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Solution 200.1 – Well spaced
There are n slots, numbered 1 to n, arranged in a circle. They
are to be occupied by n objects, one by one, such that at all
times the objects are as well spaced as possible. The first object
can go anywhere. Thereafter, when an object is added to the
system it must be placed such that the minimum distance to its
two neighbours is as large as possible. Find a general formula
for the number of ways this can be achieved.

Dave Wild
After adding m objects we can count the number of slots between the neigh-
bouring objects. If there are g1 gaps of size s1, g2 of size s2, . . . , then we
will describe the current state as g1 ∗ s1, g2 ∗ s2, . . . .

For example, if we start with 75 slots then the states after adding the
first few objects are

Objects in Ring State

1 1 ∗ 74
2 1 ∗ 37, 1 ∗ 36
3 1 ∗ 36, 2 ∗ 18
4 3 ∗ 18, 1 ∗ 17

.

We are going to look at the case where

1. the ring already contains 2k objects;

2. the maximum and minimum gap sizes differ by at most one;

3. the maximum gap size is greater than 3.

We will work out the numbers of ways that we can add the next 2k objects
and show that the new maximum and minimum gap size still differ by at
most 1. We will consider the cases where the maximum size is odd and even
separately.

Maximum gap size is odd

The initial state is p ∗ (2s+ 1), q ∗ 2s, where s > 1, p > 0 and p+ q = 2k.

If we place an object in a gap of size 2s+ 1 then we can do this in one
way and we are left with two gaps of size s. If we place an object in a gap
of size 2s then we can do this in two ways and we are left with gaps of size
s and s− 1.

Since s > 1, it follows that the first p objects have to be used to split
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each of the gaps of size 2s + 1 and the remaining q objects to split the
gaps of size 2s. Therefore there are p! q! 2q ways of adding 2k objects. The
resultant state is (2p+ q) ∗ s, q ∗ (s− 1). �

Maximum gap size is even

The initial state is p ∗ 2s, q ∗ (2s− 1), where s > 1, p > 0 and p+ q = 2k.

If we place an object in a gap of size 2s then we can do this in two ways
and we are left with gaps of size s and s − 1. If we place an object in a
gap of size 2s− 1 then we can do this in one way and we are left with two
gaps of size s− 1. Since the minimum gap size is the same in both cases, as
s > 1, we can place the 2k additional objects in the 2k gaps in any order.

Therefore there are (2k)! 2p ways of adding 2k objects. This leaves us
in the state p ∗ s, (p+ 2q) ∗ (s− 1). �

In both cases we end up in a state where the difference between the
minimum and maximum sizes is at most 1. Therefore, while the maximum
gap size is greater than 3, we can use the above results to calculate the
number of ways to add the next 20, 21, . . . objects. When n = 75 we have
the following.

Initial Objects Objects State after Ways of
in Ring to be added adding objects adding objects

0 1 1 ∗ 74 75
20 20 1 ∗ 37, 1 ∗ 36 1! · 21
21 21 3 ∗ 18, 1 ∗ 17 1! 1! · 21
22 22 3 ∗ 9, 5 ∗ 8 4! 23

23 23 11 ∗ 4, 5 ∗ 3 3! 5! 25

24 24 11 ∗ 2, 21 ∗ 1 16! 211

25 75− 32 = 43 75 ∗ 0 ?

When we can no longer use the method of doubling the number of
objects then, if n > 1, we will be left in one of the following states: p∗3, q∗2,
p > 0, where p+ q = 2k, or p ∗ 2, q ∗ 1, where p+ q = 2k. We will now show
how many ways there are of adding the remaining n− 2k objects.

p ∗ 3, q ∗ 2, p > 0, where p+ q = 2k

The next p objects have to be added to the gaps of size 3. This can be done
in p! ways and leaves us in the state q ∗ 2, 2p ∗ 1. The remaining slots can
be filled in any order so this can be done in (2q+ 2p)! = (2k+ 1)! ways. So
the ways of adding the final objects is p! (2k + 1)!. �
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p ∗ 2, q ∗ 1, where p+ q = 2k

The remaining slots can be filled in any order; so there are (2p + q)! =
(2k + p)! ways of doing this. �

We can now complete the table for n = 75 and replace the ? by 43!.
So multiplying the entries in the last column of the table we see that the
number of ways of adding 75 objects is 75 · 2213! 4! 5! 16! 43!.

