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Leibnitz’s Formula for π
Sebastian Hayes
One of the peculiarities of π, the ratio of circumference of a circle to its
diameter and thus a strictly geometric entity, is that it comes up in all sorts
of unexpected places, thus giving rise to the belief, common amongst pure
mathematicians, that Nature has a sort of basic kit of numbers, including
notably π, e, i and γ that She applies here, there and everywhere. Buffon,
the eighteenth-century French naturalist, worked out a formula giving the
probability of a needle of length l dropped at random onto a floor ruled with
parallel lines at unit intervals cutting at least one line. If l is less than a unit
in length, the formula turns out to be 2l/π and this result has even been
tested experimentally by a modern scientist, Kahan. Actually, in this case
and very many others, there is a perfectly rational connection between the
formula and the properties of circles, but I must admit that I am floored by
the connection between π and the gamma function in the weird and rather
beautiful result Γ(1/2) =

√
π.

The number π also turns up as the limit to various numerical series, a
matter which in the past was of considerable importance as manufacturing
methods required better and better estimates of the value of π. Today,
computers have calculated the value of π to over a billion decimal places so
the question of exactitude has become academic—although computers still
use formulae originally discovered by pure mathematicians such as Euler or
Ramanujan.

Leibnitz, co-inventor of the Calculus, produced several centuries ago,
somewhat out of a hat, the remarkable series

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . . .

British mathematicians, eager to give as much credit as possible to New-
ton, pointed out that a Scot, Gregory, had already derived, using Newton’s
version of the calculus, the formula

tan−1 x = x− 1

3
x2 +

1

5
x2 . . .

and that you obtain Leibnitz’s formula by setting x = 1.

However, apart from the question of priority, one might reasonably won-
der why it should be necessary to bring in calculus to validate such a simple-
looking series. A problem in so-called elementary number theory should, so
I feel at any rate, make no appeal to the methods of analysis or any other
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‘higher’ mathematics but rely uniquely on the properties of the natural
numbers. I feel so strongly about this that I had at one point even thought
of offering a small money reward for a strictly numerical proof of Leibnitz’s
famous series, but I am glad I did not do so, since I have subsequently come
across one in Hilbert’s excellent book, Geometry and the Imagination.

The complete proof is not at all easy—‘elementary’ proofs in Number
Theory are not necessarily simple, far from it—but the general drift of the
argument is straightforward enough.

Consider a circle whose centre is at the origin with radius r, a positive
integer. The formula for the circle is thus x2 + y2 = r2. We mark off lattice
points to make a network of squares (or use squared paper), and take each
lattice as having a side of unit length. For any given choice of circle (with
r > 1), there will be squares which ‘overlap’, part of the square falling
within the circumference and part falling outside the circumference and a
single point counts as ‘part’ of a square.

We define a function f(r) with r a positive integer to be the sum total of
all lattice squares where the bottom left hand corner of the lattice is either
inside or on the circumference of a circle radius r. (Any other criterion,
such as counting a square ‘when there is more than half its area inside the
circle’, would do so long as we stick to it, but there are good reasons for
choosing this ‘left hand corner’ criterion, as will shortly be apparent.)

It is not clear at a glance whether the lattice area, evaluated according
to our left hand corner criterion, is larger or smaller than the true area of the
circle. However, as we make the lattices smaller and smaller, i.e. increase
r, we expect the difference to diminish progressively. Thus f(1) = 5 —
remember we are counting the squares where only the left hand corner
point lies on the circumference. I make f(2) come to 13 and f(3) come to
29, while the two higher values given below are taken from Hilbert’s book
Geometry and the Imagination:

f(2) = 13,

f(3) = 29,

f(10) = 317,

f(100) = 31417.

