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A New Kind of Science
Stephen Wolfram,
Wolfram Media, Inc., 2002

Sebastian Hayes

Stephen Wolfram is probably known to many readers of M500 as the mil-
lionaire designer/inventor of the computer software package Mathematica.
However, as a pioneer of a ‘new kind of science’ he has been markedly less
successful. I only heard about it six years after its first publication because
of an interview with the great man (who lives as a recluse in Concord,
Massachusetts), reported in the New Scientist.

Wolfram’s main claim to fame is his discovery that ‘very simple rules can
give rise to considerable complexity’. At first sight, this doesn’t sound earth-
shattering but, then, neither did the Second Law of Thermodynamics, which
in its original formulation by Clausius was simply the innocuous sounding
observation that ‘Heat does not spontaneously move from a colder to a
warmer body’.

Wolfram has made a twenty-five year long study of cellular automata
and, partly because of his own software, has been able to investigate their
hidden properties more extensively than anyone else. What is a cellular
automaton? It presupposes

1. a grid which can be extended indefinitely;

2. an initial ‘seed’, usually a single cell (square of grid)
coloured black with empty cells to left and right all
along the first row;

3. a rule which specifies the colour of every cell in each
new row according to the colour of the cells in the row
above.

In the simplest type of cellular automata there are only two permitted
colours, black and white, and a rule attributes the colour of a new cell
according to the colour of the three cells directly above it.

The rule can be presented visually, for example
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If we start with a single black cell and the rest of the row empty, i.e.
. . .���������. . . , we must apply rules 7, 6, 4 and 8 obtaining a ‘Mayan
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temple’ pattern with each row having two more black squares than the row
above it.

. . .���������. . .

. . .���������. . .

. . .���������. . .

. . .���������. . .

. . .���������. . .

Now, since there are two possibilities, � and �, for each of the trios num-
bered 1 to 8 in the top line of the rule, there are altogether 28 = 256 different
rules, giving various patterns of black and white cells.

Wolfram labels the first one 0 since, apart from the initial seed � which
is present in every first row, the rule
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produces a completely blank expanse after the initial row. The last rule,
number 255, does the opposite and makes everything below the first row
black.
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In between there are various intermediary patterns.

The patterns (which I am unable to give in detail on my computer)
fall into three main categories: 1. patterns of fixed size; 2. growing
repetitive patterns; 3. complicated, non-repetitive patterns.

Of the more complex patterns, quite a few are ‘nested’: the Sierpinski
Triangle, for example, is generated by Rule 90. Wolfram observes that this
well-known pattern ‘is exactly Pascal’s triangle of binomial coefficients re-
duced modulo 2, [where] black cells correspond to odd binomial coefficients’
(Wolfram, p. 870)—something I did not know.

That such simple procedures can generate fractal shapes is in itself sur-
prising but even more surprising is that one or two out of the 256 generated
patterns that end up becoming completely random though containing occa-
sional localized pockets of more ordered behaviour. Many other examples
illustrate the same phenomenon.

So far, so good. Wolfram seems to have won the first round on points
by showing that ‘however certain one might be that simple programs could
never do more than produce simple behaviour, the pictures of the past few
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pages [of this book] should forever disabuse one of that notion’ (Wolfram,
p. 39). Moreover, there seems, in the majority of cases, to be no way of
predicting the type of behaviour that a particular rule will produce.

Playing around with various more restricted, or more extensive, types
of cellular automata Wolfram reaches a very significant conclusion:

Looking at many examples [of mobile automata], a certain theme
emerges: complex behaviour almost never occurs except when
large numbers of cells are active at the same time, Indeed, there
is, it seems, a significant correlation between overall activity and
the likelihood of complex behaviour. (Wolfram, p. 76)

Why is this significant? Because, precisely, the behaviour of living creatures
involves the co-operation of astronomical numbers of individual cells, and
we are at every turn confronted by ‘the extreme simplicity of the principle
[of the DNA], on the other the endless complexity of the outcome’ as one
biologist puts it.

