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Upon three-dimensional rotation
Dennis Morris
The rotation matrix of 2-dimensional euclidean space is[

cos θ sin θ
− sin θ cos θ

]
.

When θ = 2nπ, this is the identity matrix. And so it is that rotation through
2nπ returns to the starting point. This is not the case in all geometric spaces;
the rotation matrix of hyperbolic space is[

cosh θ sinh θ
sinh θ cosh θ

]
.

And no value of θ other than zero will produce the identity matrix.

The 3-dimensional trigonometric functions of the C3L
1H2

(j=1,k=1) geo-
metric space are

νA =
1

3

(
ex+y + 2e−(x+y)/2 cos

(√
3

2
(x− y)

))
,

νB =
1

3

(
ex+y − 2e−(x+y)/2 cos

(√
3

2
(x− y) +

π

3

))
,

νC =
1

3

(
ex+y + 2e−(x+y)/2 cos

(√
3

2
(x− y) +

2π

3

))
,

and the rotation matrix of this space is νA νB νC
νC νA νB
νB νC νA

 .
This will be the identity matrix when νA = 1 and νB = νC = 0. That is,
when

x =
2nπ√

3
, y = −2nπ√

3
, n = 0, 1, 2, . . . .

Thus, the rotation matrix is unity for many different values of {x, y}. This
means that an object rotating in this space can return to its starting point
by rotating through the above angle.
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Fibonacci numbers
Sebastian Hayes
Recall the Fibonacci sequence Fn.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fn 1 1 2 3 5 8 13 21 34 55 89 144 233 377

n 15 16 17 18 19 20 21 22 23
Fn 610 987 1597 2584 4181 6765 10946 17711 28657

We shall take a look at three problems.

(1) If we consider the sequence Fn (mod 4) we obtain 1, 1, 2, 3, 1, 0, 1,
1, 2, 3, 1, 0, 1, 1, . . . . Show that whenever we do obtain a repeating
cycle of remainders, the first pair of consecutive integers to repeat is
always (1, 1).

(2) Does every number divide some Fibonacci number?

(3) How long can a cycle of remainders be?

First consider the Fibonacci numbers modulo 5:

1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0, 3, 3, . . . .

It looks as if as soon as we obtain two consecutive remainders which add
to the modulus we obtain as next remainder 0 (mod 5). After this the last
remainder before the 0 repeats twice and in effect multiplies the original
sequence, taking into account the modulus. This becomes clearer if we use
minus numbers and reduce. With modulus 5 we get

1, 1, 2,−2, 0,−2,−2, 1(= −4),−1, 0,−1,−1,−2, 2, 0, 2, 2,−1, 1, 0, 1, 1, . . . .

More generally, we will have a sequence of remainders

1, 1, 2, 3, 5, . . . ,m,−m, 0,−m,−m,−2m,−3m, . . . ,−m2,m2,

0,m2,m2, . . . ,−m3, 0,−m3, . . . .

Eventually, at some stage we shall obtain a last remainder of 1 relative to
the modulus when the entire cycle will repeat identically. If (k, p) = 1,
the powers k, k2, k3, . . . , kp−1 will be all different (mod p) and 1 will be
amongst them. Thus, if we take k = 3, p = 5,
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r = 3 = −2 (mod 5),
r2 = 9 = −1 (mod 5),
r3 = 27 = 2 (mod 5),
r4 = 81 = 1 (mod 5),
r5 = 343 = −2 (mod 5).

The question is whether this is going to happen for every modulus p.
We do not in fact need to look out for a consecutive pair (m,−m) giving
0 as the next remainder; if any pair (a, b) crops up more than once, this
means that the cycle is already repeating. To see this we only have to bear
in mind that, just as the sum of two remainders (mod p) is unique, so is the
antecedent of two remainders (mod p). Now, we can trace back the second
occurrence of the pair (a, b) to the preceding pair (b, a − b) and thence to
(a− 2b) giving . . . , a− 2b, b, a− b, a, b, . . . . The pattern is going to be the
same as that from the first occurrence of (a, b), working backwards, which
culminates in the original 1, 1, dots. This means that there is a part which
is . . . , −1, 1, 0, 1, 1, . . . and so the cycle is already repeating.