The absolute value of the difference between the lattice area, f(r), evaluated
simply by counting the relevant lattices, and the area of the circle, πr2, is
|f(r)−πr2|. If we use f(r) as a rough and ready estimate of the area of the
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circle and divide by r2 we thus get an estimate of the value of π obtaining

π ≈ 13/4 = 3.125,

π ≈ 29/9 = 3.222222 . . . ,

π ≈ 317/100 = 3.17,

π ≈ 31417/10000 = 3.1417.

Now, since the diagonal of a unit square lattice is
√

2, all the ‘borderline
cases’ will be included within a circular annulus bounded within by a circle
of radius of r −

√
2 and without by a circle of radius r +

√
2. The area of

this annulus is the difference between the larger and smaller circles, i.e.(
(r +

√
2)2π − (r −

√
2)2π

)
= 4
√

2πr.

But |f(r)−πr2|, the discrepancy between the lattice area and the area of the
circle, is bound to be less than the annulus area since some lattices falling
within the annulus area get counted in f(r), and certainly f(r) cannot be
greater than the annulus area. Thus

|f(r)− πr2| ≤ 4
√

2πr

which, dividing right through by r2, gives∣∣∣∣f(r)

r2
− π

∣∣∣∣ ≤ 4
√

2π

r
. (i)

Assuming Cartesian coordinates with 0 as the centre of the circle, for
any value of r there will be a certain number of points which lie on the
circumference of the circle, those points (x, y) which satisfy the equation
(x2 +y2) = r2, where r is a positive integer. But we must count all the neg-
ative values of x and y as well. For example, with r = 2, the circumference
will pass through the lattice points (2, 0), (−2, 0), (0, 2) and (0,−2) and no
others.

We now introduce a new variable n = r2 making the radius
√
n, and

the equation of the circle becomes x2 + y2 = n. Although n must be an
integer, we lift the restriction on r so that the radius is not necessarily an
integer, e.g. r =

√
7, r =

√
13 and so on.

Now, the number of lattice points on the circumference of a circle with
radius

√
n is equivalent to four times the number of ways that an integer n

can be expressed as the sum of two squares—four times because we allow x
and y to take minus values. This is strictly a problem in Number Theory,
and we have an important theorem.
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The number of ways in which an integer can be expressed as
the sum of the squares of two integers is equal to four times the
excess of the number of factors of n having the form 4k+ 1 over
the number of factors having the form 4k + 3.

Take 35 = 5 · 7. We have as factors of 35 : 1, 5, 7 and 35 which are
respectively 1, 1, 3, 3 (mod 4). Since there are two of each type and 2−2 = 0,
there is no excess of the (4k + 1) type and so, if the theorem is correct, 35
cannot be represented as the sum of two squares, which is the case.

The proof of the theorem is quite complicated and will not be attempted
here. What we can show at once is that

no prime p which is 3 (mod 4) can be represented as the sum of
two (integer) squares.

This is so because any odd number, whether it be 1 or 3 (mod 4), will be
1 (mod 4) when squared. And every even number, whether 2 or 0 (mod
4) will be 0 (mod 4) when squared. So if m happens to be 3 (mod 4) like
7 or 11, it will have no representation as the sum of two squares, i.e. the
equation a2 + b2 = 3 (mod m) is insoluble in integers.

However, if p prime is 1 (mod 4) it may be possible to find a represen-
tation in two squares since (4k + 1)2 + even2 = 1 (mod 4) is possible. A
theorem given by Fermat, which goes some way towards establishing the
principal theorem, states that

an odd prime p is expressible as the sum of two squares if and
only if p = 1 (mod 4).

The ‘if’ part means that every odd prime p such as 5, 13, 17 and so on
can be expressed as the sum of two squares; 13 = 32 + 22 for example and
17 = 42 + 12.

From our point of view, any representation such as 5 = 12 + 22 gives
us eight lattice points, four for the different ways of forming 12 + 22 and
four for the different ways of forming 22 + 12; i.e. the lattice points with
coordinates

(1, 2), (1,−2), (−1, 2), (−1,−2)

and those with coordinates

(2, 1), (2,−1), (−2, 1), (−2,−1).