This method described allows us to find a general formula for the case
where n > 3.

Let bNbN−1 . . . b1b0 be the binary representation of n, and mk =
n mod 2k. Then the number of ways of adding the n objects to the ring is

n 2p
N−2∏
k=1

fkF,

where

p = mN−1 +

N−2∑
k=1

(−1)bkmk,

fk =

{ (
2k
)
! if bk = 0,(

mk

)
!
(
2k −mk

)
! if bk = 1,

and

F =

{ (
2N−1 +mN−1

)
! if bN−1 = 0,(

2N
)
!
(
mN−1

)
! if bN−1 = 1.

If we return to our example of n = 75 then N = 6.

k = 6 5 4 3 2 1 0

bk = 1 0 0 1 0 1 1

mk = 11 11 3 3 1

fk = 16! 3! 5! 4! 1! 1!

Thus p = 11 + 11− 3 + 3− 1 = 21 and F = (32 + 11)! = 43!. So the number
of ways of adding the objects is 75 · 221 · 3! 4! 5! 16! 43!.

In the [autumn] of 1972 President Nixon announced that the rate of increase
of inflation was decreasing. This was the first time a sitting president used
the third derivative to advance his case for re-election. — Hugo Rossi
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Solution 226.4 – Three squares
Let T be a triangle with sides a, b, c and in-circle radius r. Let
x be the side of the square such that (i) one side of the square
shares a common border with side a of T , (ii) the other two
vertices of the square lies on sides b and c of T . Define y and z
similarly in terms of sides b and c respectively. Show that
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Sebastian Hayes
The solution to this problem depends on two results.

(a) If r is the radius of the in-circle of triangle ABC, M= rs = r(a+ b+
c)/2.

(b) If a is the base and ha is the height of triangle on base a, the side of
the inscribed square is half the harmonic mean of the base and the height,
i.e. (height × base)/(height + base). (Later we show how to inscribe a
square in a triangle.)

Thus, with the diagram used, where a is the base and the angles are
A,C,B proceeding clockwise:

x =
aha
a+ ha

=
ac sinB

a+ c sinB
,

y =
bhb
b+ hb

=
ba sinC

b+ a sinC
,

z =
chc
c+ hc

=
cb sinA

c+ b sinA
.

Hence

1

x
+

1

y
+

1

z
=

a+ c sinB

ac sinB
+
b+ a sinC

ab sinC
+
c+ b sinA

bc sinA

=
1

a
+

1

b
+

1

c
+

1

c sinB
+

1

a sinC
+

1

b sinA
.
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But

1

c sinB
+

1

a sinC
+

1

b sinA
=

1

ha
+

1

hb
+

1

hc

=
a

aha
+

b

bhb
+

c

chc

=
a

2 M
+

b

2 M
+

c

2 M

=
a+ b+ c

2 M
=

s

M
=

1

r
.

This shows that the sum of the reciprocals of the three heights is 1/r.

To inscribe a square in a triangle

The solution suggests a method for constructing an inscribed square in a
triangle all of whose angles are acute.
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A E F

B H G C

DJ

If the triangle is BAC with height AH, we draw AF = AH parallel to
BC. Then AH = EG = AF and ED/DG = AF/BC since ED and DG
are the heights of similar triangles. Hence

EG

DG
=

AF +BC

BC

and therefore

DG =
BC · EG
AF +BC

=
BC ·AH
AH +BC

=
height× base

height + base

since AH = EG = AF , the height of the triangle.
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Also, if we draw a line through D meeting BA at J , then JD/BC =
ED/AH by similar triangles. Hence

JD =
BC · ED
AF

= BC · ED
AF

since AH = AF . But ED/AF = DG/BC by similar triangles. Therefore

JD = DG =
height× base

height + base
.

We recall that, for two quantities x and y,

A.M. =
x+ y

2
, G.M. =

√
xy, H.M. =

2xy

x+ y
=

(G.M.)2

A.M.
.