Could it not be, however, that for at least one modulus p the remainders
manage to avoid repetition in much the same way as the sequences of digits
in π manage to avoid a period? This is not possible since, for any modulus
p, there is a maximum of p2 pairs of consecutive numbers (x, y), where
x, y ∈ {0, p−1}— in fact only p2−1 possible pairs since (0, 0) is impossible
in this context. If we suppose that every Fibonacci fresh number after the
first eliminates a pair from the list of p2 − 1 pairs, we shall soon run out of
possible pairs. This is an application of the Dirichlet ‘Pigeon-hole Principle’
whereby, if there are more than n objects to place in n pigeon-holes, at least
one pigeon-hole with have two or more objects in it.

Thus, rather surprisingly, not only does every number divide some Fi-
bonacci number, it divides an infinite amount of them.

As for the last question, I do not know but it depends on three factors:

(1) How large the modulus is in the first place, because the larger it is,
the more Fibonacci numbers will precede it.

(2) How long the sequence 1, 1, 2, 3, 5, . . . is before we reach the first 0
(mod p). This is not the same as (1) since in most cases the modulus
will fall between two Fibonacci numbers (e.g. F5 < 7 < F6) and there
is no way of knowing a priori how soon the first 0 will come.

(3) How many sequences ending in 0 we have to go through before we
reach . . . , 0, 1, 1, dots, when the whole cycle repeats.
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Item (2) is a minimum for a given modulus if it is itself a Fibonacci
number; thus, for (mod 5) we have a sequence length of p = 5, namely 1, 1,
2, 3, 0. But this does not necessarily mean that Fibonacci number moduli
have the shortest cycles relative to their size.

Item (3) is a minimum, a single sequence ending in 0, if the penultimate
digit before the first 0 is 1. Then we get 0, 1, 1, . . . at once but the only
modulus which is a Fibonacci number and has a cycle of one sequence only
is 2.

For example the cycle for 5 is three sequences long

1, 1, 2,−2, 0,−2,−2, 1,−1, 0,−1,−1,−2, 2, 1, 0, 1, 1, . . . .

The second best minimal number of sequences is when −1 (mod p)
precedes 0 since the next sequence will end (−1)2 = 1.

It would be nice to be able to distinguish numbers which have maximum
cycles, similar to fractions which have the maximum decimal period such
as 1/7.

It seems on the face of it unlikely that any modulus can get near to
the theoretical maximum of p2 Fibonacci numbers for modulus p, though
I am not sure how to determine the maximum in terms of p. Thus 6 as a
modulus has 36 possibilities for (x, y) and with a cycle of

1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0; 1, 1, 2, 3, 5, 2, . . .

attains twenty-four of them, which seems not at all bad.

Problem 234.1 – Two ellipses
Tony Forbes
Let a, b and c be positive numbers with b > a. Let E1 be an ellipse with
axes 2a and 2b and situated in the plane x = −c with its centre at (−c, 0, 0)
and its 2b-axis vertical. Let E2 be the same ellipse but centred at (c, 0, 0)
and with its 2a-axis vertical. Thus

E1(t) = (−c, a cos t, b sin t),

E2(t) = (c, b cos t, a sin t), 0 ≤ t < 2π.

Now join each point of E1 to the diametrically opposite point of E2. In
other words, join (−c, a cos t, b sin t) to (c,−b cos t,−a sin t). The resulting
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surface, bounded by the ellipses, has two singularities in the form of straight
line segments L1 and L2, say, with Li parallel to the major axis of Ei and
centred on a point between the origin and the centre of Ei.

Thanks to Dick Boardman, who showed me what to do, it is not too
difficult to illustrate this interesting surface convincingly. In the picture,
below, you can clearly see the ellipses E1 and E2 as well as the line segments
L1 and L2.

Now for the problem. What is the volume enclosed by the surface
between the two line segments?
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Borromean rings and things
Chris Pile
The Borromean rings are usually shown in two dimensions as three circular
rings linked together but no two rings are linked. This is not possible in
three dimensions without distortion as the rings have constant diameter. A
three dimensional model can be made with three mutually perpendicular
ellipses or rectangles, so that the smaller diameter of each passes through
the larger diameter of another, as in the photo of a chunky wooden model
(I). Using flat polygonal shapes a three dimensional model can be made
with three triangles (II, front). With a view to maximizing the width of
the ‘ring’, and an appeal to symmetry, I made the altitude of the internal
aperture equal to the external width between the mid-points of the sides.
That is, side length 100 mm, internal altitude 50 mm, givng the width of
ring = (50

√
3− 50)/3 ≈ 12.2 mm.