But 65 = 5 · 13 has factors, 1, 5, 13 and 65 all of which are positive integers
which are 1 (mod 4). There should, then, be four different ways of repre-
senting 65 as the sum of two squares, where the order in which we write the
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two squares matters. And in effect we have

65 = 12 + 82 = 82 + 12 = 42 + 72 = 72 + 42.

We end up with eight lattice points for each combination, namely

(1, 8), (−1, 8), (1,−8), (−1,−8), (8, 1), (8,−1), (−8, 1), (−8,−1)

and

(4, 7), (−4, 7), (4,−7), (−4,−7), (7, 4), (7,−4), (−7, 4), (−7,−4).

The idea now is that, by considering every number n ≤ r2, working out
how many times it can be expressed as a sum of two squares and adding
the results, we will obtain f(r) on multiplying by 4. Actually, this would
include the origin, the point (0, 0), which we do not want to consider, so,
excluding this, we have

(f(r)− 1) = 4
∑

representations of n ≤ r2 as two squares.

Now 1 has a representation since 12 = 12 + 02 giving the four points
(1, 0), (0, 1), (−1, 0) and (0,−1); 2 = 12 + 12 has a representation giving
four points, 3 none and 4 = 22 +22 gives four points producing twelve in all.
I made f(2) = 13, which checks out with the above since (f(2)− 1) = 12.

Actually, rather than work out the excess for each number n individ-
ually, it is much more convenient to add up the number of factors of all
numbers of the form 4k + 1 and then subtract the number of factors of all
numbers of the form 4k + 3. In the first list we have 1, 5, 9, . . . , 4k + 1 ≤ r2
and in the second, 3, 7, 11, . . . , 4k + 3 ≤ r2. Each of these numbers must
appear in the total for its class as many times as there are multiples of it
that are at most r2. Clearly 1 will obviously appear r2 times, but 5 will only
appear [r2/5] times, where the square brackets indicate the nearest integer
≤ r2/5.

Finally, since we are not removing or adding anything, we can subtract
the first term in the 4k+3 category from the first term in the 4k+1 category,
the second term from the second and so on. We end up with the open-ended
series, depending on the choice of r

(f(r)− 1) = 4
∑

representations of n ≤ r2 as two squares

= 4

(
[r2]−

[
r2

3

]
+

[
r2

5

]
−
[
r2

7

]
+ . . .

)
. (ii)
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Now the ‘least integer’ series [r2]− [r2/3] + [r2/5]− [r2/7] + . . . , unlike
the series r2 − r2/3 + r2/5 − r2/7 + . . . , is not an infinite series since it
terminates as soon as we reach the point where r2/(4k + 1) < 1 making
all subsequent terms 0. We assume for simplicity that r is odd and of the
type 4k + 1 so that r− 1 is a multiple of 4. Since all the terms with 4k + 1
as denominator are positive, we can split the series into two, and then add
up the pairs, where the first member of a pair is taken from the + and
the second from the − series. The ‘+ series’ contains [r2/r] and the final
non-zero term is [r2/r2].[

r2

1

]
+

[
r2

5

]
+

[
r2

9

]
+ · · ·+

[
r2

r

]
+

[
r2

r + 4

]
+ · · ·+

[
r2

r2

]
,

0 +

[
r2

3

]
+

[
r2

7

]
+

[
r2

11

]
+ · · ·+

[
r2

r − 2

]
+

[
r2

r + 2

]
+ · · ·+

[
r2

r2 − 2

]
.

If we cut off the series at [r2/r] the error involved, namely the rest of the
original series, will be less than r, or αr where α is some proper fraction,
i.e. [

r2

r + 4

]
−
[
r2

r + 2

]
+ · · ·+

[
r2

r2

]
−
[

r2

r2 − 2

]
< r.