Now, H.M. ≤ G.M. ≤ A.M., with equality only occurring when x = y. Thus

DG · JD = inscribed square

=

(
height× base

height + base

)2

≤ height× base

4
=

area M
2

.

The area of the inscribed square is thus always less than half the area of the
triangle except when the triangle is itself inscribed within a square, when
the area of the inscribed square is exactly half that of the triangle and a
quarter that of the larger square.

Problem 232.1 – π + e
Tony Forbes
Not long ago I made a decision to spend the rest of my life believing that
π + e is rational. Not unreasonable behaviour—unless of course someone
can prove that I am wrong. Perhaps I am hoping that something useful
and interesting will occur to me. Meanwhile, what we are asking you to do
for this problem is decide the whether the following numbers are rational
or irrational, on the assumption that π + e is rational.

π − e,
πe, π/e, π2e2, π2/e2, π3e3, π3e3, etc.,

πe, eπ,

π2 + e2, π2 − e2, π3 + e3, π3 − e3, π3 + e3, π3 − e3, etc.

Can you find any new rational and irrational numbers?
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The Generalized Principle of Relativity
Dennis Morris
Einstein postulated the now very much verified principle that physical re-
ality is invariant under change of velocity. Change of velocity is rotation
in space-time. Space-time is the geometric space that is found in the finite
group C2 (one simply exponentiates the Cayley table). It is common in par-
ticle physics to require that physical reality is invariant under transforma-
tions in the Lie groups U(1) and SU(2) (and some others). Transformations
in these two groups are just rotations in euclidean space and quaternion
space respectively. These are the geometric spaces found in the groups C4

and H. There are 18 infinite families of simple finite groups and 26 simple
sporadic groups. I hereby postulate the generalized principle of relativity.

The generalized principle of relativity is that physical reality is invariant
under rotation in the geometric spaces of every simple group. The aim is to

1. correlate the Lie groups with the finite simple groups

2. discover the nature of rotation in each simple sporadic group and each
family of simple finite groups

3. write down a lagrangian that is invariant under rotations in all simple
finite groups

4. derive the field equation(s) from that lagrangian; the speculation is
that the field equation(s) will be the unified field theory of physics.

About 100 years work methinks.

Problem 232.2 – Angles
Suppose A+B + C = 45◦. Show that

(cosA+ sinA)(cosB + sinB)(cosC + sinC)

= 2(cosA cosB cosC + sinA sinB sinC).

Problem 232.3 – Three degrees
Devise a ruler-and-compasses geometric construction for

1

16

((√
6 +
√

2
)(√

5− 1
)
− 2

(√
3− 1

)(√
5 +
√

5

))
.
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Solution 226.8 – 999 nines

What are the last nine digits of the
number whose value is an exponential
tower of 999 nines? 999

· ·
· 9

99

Tony Forbes
Since nobody has sent a solution to this interesting problem I thought I
might like to have a go.

To save constructing large and unwieldy towers of nines we first define
some notation. Let Tk(r) denote a tower of k nines with r at the top,

Tk(r) = 99
9 · · · 99

9r

(k nines),

and for brevity let Tk = Tk(1). Denote as usual by φ(n) the number of
positive integers less than or equal to n and co-prime to n. This is Euler’s φ
function. Recall that if we have a congruence such as xy ≡ z (mod n) with
gcd(x, n) = 1, then we can simplify it by reducing the exponent modulo
φ(n) thus: xy mod φ(n) ≡ z (mod n).

Our task is to compute T999 mod 1000000000. Using the φ function as
indicated this is equivalent to

9T998 mod φ(1000000000) ≡ T1(T998 mod 400000000) (mod 1000000000).

Moving up another nine and using the fact that φ(400000000) = 160000000,
this is equivalent to T2(T997 mod 160000000) (mod 1000000000).

I hope the pattern is becoming revealed. Each time we move up the
tower of nines we apply the φ function to the exponent. Applying φ repeat-
edly, starting with 1000000000, gives

400000000, 160000000, 64000000, 25600000, 10240000,

4096000, 1638400, 655360, 262144, 131072, 65536, 32768,

16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32,

16, 8, 4, 2 and finally 1.