Despite—in some ways even because of—the discovery of the DNA and
the subsequent genome project, the phenomenon we call ‘life’ remains as
mysterious as ever. It is to the highest degree paradoxical that cellular au-
tomata, since they are basically just patterns on a computer screen produced
by rules that human beings such as Wolfram specify, have found their com-
monest and most successful applications in the modelling of living systems.
For, whatever else they may be, cellular automata are not the product of
random mutation plus natural selection which, as all good Darwinists know,
are the two forces responsible for most of what we see around us that moves.

As deliberately designed ‘pure’ products of human intelligence, cellu-
lar automata would seem to have more in common with certain abstract
mathematical systems than with physics or biology. And indeed a good
deal of the adverse, not to say violent, reaction to Wolfram’s claims comes
from the mathematical, rather than the scientific, community. Why is this?
Basically, because, although mathematics itself is not in crisis—pure math-
ematics is more flourishing than ever—the relevance of higher mathematics
to what goes on in the real world has become a highly troublesome issue
that orthodox mathematicians would rather not confront, as they suspect
that the answer will not be favourable to them.

Broadly speaking, I fear that the dreadful truth is that ‘Nature does not
do mathematics’ any more than New Labour ‘does God’, to quote Alisteir
Campbell’s unforgettable remark. Euclidian geometry has a certain rele-
vance to situations where close packing in regular arrays is significant, and
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thus to crystallography, but you will look in vain for the standard geometric
shapes, the circle, triangle and even the dead straight line in the natural
world around you. The extraordinarily varied, irregular and complicated
forms of plants and animals could not be a more striking contrast to the
simple ideal shapes Euclid studies with such absorption and that Plato im-
mortalized as his ‘Ideas’. Mandelbrot’s fractals do occasionally look rather
more like natural objects, but no plant is self-similar and the sea-horses of
the Mandelbrot set have nothing to do with real sea-horses.

‘Modern’ mathematics—I mean from Descartes and Newton onwards—
deals essentially in algebraic formulae which in the vast majority of appli-
cations require the completely unrealistic assumption of ‘continuity’. The
equation of a curve y = f(x) is absolute: it delimits the curve everywhere
and for all time (barring certain so-called singularities). As a French physi-
cist I once knew put it, ‘It is “our fault” if we cannot see all the features
of the curve at a glance, they are essentially all there in the formula.’ This
is quite different from definition by recursion where a mathematical entity
is built up step by step from an initial ‘seed’ and, although most mathe-
matical functions can be defined recursively, mathematicians have a marked
preference for the analytic way of doing things.

As for continuity, we now know that exchanges of energy, which account
for practically all physical and chemical behaviour, are not continuous, but
must obey quantum laws. Nonetheless, Calculus methods are still employed
in, for example, population studies and molecular thermodynamics where
we know for a fact that the independent variable can never be smaller than
a single molecule or a single human being. It is doubtless because of the
long shadow mathematics has thrown over physics, that, even today, it is
automatically assumed that Space and Time are ‘continuous’ even though
this is by no means self-evident and has always struck me as being a dead
weight that physicists insist on carrying around with them (essentially be-
cause they have all been trained in the same mathematical school).

As it happens, cellular automata score on both these points. They are
built up step by step, row by row, and the rule is essentially a method for
getting from one state of a system to the next, not a formula which is ‘true
for all time’. This goes some way to explaining the success of applications
of cellular automata to living systems, also to systems involving a very large
number of individual elements, e.g. fluid mechanics. The key question is:
which way of proceeding is Nature’s way? In the days when all scientists
believed in a supremely intelligent Creator God, as Newton and Boyle and
Leibniz did, the analytic approach clearly had the advantage, hence the very
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idea of Nature ‘obeying laws’. As for systems with large numbers of entities,
there was, prior to the invention of computers, no alternative to Calculus
but now it is much less necessary to solve differential equations and concoct
analytic formulae since it is often possible simply to slog it out numerically.