To see this, we write all terms after [r2/r] as [r2/(r + k)], where k is
even and ranges from 2 to r2 − r, since r + r2 − r is the denominator of
the final non-zero term. The absolute values of all these terms are less than
[r2/r] = r and they come in pairs which alternate in sign. Also, all terms
where 2(r+k) > r2 or k > (r2/2−r) = r(r−2)/2 will make [r2/(r+k)] = 1.
The first such term comes when k = r(r − 2)/2 + 1/2 (since k is even) i.e.
when k = (r − 1)2/2. From this point on all pairs will sum to zero so we
can ignore them and only need consider the pairs between [r2/r] and ending
[r2/(r + (r − 1)2/2)]. There will be (r − 1)2/8 such pairs with a maximum
difference of 1 in each case, and so the sum total of the error cannot exceed
(r − 1)2/8 < r since (r − 1)2 < 8r for r ≥ 2.

An example may make this more intelligible. Take r = 9, which is a
number of the form 4k+1. Then [92/9] = 9 and all terms from then on have
their absolute values < 9 while the final last term is [92/92] = [92/(9 + 72)].
The last term where [92/(9+k)] ≥ 2 comes when k = 30 and we can neglect
all pairs where k has values > 32 (we make the last value k = 32 to make
up the pair); k even thus ranges from 2 to 32:

2, 6, 10, . . . , 30, 4, 8, 12, . . . , 32.
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The maximum absolute amount possible will thus be 32/4 = 8 (in this case
−8) and 8 < 9 = r. A similar argument can be used to establish the case
where r is odd and of the form 4k + 3 and any even value of r will be
sandwiched between the two cases. We thus have, returning to (ii),

f(r)− 1

4
= [r2]−

[
r2

3

]
+

[
r2

5

]
−
[
r2

7

]
+

[
r2

9

]
±
[
r2

r

]
± αr,

where 0 ≤ α < 1.

To lift the square brackets, we note that the error in each term is less
than 1 and that there will be, for r odd, (r+ 1)/2 terms if we cut the series
off at [r2/r]. The total possible error is thus < (r + 1)/2 < r for r ≥ 2 and
can be written as ±βr, where β < 1. We can thus write

f(r)− 1

4
= r2 − r2

3
+
r2

5
− r2

7
+
r2

9
± αr ± βr.

Dividing right through by r2 we obtain

1

4

(
f(r)

r2
− 1

r2

)
= 1− 1

3
+

1

5
− 1

7
+

1

9
± α

r
± β

r
,

which has limit as r →∞, f(r)/(4r2) = 1− 1/3 + 1/5− 1/7 + . . . .

Finally, we note that the discrepancy between the area of the circle and
the lattice representation is |f(r)/r2−π| ≤ 4

√
2π/r with limit 0 as r →∞,

giving us the desired limit 1− 1/3 + 1/5− 1/7 + · · · = π/4.

As I see things, π is not a unique number in the way in which 5 or
27/6 are unique numbers, π is basically a label given to a whole family
of convergent numerical series—there are any number of ‘infinite’ series
which are ‘limit equivalent’ to 4 (1− 1/3 + 1/5− 1/7 + · · · ± 1/(2r + 1)),
for example the one we can elicit from the remarkable continued fraction

4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 + . . .

.

What did the mathematician say after a heavy lunch?

“
√
−1/64.”
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Solution 226.5 – Three circles
Three circles touch each other externally and have radii a, b and
c. A fourth circle of radius x touches the other three externally.
Show that√

a+ b+ x

c
+

√
b+ c+ x

a
+

√
c+ a+ x

b
=

√
a+ b+ c

x
.

Steve Moon

C B

A

a a

b

b

c

c

X
x

θ1 θ2

θ4

θ3
θ5

θ6

First use the cosine rule with angles θ1, θ2 and θ1 + θ2:

cos θ1 =
(a+ c)2 + (a+ x)2 − (c+ x)2

2(a+ c)(a+ x)
= 1− 2cx

(a+ c)(a+ x)
.