Counting these iterations very carefully, we see that our task is to compute

T27(T972 mod 1) ≡ T27(0) ≡ T26(90 mod 2) ≡ T26

with everything modulo 1000000000.
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We continue to work backwards, descending the tower of nines and
reversing the iterations of φ:

T26 ≡ T25(9 mod 4) ≡ T25 ≡ T24(9 mod 8) ≡ T24

≡ T23(9 mod 16) ≡ T22(99 mod 32) ≡ T21(99 mod 64)

≡ T20(99 mod 128) ≡ T19(973 mod 256)

≡ T18(973 mod 512) ≡ T17(9329 mod 1024)

≡ T16(9841 mod 2048) ≡ T15(9841 mod 4096)

≡ T14(9841 mod 8192) ≡ T13(94937 mod 16384)

≡ T12(94937 mod 32768) ≡ T11(921321 mod 65536)

≡ T10(921321 mod 131072) ≡ T9(921321 mod 262144)

≡ T8(921321 mod 655360) ≡ T7(9545609 mod 1638400)

≡ T6(9873289 mod 4096000) ≡ T5(9873289 mod 10240000)

≡ T4(99065289 mod 25600000) ≡ T3(93945289 mod 64000000)

≡ T2(916745289 mod 160000000) ≡ T1(9112745289 mod 400000000)

≡ 9192745289 ≡ 392745289 (mod 1000000000);

and that is the final answer, 392745289, assuming I have counted correctly.

Problem 232.4 – Gradients
Robin Whitty
For each real number
α in the range (0,∞),
draw the graph of the
function

x 7→ xα,

0 ≤ x ≤ 1, and
mark the point where
the gradient is 1.

What is the func-
tion traced out by
these points (assuming
that a suitable choice is
made when α = 1)?

ss s s s s s s s s
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Solution 226.6 – Two bombs
There is a collection of bombs, all of identical construction. Your
task is to determine the minimum height from which a bomb
must be dropped for the detonation mechanism to work. Great
accuracy is not necessary. Measurement to the nearest 10 feet
is all that is required. You have at your disposal a very tall
building whose floors are spaced ten feet apart.

If you are given just one bomb to test, all you can do is this,
starting at n = 1. Drop the bomb from floor n and see what
happens. If it explodes, report ‘10n feet’. If not, retrieve the
bomb and repeat the test from floor n + 1. You may assume
that a bomb which survives being dropped will not sustain any
damage, and therefore a future test will be valid. On the other
hand, once the bomb explodes it cannot be used again.

Now suppose instead you are given two test bombs. How can
you improve your strategy?

Tony Forbes
Nobody has sent anything on this, so I thought I would have a try, even
though I do not really have a satisfactory answer. If there is no known upper
bound to the detonation height, the problem seems to be more difficult. Also
we need to be reasonably clear about the way we measure a strategy. So let
us take the easier option: we assume that there does exist a known upper
bound, and we look for the strategy that minimizes the number of tests in
the worst possible case.

Actually it is better to solve a slightly different problem, and we might
as well dive straight into the general case. Given a number of test bombs,
b, and a number of tests, t, we ask ourselves the question, “What is the
maximum height H = H(b, t) such that we can guarantee to determine the
bomb’s detonation height, assuming it is at most H?”

If b = 1, we carry out the procedure described in the statement of the
problem. Thus H(1, t) = t+ 1. Moreover, if t < b then the (t+ 1)th bomb
is redundant and H(b, t) = H(t, t). In the remaining case, with b > 1
bombs and t ≥ b tests, our plan is as follows. For the first test we go
to floor H(b − 1, t − 1) and drop the bomb. If it explodes, then we know
that the detonation height is at most H(b − 1, t − 1), and, having used
one bomb and one test, the problem is indeed reduced to b − 1 bombs
and t − 1 tests. On the other hand, if the bomb survives, we move the
ground up to floor H(b − 1, t − 1) and continue the process with b bombs
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and t− 1 tests, the relevant height value being H(b, t− 1). Thus H(b, t) =
H(b− 1, t− 1) +H(b, t− 1). Putting all this together, we have

H(1, t) = t+ 1,

H(b, t) =

{
H(t, t) if t < b,
H(b− 1, t− 1) +H(b, t− 1) if t ≥ b.