There is, I think, a consensus now that organisms, including ourselves,
are not masterminded by a transcendent intelligent Being. But nor do they
in general ‘know what they are doing’ mathematically and scientifically
speaking. Humble unicellular organisms perform miracles of chemical en-
gineering that even our current technology cannot even remotely rival. No
factory is as efficient and complex as a cell. A cheetah stalking its prey
is ignorant of the equations of motion and children easily learn to ride a
bicycle without knowing anything about angular momentum or gyroscopic
stability. For all this, either ‘instinct’ (whatever that is) or mere trial and
error suffices, and, according to one of the two most successful scientific
theories of all time, trial and error suffice to explain most of what we see
around us in the organic world.

The great thing about cellular automata is that they are not just simple;
they are, some of them at any rate, absolutely simplistic. A child of three
could carry out one of Wolfram’s 256 rules and build up a pattern with
coloured blocks, though she would very rapidly get bored with the activ-
ity. And yet some of these simple automata exhibit very great complexity.
Although some animals seem to possess a rudimentary sense of number, I
cannot conceive of mammals and plants knowing anything at all about cal-
culus. However, I can just about conceive of an organism, or even a genus,
directing itself to carry out over and over again the basic rules governing
the growth of a cellular automaton, and letting the programme run to see
what comes up, while natural selection can be depended on to weed out the
absolutely unworkable results.

Wolfram has a point. Just possibly, something akin to the procedures
that drive cellular automata could take the inorganic into the organic, i.e.
produce life. At this very moment, a Swiss professor, Henry Markham,
is heading a multi-million IBM backed project to develop a true ‘artificial
mind’, not just a chess-playing computer programme but something that has
consciousness and a sense of personal identity. ‘Markham believes,’ a corre-
spondent writes, ‘that consciousness is probably something that “emerges”
given a sufficient degree of organized complexity’ (Daily Mail, January 4
2010). This is precisely Wolfram’s contention; indeed Wolfram goes rather
further in that he seems to suggest that something we might reasonably call
‘life’ is automatically going to emerge from certain types of system whether
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we like it or not. (Some scientists such as Dr Blackmore have seriously sug-
gested that new types of ‘life’ are being spawned already by the Internet.)

Because of the conclusions Wolfram derives from his observation of, or,
better, experimentation with, cellular automata, the contemporary analogy
between the human brain and a computer, which has become something of
a tired cliché, takes on new life. For Wolfram believes that there are plenty
of systems based on precisely formulated simple rules which nonetheless,
perhaps after a considerable lapse of time, exhibit highly complex ‘inter-
esting’ behaviour which is entirely unpredictable (and he gives examples of
this). He suspects that the brain is one such system and proposes this as
the solution to the age-old problem of Free Will versus Necessity.

Even though all the components of our brains presumably fol-
low definite laws, I strongly suspect that their overall behaviour
corresponds to an irreducible computation whose outcome can
never in effect be found by reasonable laws.

. . . As a whole our brains still manage to behave with a certain
apparent freedom.

Traditional science has made it very difficult to understand how
this can possibly happen . . . . [But] in fact there can be vastly
more to the behaviour of a system than one could ever fore-
see just by looking at its underlying rules. And fundamentally
this is a consequence of the phenomenon of computational irre-
ducibility.

For if a system is computationally irreducible this means that
in effect there is a tangible separation between the underlying
rules for the system and its overall behaviour. . . . And it is in
this separation, I believe, that the basic origin of the apparent
freedom we see in all sorts of systems lies. (Wolfram, 750–751)

This claim constitutes a decisive break with the basic presuppositions of
scientific thinking during the last five hundred years, inasmuch as Wolfram
denies that the universe, or us, are predictable even in theory—though
Gödel, Quantum Indeterminacy and Chaos Theory have prepared the way
for this grand conclusion. Oddly, Wolfram faces two ways at once: he
denies on the one hand that there is anything ‘special’ about human beings,
while at the same time, by identifying them as ‘computationally irreducible
systems’ he provides them with ‘free will’ and capacity for development in
unpredictable ways.

Wolfram—and for that matter Dawkins—will have to work a bit harder
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if they want to convince me that man-made patterns on a computer screen
are really analogous to organisms that are subject to the constraints of
actual, as opposed to virtual, space, but he has certainly convinced me that
some features of his automata throw light on the dark mysteries of growth
and form.