Unfortunately this does not work as I intended because the altitudes
and mid-points for the second triangle do not align so some adjustment has
to be made. It works well enough to give a plausible model but it would
be good to know the exact configuration / orientation for a symmetrical
arrangement.

With square ‘rings’ a three-dimensional model can be made with the
square sides fitting inside the diagonals. Square side 100 mm = internal
diagonal, giving a ring width of (141.2− 100)/2

√
2 ≈ 14.6 mm.

The three squares have one square inside diagonally and one outside
diagonally. Again it was almost possible to have the squares inclined at 45◦

and the internal corners at the mid-points of the sides. To make an attrac-
tive model I added two more squares so that each square had two other
squares inside diagonally and two outside diagonally, with no two squares
linked together; see (II, right) and (III). The model has twenty corners,
suggesting that a polyhedral model with twenty vertices could be made.
Although an accurate drawing showed that the constraints imposed were
not possible (!), I assumed that the vertices were arranged as ten equilat-
eral triangles, ten squares and two pentagons and made the appropriate
number of 3, 4, and 5 sided pyramid ‘cups’ with the same edge length and
45◦ face angle, cemented them together and cut away the edges of the di-
ametral octagons to leave the five diametral squares (II, left) arranged in
the same configuration as the skeletal square model. Although it again
looks plausible it had to be distorted somewhat. However, it appears that a
‘solid’ polyhedron is possible with 22 regular polygonal faces, 10 triangles,
10 squares and two pentagons (II, rear). Is there a name for it?
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There is further scope with pentagonal ‘rings’ as shown in the photo. A
further three rings can be added to make a more symmetric model.

Five ‘Borromean’ squares

The schematic (III) shows that no two squares are linked together yet all
five are linked in five sets of Borromean triples. Starting at the bottom and
going clockwise, call the squares black, green, red, yellow and blue. Then
the Borromean triples are {red, yellow, blue}, {yellow, blue, black}, {blue,
black, green}, {black, green, red} and {green, red, yellow}. The other five
triples are not linked: {red, yellow, black}, {yellow, black, green}, {blue,
green, red}, {green, yellow, blue} and {red, blue, black}.

(I) (II)

(III)
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Matrix operations on a number grid
Comments on a question that arose in the January 2010 Winter Weekend

Dennis Morris
Consider the following 9× 9 number grid.

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81

Draw a T shape anywhere upon this grid that is three boxes wide and three
boxes deep like so:

1 2 3

11

20

and define the T-total to be the total of all the numbers in the T; in this
case, the T-total is 1 + 2 + 3 + 11 + 20 = 37. Define the number at the
bottom of the T to be the T-number; in this case, the T-number is 20. The
T-total and the T-number are two ordered numbers and are thus a vector.
Translation to the right by one column of this vector is[

T-total
T-number

]
=

[
T
N

]
→

[
T + 5
N + 1

]
.

This is accomplished by the matrix: 1
5

N
1

T
1

[ T
N

]
=

[
T + 5
N + 1

]
.
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The adjoint (inverse multiplied by the determinant) of this matrix is 1
−5

N−1

T
1

[ T
N

]
=

[
T − 5
N − 1

]
.

We might expect that a translation to the right followed by a translation
to the left would be the identity, but in fact 1

−5

N−1

T
1


 1

5

N
1

T
1

 =

 1− 5

NT
0

0 1− 5

NT

 .
We can see that this approaches the identity as the T-total and the T-
number approach infinity. Similarly, we might expect that a translation to
the right followed by another translation to the right would be the same as
a translation by two columns to the right. However, 1

5

N
1

T
1


 1

5

N
1

T
1

[ T
N

]
=

 T + 10 +
5

N

N + 2 +
5

T

 ,
which again approaches what we would expect as the T-total and the T-
number approach infinity. The determinant of the single translation to the
right approaches unity as the T-total and the T-number approach infinity.
This means that the adjoint approaches the inverse as the T-total and the
T-number approach infinity.

Matrices do not ‘work properly’ over the number chart because it is a
non-uniform space. This means we can measure how non-uniform a space
is by measuring how much matrices do not ‘work properly’ over it.