t b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8
1 2 2 2 2 2 2 2 2
2 3 4 4 4 4 4 4 4
3 4 7 8 8 8 8 8 8
4 5 11 15 16 16 16 16 16
5 6 16 26 31 32 32 32 32
6 7 22 42 57 63 64 64 64
7 8 29 64 99 120 127 128 128
8 9 37 93 163 219 247 255 256
9 10 46 130 256 382 466 502 511

10 11 56 176 386 638 848 968 1013
11 12 67 232 562 1024 1486 1816 1981
12 13 79 299 794 1586 2510 3302 3797
13 14 92 378 1093 2380 4096 5812 7099
14 15 106 470 1471 3473 6476 9908 12911
15 16 121 576 1941 4944 9949 16384 22819
16 17 137 697 2517 6885 14893 26333 39203
17 18 154 834 3214 9402 21778 41226 65536
18 19 172 988 4048 12616 31180 63004 106762
19 20 191 1160 5036 16664 43796 94184 169766
20 21 211 1351 6196 21700 60460 137980 263950

To answer the original problem we look up the maximum height in the
column headed b = 2, or use the formula

H(2, t) =
1

2
(t2 + t+ 2)

to determine t, the (maximum) number of tests required.

Upside down? Show that the quadratic ax2 + bx+ c = 0 has solutions

x =
2c

−b±
√
b2 − 4ac

.

[Sent by Emil Vaughan.]
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Problem 232.5 – Three points on a cuboid
Take a cuboid (a solid object which looks like a cube except that its length,
width and height are not necessarily the same). Mark a point on each of
three mutually orthogonal faces. The problem we want you to solve is to
show how to construct the lines on each of the three faces at the intersections
of the plane that passes through the three points.
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In the diagram you can see the easy case, where each point happens to
lie on the appropriate face diagonal. I must admit that I (TF) really wanted
to use a more typical example to illustrate the problem. Unfortunately I do
not know how to do the general case.

Thanks to John Faben for showing me this interesting problem.

Mathematics in the kitchen – VII
Tony Forbes
Here is a nice little problem communicated to me by Robin Whitty and
which might be of use to readers, especially those who cook food.

Robin wants to suspend a large, heavy kitchen cupboard on a wall. So he
drills two holes in the back panel, near the top-left and the top-right corners,
and continuing into the wall. Through each hole he inserts a suitable fixing
bolt and the cupboard is hung. But as the years go by gradual disruption of
the brickwork in the wall by minor earthquakes causes the fixings to work
loose, and eventually the cupboard falls down.

Fortunately Robin can have his life again. This time he tiles the lower
part of the kitchen wall and then lets the bottom edge of the rear of the
cupboard rest on the top of the last row of tiles. Now the tiles take a share
of the load. So should Robin be surprised to see the cupboard break away
from the wall considerably sooner than before?

Warning: Do not try this at home. Hanging cupboards is dangerous
work that is best left to competent builders.
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Problem 232.6 – Thrackles
In graph theory one spends a lot of time drawing diagrams of graphs. The
vertices are represented by distinct points in the plane R2. An edge that
joins vertices (points) a and b is drawn as a curve that starts at a, ends
at b but otherwise does not pass through any vertex; that is, a continuous
one-to-one mapping C : [0, 1]→ R2 such that C(0) = a, C(1) = b, and if v
is any vertex point then C(x) 6= v for all x ∈ (0, 1).

If, additionally, any two edges have disjoint interiors (i.e. allowed to
meet only at vertices), the graph is called planar. Obviously this is a nice
property, and if a graph does admit a planar representation, there is some
merit in trying to find one.

However, for this problem we wish to consider a kind of extreme opposite
to planarity. A thrackle is a representation of a graph where any pair of edges
meet exactly once, either at a common vertex or, if there is no common
vertex, at a crossing-point somewhere in their interiors. By a crossing-point
we mean that edge E approaches edge F , say, meets it, and then continues
on the other side of the F . We do not allow E to meet F tangentially.