Similarly

cos θ2 = 1− 2bx

(a+ b)(a+ x)

and

cos(θ1 + θ2) = 1− 2bc

(a+ b)(a+ c)
.
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Hence

sin θ1 =
2
√
acx(a+ c+ x)

(a+ c)(a+ x)

and

sin θ2 =
2
√
abx(a+ b+ x)

(a+ b)(a+ x)
.

We now have expressions for all terms in the identity

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

or
sin θ1 sin θ2 = cos θ1 cos θ2 − cos(θ1 + θ2). (1)

The left-hand side is

sin θ1 sin θ2 =
4abcx

(a+ b)(a+ c)(a+ x)2

√
a+ c+ x

b

√
a+ b+ x

c
(2)

and on the right of (1) we have

cos θ1 cos θ2 − cos(θ1 + θ2) =

(
1− 2cx

(a+ c)(a+ x)

)(
1− 2bx

(a+ b)(a+ x)

)

−
(

1− 2bc

(a+ b)(a+ c)

)
=

2abcx

(a+ b)(a+ c)(a+ x)2

(a
x

+
x

a
− a

c
− x

c
− a

b
− x

b

)
. (3)

Hence, cancelling the common factors on each side of (2) and (3), we get

2

√
a+ c+ x

b

√
a+ b+ x

c
=

a

x
+
x

a
− a

c
− x

c
− a

b
− x

b
. (4)

Then repeat the process using the cosine rule on θ3, θ4, θ3 + θ4 and then
θ5, θ6, θ5 + θ6:

2

√
b+ a+ x

c

√
b+ c+ x

a
=

b

x
+
x

b
− b

a
− x

a
− b

c
− x

c
(5)

and

2

√
c+ b+ x

a

√
c+ a+ x

b
=

c

x
+
x

c
− c

b
− x

b
− c

a
− x

a
. (6)
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Now add (4), (5) and (6); some cancellation and grouping of terms on the
right gives

2

√
a+ c+ x

b

√
a+ b+ x

c
+ 2

√
b+ a+ x

c

√
b+ c+ x

a

+2

√
c+ b+ x

a

√
c+ a+ x

b
=

a+ b+ c

x
− b+ c+ x

a
−a+ c+ x

b
−a+ b+ x

c
,

which after rearranging becomes

b+ c+ x

a
+
a+ c+ x

b
+
a+ b+ x

c
+ 2

(√
a+ c+ x

b

√
a+ b+ x

c

+

√
b+ a+ x

c

√
b+ c+ x

a
+

√
c+ b+ x

a

√
c+ a+ x

b

)
=

a+ b+ c

x
,

or (√
b+ c+ x

a
+

√
a+ c+ x

b
+

√
a+ b+ x

c

)2

=
a+ b+ c

x
,

as required.

Problem 233.1 – Hill
A cannon of mass M fires a shot of mass m to hit a target at distance a.
At distance b in the line of fire there is a hill of height h. Assuming that
the shell just clears the hill before going on to strike the target, prove that
the gun must have been aiming at an angle of

arctan

(
M

M +m
· ah

b(a− b)

)
to the horizontal. Assume also that this takes place in a vacuum on a planet
where gravity always acts vertically downwards and that the gun, the base
of the hill from which its height is measured and the target all lie in the
same horizontal plane.

If that was too easy, obtain a formula which works for a spherical planet
of radius R, say. (Ideally the planet should have an atmosphere, but we
would still nevertheless be interested if you want to neglect air resistance.)



M500 233 Page 11

Differential calculus in C3 space
Dennis Morris
The nature of the 3-dimensional C3 geometric space is such that it does not
have a 2-dimensional subspace. This is because the 3-dimensional complex
numbers do not have a 2-dimensional subalgebra, and this derives from the
fact that the order 3 cyclic group C3 does not have an order 2 subgroup.
One of the consequences of this is that we cannot partially differentiate
in the C3 algebra by holding one variable constant because doing so is to
assume the existence of a 2-dimensional plane in the 3-dimensional space.