Problem 234.2 – Series
Show that

1− 1

7
+

1

9
− 1

15
+

1

17
− 1

23
+

1

25
− . . . =

π(
√

2 + 1)

8
,

an interesting relation between π and
√

2.
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Solution 230.5 – Cup-cake holder
You have a circular piece of tin foil of radius 1. Use it to make
a cup-cake holder of maximum possible volume. For simplicity,
assume that the pleating of the foil to make the sides is done
at an infinitesimal level; so you can compute the volume of the
finished cup-cake holder by the usual formula for a truncated
cone.

-�r -�1− r

-�
r

-� s

-
θ

?

6
h

Dick Boardman
The metallic foil is pleated into a cup or truncated cone so that the base
has radius r, the slope side is 1 − r and the upper radius is s. Let θ be
the semi-angle of the cone. Then the height of the cone is h = (1− r) cos θ
and s = r + (1− r) sin θ. We use the standard formula for the volume of a
truncated cone: v = πh(r2 + rs+ s2)/3.

Plugging into v the expressions for h and s gives

v(r, θ) =
π

3
(1− r)(cos θ)

(
3r2 + 3(1− r)r sin θ + (1− r)2 sin2 θ

)
.

As usual, we differentiate this expression with respect to r and θ and equate
to zero. After some simplification we obtain these two rather complicated
expressions:

∂v

∂r
= π(cos θ)

(
(2− 3r)r + (1− 4r + 3r2) sin θ − (r − 1)2 sin2 θ

)
,

∂v

∂θ
=

π

6
(r − 1)

(
(1− 2r − 5r2) sin θ

+ 3(r − 1)(cos 2θ)(−2r + (r − 1) sin θ)
)
.

We want to find r and θ such that ∂v/∂r = ∂v/∂θ = 0. Solving these two
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equations is very messy. It is easier to use numerical methods. After doing
the computation we see that the relevant root occurs at

r ≈ 0.53564, θ ≈ 0.560008 ≈ 32.0856◦

to give a maximum volume of approximately 0.542991.

The contour plot of v(r, θ) shows the maximum volume in more or less
the correct place.

Solved in a similar manner by Steve Moon and Tamsin Forbes.

Tony Forbes
Being curious, I could not help wanting to see what the exact solution of
∂v/∂r = ∂v/∂θ = 0 would look like. The two derivatives don’t look very
friendly and it seems that any attempt to obtain a solution by hand is going
to be extremely tedious. Fortunately I have Mathematica to do most of
the work. It’s so simple—after setting up v as a function of r and t (for θ)
you type in Solve[D[v,r] == D[v,t] == 0, {r,t}], wait for something
to appear and then decide which of the 15 solutions presented is the one
you really want.

The expressions delivered by Mathematica for the parameters r and
θ are actually not too bad, and with further simplification (by hand) I
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managed to reduce each of them to one-liners. It serves little useful purpose
to go through the lengthy process of deriving the expressions; so to save
space I give just the final results. Let

p =
11 + 9

√
−107

2
and q =

11− 9
√
−107

2
.

Then

r =
11

63
+

1

1638

((
−5 + 3

√
−107

)
q2/3 +

(
109− 3

√
−107

)
q1/3

)
,

θ = arccos

√
13 + q1/3 + p1/3

27
,

and you can verify that they reproduce the values calculated by numerical
methods. The corresponding exact value of v(r, θ) is a little more compli-
cated. Let

f = 14− p1/3 − q1/3

and
g = 1352−

(
109− 3

√
−107

)
q1/3 −

(
−5 + 3

√
−107

)
q2/3,

both of which are real and have approximate values 7.618485390 and
760.6216695 respectively. Then

v(r, θ) =
gπ
√

81− 3f
(
fg2 + 9g

√
3f(1638− g) + 81(1638− g)2

)
147423

, (∗)

a real number with value 0.542990991408946966830 to about 20 decimal
places. The denominator is 2 · 34 · 7 · 13 cubed.

It is interesting to see that p and q are related by pq = 133. Furthermore,
the other two expressions which involve

√
−107 are related to p by(

−5 + 3
√
−107

) (
109− 3

√
−107

)
= 38p.