1. Show that the cycle graphs C2, C3, C5, C6, . . . have thrackle repre-
sentations but that C4 does not.

2. Investigate Conway’s conjecture: a graph with more edges than
vertices has no thrackle representation.

And for illustration, we show C6 as a thrackle on the left and in its familiar
planar representation on the right.
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Women in mathematics
Eddie Kent
The film Fermat’s Room concerns a small group of mathematicians who are
drawn together to work on a special project. So that they should remain
anonymous they are given name-tags to wear: Fermat for the host, Hilbert,
Galois, Oliva and Pascal for the others. In my review [M500 230] of the
film I mentioned that Oliva who, we were told, was a female mathematician
was not known to me. I therefore tried to look her up, but could find no
trace. This has now changed; possibly because of the film. Maria Vintro
has put a note on the Net about a site—women-philosophers.com—which
has some details of the life and work of Oliva Sabuco.

The lady was born in Alcaraz, Spain, and baptized on 2 December 1562.
As she was taught by her father and brother, as well as by some family
friends, it can be assumed that she had an ability that might have benefited
from formal schooling. Most of her learning was in medicine, because that
was her father’s and brother’s profession, but it was still far removed from
what a nicely brought up girl should do. The family lived very close to a
Dominican-run convent and since Oliva willed part of her house to the nuns
we can assume that this was to thank them for their help, possibly with
latin and philosophy.

In December 1580 she married Acacio de Buedo. It might be that Acacio
knew Don Simon Abril, humanist, native of Alcaraz, and writer of works
on grammar, logic, mathematics, human nature and law. It is said that
Don Simon acted as mentor and possibly tutor to Oliva. In any case his
publisher brought out Oliva’s New Philosophy of Human Nature, unknown
and not reached by the ancients which improves human health and life. In
1586 Oliva had petitioned the king for permission to publish her work which
appeared the next year.

When he saw it begin to make money her father claimed authorship
of the book. He gave his son power of attorney to publish it in Portugal,
and put an ‘anathema’ on his daughter when she protested; this caused the
Inquisition to prick up its ears, with the possibility of another witch to burn.
In the end they failed to kill her but later editions of her book appeared
duly expurgated by the Inquisition.

That’s about the end of it. She lived, gave birth and died in due time,
and was clearly never destitute; one assumes she had friends. Although
the first edition of New Philosophy clearly carries Oliva’s name, and records
show that in February 1587 Oliva Sabuco payed the taxes due for publi-
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cation, nevertheless some twentieth-century and later scholars still dispute
its authorship. It is today attributed by the Biblioteca Nacional to ‘Miguel
Sabuco (antes Oliva)’; antes means ‘before’.

At first sight there doesn’t appear to be much mathematics in all this,
though one should read her book to be certain, but perhaps Oliva is the
nearest thing to an internationally known woman mathematician Spain has
got.

What’s the next number?
Tony Forbes
Recall that sequence at the bottom of M500 210 page 28 and, later, at the
top of M500 213 page 22.

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 31131211131221,

13211311123113112211, 11131221133112132113212221, . . . .

If we look instead at the lengths of these numbers, we obtain a new sequence,
dn, whose first few terms are

1, 2, 2, 4, 6, 6, 8, 10, 14, 20, 26, 34, 46, 62, 78, 102, 134, 176,
226, 302, 408, 528, 678, 904, 1182, 1540, 2012, 2606, 3410, 4462,
5808, 7586, 9898, 12884, 16774, 21890, 28528, 37158, 48410,
63138, 82350, 107312, . . . .

Also in M500 213 I observed that the ratio of consecutive terms of dn is
about 1.3.

I was surprised to discover that this 1.3 has been computed exactly. It is
known as Conway’s constant and I am sure you, like me, will be astonished
to learn that it is the unique positive real root of the polynomial

x71−x69−2x68−x67 + 2x66 + 2x65 +x64−x63−x62−x61−x60
− x59 + 2x58 + 5x57 + 3x56 − 2x55 − 10x54 − 3x53 − 2x52 + 6x51

+ 6x50 + x49 + 9x48 − 3x47 − 7x46 − 8x45 − 8x44 + 10x43 + 6x42

+ 8x41− 5x40− 12x39 + 7x38− 7x37 + 7x36 +x35− 3x34 + 10x33

+ x32− 6x31− 2x30− 10x29− 3x28 + 2x27 + 9x26− 3x25 + 14x24

− 8x23 − 7x21 + 9x20 + 3x19 − 4x18 − 10x17 − 7x16 + 12x15

+ 7x14 + 2x13 − 12x12 − 4x11 − 2x10 + 5x9 + x7 − 7x6 + 7x5

− 4x4 + 12x3 − 6x2 + 3x− 6.