Consider the function z = xy (in R3). We can choose the 2-dimensional
(x, z) plane by holding y constant and differentiate within that (x, z) plane.
Doing so from first principles gives

z + δz = (x+ δx)y = xy + y · δx,
δz = y · δx,
∂z

∂x
= y.

However, in C3 space, we cannot hold y constant but must allow that it
varies as x and z vary. We therefore have

z + δz = (x+ δx)(y + δy) = xy + x · δy + y · δx+ δxδy,

δz = x · δy + y · δx,
∂z

∂x
= y +

∂y

∂x
, (1)

where we have taken δxδy to be infinitesimal. If we integrate both sides
of (1) with respect to x, we get back to the original equation, and so the
differentiation is reversible.

There is an alternative view that we differentiate at an infinitesimal
point and that the difference between the 3-dimensional infinitesimal point
and a 2-dimensional infinitesimal point is infinitesimal and that, even in R3,
we do not differentiate in a 2-dimensional plane when we hold y constant it
is misguided teachers drawing misguided diagrams on innocent blackboards
that belies this fact.

Problem 233.2 – Three secs
Show that

sec4
π

7
+ sec4

2π

7
+ sec4

3π

7
= 416.
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Solution 230.4 – Tanks
There are an odd number of tanks in a field. At the appointed in-
stant each tank fires a shell at its nearest neighbour. Prove that
if all the distances are distinct, then there is at least one tank
which escapes being shot at. It is easy to show that the distinct
distances part is essential. It is also easy to see that oddness is
essential; otherwise, for instance, we could have pairs of nearest
neighbours separated from each other by great distances.

Ian Adamson
Suppose that there are n tanks and also suppose to the contrary that each
tank is shot at exactly once. Let D be an n × n matrix (dij), where dij is
the distance from tank i to tank j and set dii =∞.

(1) Circle the minimal distance in each row and note that dij = dji.

(2) Now let A be an n× n matrix (aij) satisfying (i) aij ∈ {0, 1}; and (ii)
ai,j = 1 if and only if dij is circled in D, so that there is exactly one
non-zero element in each row.

(3) Since each of n tanks is shot at whenever n shots are fired, there is
exactly one non-zero element in each column.

(4) From (1) we have aij = aji.

It is easy to see that criteria (2) to (4) are satisfied only if n is even.

This works even if the tanks are in an m-dimensional continuum, where
m is any positive whole number, although m > 1 avoids cross-fire.

Steve Moon
We need only concern ourselves with the set of distances which are the
shortest distance from a tank i to its nearest neighbour j, dij

Let there be 2n+ 1 tanks, since it is an odd number. All distances are
distinct. Hence the set of distances dij , where 1 ≤ i, j ≤ 2n + 1 and i 6= j,
has a least member, say j12. So tanks 1 and 2 fire at each other.

If for any tank i, i ≥ 3, its nearest neighbour was either tank 1 or 2, it
will fire at that tank. So either tank 1 or 2 will be fired at twice. Since a
tank can only fire once, there must be a tank that is not shot at, and we
are done.
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If that is not the case, we can ignore tanks 1 and 2, and look at the set
of 2n − 1 remaining tanks. Repeating the exercise on the set dij for these
tanks, two will fire at each other and either one other tank will fire at them,
or we can eliminate them and look at the remaining 2n− 3 tanks.

Continuing in this way, since 2n − 3, 2n − 5, etc. are all odd, we will
eventually be left with one tank that will fire at either of the last two ‘nearest
neighbours’ and hence escape unscathed—if we get that far.

Solution 229.2 – Tank
I am driving a tank and I have to make a circular tour of various
military bases along a given route. I can arrange to have my tank
transported to a starting point of my choice. Initially my (fuel)
tank is empty, but distributed along the route there is sufficient
fuel to complete my tour. Show that I can choose my starting
point so that I can complete the whole journey and return to
the waiting tank-transporter without running out of fuel.