I am intrigued by the appearance of the square root of −107 in a simple
problem involving cooking materials. I wonder if cake-makers can offer an
explanation. I also wonder if the catering industry is aware of the solution
to this problem and in particular the value of (∗), an important universal
number, which one might wish to refer to as the cup-cake constant.
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Letters to the Editor
Centuries, squares and balls
Dear Tony,

Thank you for M500 229 with the first 16 ‘century patterns’ of primes
on the front cover. It gives me the incentive to investigate further but, as
mentioned previously, my knowledge of prime number distribution is not
as great although it provides me with some entertainment and amusement.
I am not yet addicted or dedicated to the search! I enclose my lastest
attempts to answer the questions posed in the magazine. I suspect you
have the answers already and I would welcome your expert comments.

With regard to Pythagorean Squares [M500 289, page 11, this was
intended as a postscript to Problem 225 (Pythagorean triangles). That is
why it has nothing to do with buried treasure!

The solution to Problem 229.4 (Balls) is easier done than said (i.e. it is
easier to solve in practice than to explain the strategy). See page 15.

Yours sincerely,

Chris Pile

Formulae
Tony,

Perhaps at my venerable age (my daughters tell me that I am not ‘old’,
just ‘retro’—I’m not sure whether this is a compliment) I should know the
answer to this question, but I don’t, and so I ask for pearls of wisdom from
the Great and the Good who read M500:

Is it possible to prove whether a formula exists?

I can usually cope with the ‘Quadratic Formula’, and I am vaguely aware
that there are formulae for finding the roots of cubics and quartics. And
lurking in a dark recess of my brain is a seditious voice telling me that a
formula for finding the roots of quintics and higher order polynomials does
not exist. Is this because the appropriate formula has not yet been found,
or because someone has actually proved that it cannot exist?

It is my conjecture that the answer to my question is, in general, ‘no’.
This is based on the observation that many people have devoted large parts
of their life looking for a general formula to find the nth prime number. If it
were possible to prove that such a formula can not exist, then presumably
most of them would have gone out and got a life instead.

Tony [Huntington]
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Where does mathematics come from?
I haven’t read the book [George Lakoff & Rafael Núñez, Where Math-

ematics Comes From, reviewed in M500 231 by Sebastian Hayes]; so can’t
really comment in detail but I personally think that some aspects of math-
ematics are independent of human existence. I take this to be something
akin to the ‘Platonist view’.

It is undoubtedly true that everything we perceive comes via our senses
and is processed by our brains but I don’t think this is the same as saying
that without human beings there would be no mathematics.

There are creatures, e.g. wolves or whales, which cooperate and com-
municate and it is not impossible to imagine a super creature, which, via
natural selection, could find an advantage in being able to count ‘there are
more of us than there are in the competing pack’ and measure ‘my opponent
is bigger than me’. Such a creature could still be around when human beings
have become extinct. If it evolved further so as to be able to add, subtract,
multiply and divide then it would find that there were prime numbers and
that there are more prime numbers than you could count. This is a theorem
in Greek mathematics.

This is not to say that all mathematics has an independent existence.
Where you draw the line I leave to wiser minds than mine.

Regards,

R. M. Boardman

Problem 234.3 – Fixed point
If you ever owned a calculator of the type that was popular a decade or two
ago you will surely be familiar with α, the fixed point of the cosine function,
the unique real number that solves the equation

cosα = α.

I (TF) am told by Robin Whitty that this is called Dottie’s number and if
you still have one of the aforementioned calculators, this is how to compute
it. Enter any number and then hit the cos key infinitely many times.
You should see the number 0.739085133215160641655, or something like it,
appear in the display. The attraction is universal; you really can start from
any number you like, and you will always end up with α.

Now for the problem. Prove that α is transcendental.
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Solution 229.4 – Balls
There are bn balls, n each of b different colours. They are ar-
ranged in a line in b blocks of n.⊙⊙⊙⊙⊙⊙⊗⊗⊗⊗⊗⊗⊕⊕⊕⊕⊕⊕
A move is to take a ball from the line, place it somewhere else
in the line and close up the gap.⊙⊙⊗⊙⊙⊙⊙⊗⊗⊗⊗⊗⊕⊕⊕⊕⊕⊕
What is the minimum number of moves necessary to create a
line with no two adjacent balls having the same colour? Prove
that the answer is ≥ 1

2b(n− 1).

