35) −→ b = 1
24b ≡ 11 (mod 35) −→ b = 15 24b ≡ 29 (mod 35) −→ b = 7
24b ≡ 14 (mod 35) −→ b = 2 24b ≡ 30 (mod 35) −→ b = 26

If a is a composite of three or more primes, following the same method
for each prime (and not worrying about duplicates), we can find all b that
do and do not generate members of P. This covers all a of the form a =
kpm1

1 pm2
2 pm3

3 . . . , pi prime ≥ 5, mi a positive integer, k some integer of the
form 2m3n, m,n ≥ 0.
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Turning to primes 2 and 3, we have the following:

(i)
3r2 ± r

2
≡ b (mod 2) and b can be only 0 or 1, and r = 0, 1 respectively

generate members of P; hence no solutions.

(ii)
3r2 ± r

2
≡ b (mod 3) and b can be only 0, 1 or 2, and r = 0, 1 generate

members of P for each; so again no solutions.

Using the same method as before, given no solutions for p = 2 or 3,
there will be no solutions for a of the form 2m3n, m,n = 0, 1, . . . .

So, to summarize, these arithmetic progressions at+ b avoid P:

(a) a prime, a ≥ 5, b < a, where b is not a solution of 24b+ 1 ≡ q (mod a),
for q a quadratic residue of a;

(b) a of the form a = kpm1
1 pm2

2 pm3
3 . . . , pi prime ≥ 5, mi a positive integer,

k some integer of the form 2m3n, m,n ≥ 0.

Letters
Fromage frais
Dear Eddie,

I see that the Diagram prize for the oddest book title of the year has
been won by The 2009–2014 World Outlook for 60-milligram Containers of
Fromage Frais. You may notice something strange about this title, which
moved me to make a comment on The Bookseller website when the shortlist
was announced. Possibly no one else noticed, but luckily the people at the
magazine picked it up. The news story on Yahoo UK reported: ‘Philip Stone
of The Bookseller noted that the winning book, while having a fascinating
title, was out of the range of most people’s pockets, costing $1140. “What
does the future hold for these items? Well, given that fromage frais normally
comes in 60-gram containers, not 60-milligram, one would assume that the
world outlook for 0.06-gram containers of fromage frais is pretty bleak. But
I’m not willing to pay £795 to find out,” he said.’ This mistake raises the
prospect of other book titles containing errors of magnitude, such as The
0.39 Steps, Two Leagues Under the Sea, and Around the World in 1080

Days. To which my friend Mindaugas adds The 1.001 Nights.

Best wishes

Ralph Hancock
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Arithmetic progressions
Dear Tony,

Many thanks for the latest issue of M500 (No. 228). I try to read M500
as soon as it arrives as to do otherwise means postponement sine die. (Ask
anyone who is retired and over-committed!)

I like to attempt the problems and the two on page 16 seemed to be
within my capabilities. Problem 228.3 [see page 13]—a triangle whose sides
differ by 1? Well, (1, 2, 3) is a bit flat—so that won’t do; and I know (3, 4, 5)
has a right angle. With all further increases in side length the triangle tries
to become increasingly nearer to an equilateral. So the answer must be
(2, 3, 4) (!). What? The sides are not necessarily positive integers? Oh—
that is problem 228.2!

Never mind! Let the smallest side be a − 1 and the smallest angle be
A. Then the other two angles are 90◦ + A and 90◦ − 2A. . . . [see page 13
for something similar to the omitted details] . . . to calculate A = 24.295◦

approx., and the three sides of the triangle, a − 1 =
√

7 − 1 ≈ 1.64575,
a =
√

7 ≈ 3.64575 and a+ 1 =
√

7 + 1 ≈ 4.64575.

Problem 228.2 [Find all (finite) arithmetic progressions containing only
positive integer terms that have the sum of the first three terms 51 and the
sum of the last four terms 332] must be easier. The sum of the first three
terms is 51. That is, 3a+3d = 51. Therefore a+d = 17. The average of the
last four terms is 83 and the common difference must be even. There are
only seven possible differences to check, which leads to two progressions:

(d = 4) 13, 17, 21, . . . , 77, 81, 85, 89

and
(d = 12) 5, 17, 29, . . . , 65, 77, 89, 101.

Chris Pile

TF writes—Problem 228.2 turned out to be popular, with quite a long list
of contributors generating solutions. Martin Hansen, Brian Howlett,
Sebastian Hayes, Basil Thompson and Steve Moon, not to mention
myself, all solved it in more or less the same manner. If you drop the
positiveness condition, you get two more solutions, namely −27, 17, 61,
105, 149 and −115, 17, 149, 281. Bearing in mind the arbitrary nature of
the parameters, 51 and 332, I am inclined to suspect that the problem had
an origin in real life as part of a grander scheme.
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Nuclear matters
Tony,

I first came across nuclear magnetic resonance in an OU chemistry
course around 1976. It was used for detecting hydrogen, phosphorus, and
other elements with odd mass numbers, or odd numbers of protons and
neutrons. (As far as I remember.)

Later on, I heard about ‘MRI scanning’, and realized that this must
really be based on NMR. But apparently nuclear things were dangerous,
and Watford had even been declared to be ‘a nuclear free zone’. Hence the
term ‘NMR scanning’ was unacceptable.

I suggest that might be one reason why the technical details were not
explored further in a public radio broadcast.

Colin Davies

Laces
Travelators have been in the news recently with the discovery—made in
a non-mathematical way by measuring journey times—that they can be
slower than walking. This was reported in the New Scientist. There is a
summary at http://www.tgdaily.com/content/view/43265/181/.

Eddie Kent

Dear Eddie,

Re: Problem 227.5 – Laces [Your journey involves walking at your nor-
mal constant pace partly along fixed ground and partly along a moving
travelator. Should you stop to tie your undone shoe-laces whilst on the
travelator? The correct mathematical answer is of course yes [M500 230 7];
but . . . ]. Surely only a complete nincompoop would get on to a travelator
with untied shoe laces, an irresistible invitation to the machinery to engulf
your feet first like Uday Hussein’s plastic shredder.

Ralph Hancock

Problem 231.7 – Prime
Let q be a prime of the form 4k + 3. Let p = 2q + 1 be prime. Suppose
2q ≡ 1 (mod p).

Either prove that p is prime, or find a counter-example.
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