We have had one or two contributions solving this problem but not in the
simplistic way we were looking for. Assuming it is of interest we give our
solution here.

Let the tank do an imaginary journey starting at some arbitrary point
on the route. Plot a graph of fuel in the tank against distance travelled.
This graph starts at zero but must finish at a non-negative value (although
at points in between it might go negative—which is why the journey has to
be imaginary). Now choose as the start of the real tour the point on the
graph where the fuel level is at its minimum.

Problem 233.3 – Six tans
Let k = π/13. Show that

tan k tan 2k tan 3k tan 4k tan 5k tan 6k =
√

13.

Problem 233.4 – Three tans
Show that the cubic k3 − 21k2 + 35k − 7 = 0 has roots

tan2 π

7
, tan2 2π

7
and tan2 3π

7
.
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Solution 228.1 – Odd expression
Show that the expression⌊(

3 +
√

5
)n⌋

is odd for non-negative integer n.

Tony Forbes
The case n = 0 is left to the reader. Suppose henceforth that n ≥ 1.

Let

α =

√
5 + 1

2
≈ 1.6180339887498948482,

the golden ratio, and let

β =
1

α
=

√
5− 1

2
≈ 0.6180339887498948482.

Consider the sequence defined by sn = α2n + β2n, n = 1, 2, 3, . . . , the first
few terms of which are given by

3, 7, 18, 47, 123, 322, 843, 2207, 5778, 15127, 39603, 103682, 271443, . . . .

Obviously sn is going to be an integer. One way of proving this is to observe
that it would follow by induction from the fact that

sn+2 = 3sn+1 − sn. (∗)

Since α2 = 1 + α and β2 = 1− β, we have

α4 = α2 + 2α+ 1 = 3α2 − 1, and β4 = β2 − 2β + 1 = 3β2 − 1.

Hence

sn+2 = α2n+4 + β2n+4 = α2n
(
3α2 − 1

)
+ β2n

(
3β2 − 1

)
= 3(α2n+2 + β2n+2)− α2n − β2n = 3sn+1 − sn

and thus (∗) is proved.

Having established that sn is an integer, it follows that

2nsn =
(
3 +
√

5
)n

+
(
3−
√

5
)n

is an even integer. Furthermore, 0 <
(
3 −
√

5
)n

< 1. Thus
⌊(

3 +
√

5
)n⌋

is
the even integer 2nsn minus something which is positive and smaller than
1. Hence

⌊(
3 +
√

5
)n⌋

is odd.

Also solved (in an essentially similar manner) by Sebastian Hayes.
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Solution 211.5 – Product
Prove this interesting relation between π2 and e2:(

π2

4
+ 1

)(
π2

4
+

1

9

)(
π2

4
+

1

25

)
. . .(

π2

4
+

1

4

)(
π2

4
+

1

16

)(
π2

4
+

1

36

)
. . .

=
e2 + 1

e2 − 1
.

Steve Moon
First note that the right-hand side is (cosh 1)/(sinh 1) = coth 1.

For the left-hand side, by Weierstrass’s factorization theorem, using the
fact that sin and cos are entire functions, we have

sinπw = πw

∞∏
n=1

(
1− w2

n2

)
and cosπw =

∞∏
n=1

(
1− 4w2

(2n− 1)2

)
,

w ∈ C. Replace w by iz/π. Then

sin iz = i sinh z = iz

∞∏
n=1

(
1 +

z2

π2n2

)
;

hence

sinh z = z

∞∏
n=1

(
1 +

z2

π2n2

)
,

and similarly

cosh z =

∞∏
n=1

(
1 +

4z2

π2(2n− 1)2

)
.