Chris Pile
In a line of n balls of the same colour there are n−1 ‘interballs’. If there are
b coloured blocks of n balls, there are b(n − 1) interballs between adjacent
balls of the same colour. An optimum move is to take one ball from one
coloured block (reducing the number of interballs by 1) and insert it between
two balls of another block to separate off one ball (reducing the number of
adjacent balls of the same colour by 2. Hence the minimum number of
moves is b(n− 1) unless n is even and b is odd. A convenient strategy is to
start from the first block on the left and make a move to the next block on
the right, making the bth move from the last block back to the first. Where
n is even and b is odd there will be one pair remaining, but there will also
be a run of b different colours. Move the middle ball to split the pair for the
last move. This strategy will also work if the blocks of balls are arranged
in a circle

Problem 234.4 – Tetrahedron
Three sides of a tetrahedron form an equilateral triangle of side a. The
other three sides have length 1. Show that the diameter of the sphere that
circumscribes the tetrahedron is

√
3√

3− a2
.

What happens if, as before, three sides have length 1 and three sides have
length a 6= 1, but no face of the tetrahedron is equilateral?
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Problem 234.5 – Graham’s number
What are the last 20 digits of Graham’s number?

Graham’s number appears in R. L. Graham & B. L. Rothschild, Ramsey’s
theorem for n-parameter sets (Trans. Amer. Math. Soc. 159 (1971)) as an
upper bound for a problem in Ramsey theory. For details of the problem,
see Eddie Kent’s article in M500 215 (or look it up in Wikipedia). The
number itself is G64, where Gn is defined recursively by

G1 = 3 ↑↑↑↑ 3,

Gn = 3 ↑Gn−1 3.

We are using Donald Knuth’s ‘upward arrow’ notation, a device he invented
to extend the sequence of arithmetic operators: addition, multiplication,
exponentiation, . . . .

We shall adopt the convention of writing a string of n upward arrows
as ↑n. Also let us agree to do computations involving arrows from right to
left, as with repeated exponentiation. For example, the expression a ↑3 b ↑4
c ↑5 d is shorthand for a ↑↑↑ (b ↑↑↑↑ (c ↑↑↑↑↑ d)).

With that out of the way, we can now define x ↑n y for positive integers
x and y by

x ↑−1 y = x+ y,

x ↑n y = x ↑n−1 x ↑n−1 . . . ↑n−1 x, n = 0, 1, 2, . . . ,

where the right hand side of the second expression when written out in full
contains exactly y copies of x.

Roughly speaking, we are taking the previous operation and inserting
y− 1 copies of it in the spaces between y copies of x. For instance, we start
with x ↑−1 3, which is defined as x added to 3, x + 3, and to get the next
level, x ↑0 3, we apply addition to three copies of x, or multiply x by 3:
x+ x+ x = x · 3. Then x ↑ 3 is multiplication applied to three copies of x:
x ↑ 3 = x · x · x = x3, and to get x ↑↑ 3 we apply exponentiation to three
copies of x: x ↑↑ x = x ↑ x ↑ x = xx

x

.

If you put x = y = 2, the computations are quite easy:

2 ↑−1 2 = 2 ↑0 2 = 2 ↑ 2 = 2 ↑↑ 2 = 2 ↑↑↑ 2 = . . . = 4.

However, to compute Graham’s number, we have 3 ↑ 3 = 33 = 27, 3 ↑↑
3 = 33

3

= 7625597484987, and that seems to be about as far as you can get
with ordinary decimal notation.
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Problem 234.6 – Simplification
Simplify

tan θ sin θ

1− cos θ
.

Thanks to Emil Vaughan for this. Looks easy but I think the answer we
are looking for might surprise you.

Problem 234.7 – Directed triangles
Draw a directed graph as follows. Take n points, numbered 0, 1, . . . , n− 1,
and place them in order clockwise (or anticlockwise if you prefer) around
the circumference of a circle. For i = 0, 1, . . . , n − 1 and j = 1, 2, . . . ,⌊n

2

⌋
, join point i to point (i+ j) mod n by an arrow unless an arrow going

in the opposite direction is there already. A directed triangle is where you
have three points a, b, c and arrows joining them thus: a −→ b −→ c −→ a.
(If this doesn’t make sense, try drawing a diagram.)

How many directed triangles do you get?
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is £120 (includes Saturday and Sunday lunch). M500 members get a dis-
count of £10. For full details and an application form, see the Society’s web
site at www.m500.org.uk, or send a stamped, addressed envelope to

Jeremy Humphries, M500 Weekend 2010.

The Weekend is open to all Open University students, and is designed to
help with revision and exam preparation. We expect to offer tutorials for
most mathematics-based OU courses, subject to sufficient numbers.
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