Thus limn→∞ dn/dn−1 exists and is equal to 1.30357726903429639125 . . . .
Needless to say, I haven’t a clue as to where that 71th degree polynomial
came from. It is mentioned in The Book of Numbers by John Conway.
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Pronunciation
Eddie Kent
A question on a recent University Challenge was ‘What is the smallest
number that is the sum of two cubes in two different ways?’ One contestant
(no doubt a mathematics student) buzzed immediately with the correct
answer, but I wondered, how fair a problem is that. You would not learn
the answer routinely in any normal course—it is not general enough. In
fact you could know the answer with such little effort in one of only two
ways. Either you are Srinivasa Aiyangar Ramanujan, FRS, or you have
read A Mathematician’s Apology by G. H. Hardy. It is therefore a truly
unfair question since to be on such a programme you might expect to have
some knowledge from many areas, including mathematics. But not the
anecdotage! On the other hand if you are a student of mathematics and do
not know the answer I would suggest you get organized pretty quickly.

I would have forgotten all about this except that I listened to Start the
Week (Radio 4) and heard Nitin Sawhney interviewed. He was about to
perform at Sadlers Wells, and in the conversation he mentioned ‘the Indian
mathematician Ramanujan.’ He pronounced the name with the accent on
the third syllable. I, in common with most Western speakers I’ve heard,
have always put it on the second syllable. I shall now assume that an
Indian, even a dancer and musician, is likely to have it right.

TF writes — I have to confess that I do get irritated when I hear mathe-
maticians using the third-syllable-stressed option to produce a ghastly Cock-
ney/Essex sound, ‘RamanOOjn’. Anyone who has read Robert Kanigel’s
book, The Man Who Knew Infinity will know that Kent and most West-
erners have the right pronunciation.

Curiously, I am reliably informed that the correct pronunciation of my
name is with two syllables, ‘Forbees’ rather than ‘Forbs’—but that’s another
story.

Problem 232.7 – Zero
Show that

cos 1
3π +

cos 2
3π

2
+

cos 3
3π

3
+

cos 4
3π

4
+ . . . = 0.

How would Euler have pronounced ‘Euclid’?
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Twenty-five years ago
Here is something interesting by Gareth Harries, lifted from M500 90
(January 1985, which would have been exactly 25 years ago if the parity
of the M500 months hadn’t changed at some time during the interval from
then till now, February 2010) and which in turn was inspired by an article
of Tony Gardiner in The Mathematical Gazette.

A finite sequence of integers (N0, N1, N2, . . . , Nk) called self-descriptive
if Nj is the number of js that occur in the sequence. For an example with
k = 6, the sequence (3,2,1,1,0,0,0), more informally written as 3211000, is
self-descriptive. Indeed, there are three zeros, two ones, one two, one three
and none each of 4, 5 and 6.

Some things for you to do.

(i) Find all self-descriptive sequences with k < 6 (these are not easy).

(ii) Compute

k∑
j=0

Nj .

(iii) Find a sequence for each of k = 6, 7, 8, 9 and 10. (Hint: work
backwards from Nk).

(iv) Find a general form of one sequence for each k ≥ 7. Are these the
only self-descriptive sequences?

(v) What happens if you start with N1? What about Nr, r < k?

And I see that on the back cover of 90 there are three interesting problems,
which will conveniently fill this page.

(90.1) This is also due to Gareth Harries. At a conference meeting
the delegates were all given place settings equally spaced around a table.
At the pre-conference hospitality session the delegates all became fatigued,
so they all sat down randomly at their table. To avoid disturbing them, the
table was rotated until the maximum number of delegates were seated in
their correct positions. Is it always possible to place more than one delegate
in the correct place?

(90.2) Investigate the probability that in any group of P people, there
are D consecutive days of the year in which at least B of the people have
their birthdays. The case D = 1 is well known.

(90.3) A region of the plane has two axes of symmetry. What other
symmetries must it have?
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