Therefore

coth z =

∏∞
n=1

(
1 +

4z2

π2(2n− 1)2

)
z
∏∞

n=1

(
1 +

z2

π2n2

) =

∏∞
n=1

(
1 +

4z2

π2(2n− 1)2

)
z
∏∞

n=1

(
1 +

4z2

π2(2n)2

) ,

to get the denominator in the right form. Now we put z = 1 to obtain

coth 1 =

∏∞
n=1

(
1 +

4

π2(2n− 1)2

)
∏∞

n=1

(
1 +

4

π2(2n)2

) =

∏∞
n=1

(
π2

4
+

1

(2n− 1)2

)
∏∞

n=1

(
π2

4
+

1

(2n)2

) ,

as required.
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Solution 215.2 – Three angles

If A+B + C = 180◦, show that

∣∣∣∣∣∣
sin2A cotA 1
sin2B cotB 1
sin2 C cotC 1

∣∣∣∣∣∣ = 0.

Steve Moon
Subtracting the first column from the third (and using 1 = sin2 θ + cos2 θ)
we see that the determinant becomes∣∣∣∣∣∣

sin2A cotA 1
sin2B cotB 1
sin2 C cotC 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
sin2A cotA cos2A
sin2B cotB cos2B
sin2 C cotC cos2 C

∣∣∣∣∣∣ .
Then expand down the middle column:

− cotA (sin2B cos2 C − sin2 C cos2B)

+ cotB (sin2A cos2 C − sin2 C cos2A)

− cotC (sin2A cos2B − sin2B cos2A)

= cotA sin(C −B) sin(C +B) + cotB sin(A− C) sin(A+ C)

+ cotC sin(B −A) sin(B +A).

Since A + B + C = 180◦, we have sin(A + B) = sinC, sin(B + C) = sinA
and sin(C +A) = sinB. Hence the determinant simplifies to

cosA sin(C −B) + cosB sin(A− C) + cosC sin(B −A).

When this is expanded we obtain

cosA (sinC cosB − cosC sinB) + cosB (sinA cosC − cosA sinC)

+ cosC (sinB cosA− cosB sinA)

and in this last expression everything cancels to leave zero.

Problem 233.5 – Croquet
A croquet hoop made of wire of diameter 1 has an opening of width w and
is set into the (x, y) plane with the opening occupying the interval from
(−w/2, 0) to (w/2, 0). A croquet ball has diameter d < w. What is the set
of points from which the ball, when struck in a non-spin-inducing manner,
will eventually go through the hoop, possibly after bouncing off its uprights
a number of times. (See L. Carroll, Alice’s Adventures in Wonderland for
further details about croquet.)
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Problem 233.6 – The quartic and the golden mean
A quartic polynomial has two points of inflection, with x coordinates p and
q. Show that straight line which passes through the points of inflection
meets the quartic again at two points with x coordinates

√
5 + 1

2
p −

√
5 − 1

2
q and

√
5 + 1

2
q −

√
5 − 1

2
p.

Thanks to Robin Whitty for communicating to me (TF) this interesting
and surprising appearance of the golden ratio.

Problem 233.7 – Cyclic quadrilateral
Robin Whitty
A convex quadrilateral of sides a, b, c and d is inscribed in a circle of radius 1.
What is d in terms of a, b and c?

M500 Mathematics Revision Weekend 2010
The thirty-sixth M500 Society Mathematics Revision Weekend will
be held at

Aston University, Birmingham

over

Friday 10th – Sunday 12th September 2010.

The cost, including accommodation (with en suite facilities) and all meals
from bed and breakfast Friday night to lunch Sunday is £250 (in Aston’s
Lakeside flats) or £298 (Aston Business School), The cost for non-residents
is £120 (includes Saturday and Sunday lunch). M500 members get a dis-
count of £10. For full details and an application form, see the Society’s web
site at www.m500.org.uk, or send a stamped, addressed envelope to

Jeremy Humphries, M500 Weekend 2010.

The Weekend is open to all Open University students, and is designed to
help with revision and exam preparation. We expect to offer tutorials for
most mathematics-based OU courses, subject to sufficient numbers.
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