When moving on to cosmology—Wolfram is nothing if not ambitious—
he abandons the idea of a grid progressively filling up with coloured cells.
He models Space/Time as ‘a giant network of nodes . . . with a fixed num-
ber of connections’ and departs noticeably from the near universal assump-
tion of Space/Time continuity by giving an estimate of the size of a basic
Space/Time ‘causal link’, namely ‘an elementary distance of 10−35 metres
and an elementary time interval of around 10−43 seconds’ (Wolfram, p. 520).

A New Kind of Science is a very long book (1,200 large pages) but it
is simply and fluently written and, in the main text, contains absolutely no
mathematical formulae—though there is plenty of advanced mathematics
and computer speak in the Notes (300 pages long) for those who might
otherwise be tempted to immediately dismiss this very ambitious work that
claims to prepare the ground for the coming scientific paradigm.

A version of this article has appeared on the website of Sebastian Hayes at
www.sebastianhayes.co.uk.

If anyone is familiar with cellular automata and would like to collaborate in
a project to apply them in a new direction, I would be grateful if he or she
would enter into account with me via sebastianhayes@tiscali.co.uk — SH.

Problem 235.1 – Roots
Let n be an integer, n ≥ 2. Let Sj denote the sum of the jth powers of the
reciprocals of the roots of the equation

1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
= 0.

Prove that

S2 = S3 = . . . = Sn = 0 and Sn+1 =
1

n!
.

For example, with n = 2 the roots are −1± i, their reciprocals are −1

2
± i

2
,

the squares of the reciprocals are ± i
2

and the cubes
1

4
± i

4
.
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Differential equations and trigonometric functions
Dennis Morris
Consider the basic Euclidean trigonometric functions {sinφ, cosφ}. Form
the sum of these and differentiate:

y = sinx+ cosx,
dy

dx
= cosx− sinx,

d2y

dx2
= − sinx− cosx,

leading to the differential equation

d2y

dx2
= − y,

which, obviously, has the solution we started with. This differential equation
and solution are thus associated with 2-dimensional Euclidean space.

Similarly, if we consider the basic trigonometric functions of space–time,
we get the differential equation and solution

s = cosh t+ sinh t,

ds

dt
= sinhx+ coshx,

ds

dt
= s.

In the case of the 3-dimensional natural space, C3L
1H2

[j=1,k=1], we have the

basic trigonometric functions {νA(b, c), νB(b, c), νC(b, c)}. Summing these
and differentiating gives

y = νA(b, c) + νB(b, c) + νC(b, c),

∂y

∂b
= νC(b, c) + νA(b, c) + νB(b, c),

∂y

∂b
= y.

Similarly,
∂y

∂c
= y ⇒ ∂y

∂c
=

∂y

∂b
.

Thus, these differential equations and solution are associated with the C3

group and with the C3L
1H2 natural space.

In the case of the 3-dimensional natural space, C3L
1E2

[j=1,k=−1], we have

the basic trigonometric functions {νA∗(b, c), νB∗(b, c), νC∗(b, c)}, where we
have added an asterisk to avoid confusion with the trigonometric functions
of the above algebra. The differential relations of this algebra are
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∂νA∗

∂b
= νC∗,

∂νA∗

∂c
= νB∗,

∂νB∗

∂b
= νA∗,

∂νB∗

∂c
= − νC∗, ∂νC∗

∂b
= − νB∗, ∂νC∗

∂c
= νA∗.

Summing these trigonometric functions and differentiating gives

y = νA∗(b, c) + νB∗(b, c) + νC∗(b, c),

∂y

∂b
= νC∗(b, c) + νA∗(b, c)− νB∗(b, c),

∂2y

∂b2
= −νB∗(b, c) + νC∗(b, c)− νA∗(b, c),

∂3y

∂b3
= −νA∗(b, c)− νB∗(b, c)− νC∗(b, c),

∂3y

∂b3
= −y.

Similarly
∂3y

∂c3
= − y

and

∂2y

∂b ∂c
= νA∗(b, c) + νB∗(b, c) + νC∗(b, c),

∂2y

∂b ∂c
= y.

These three differential equations,

∂3y

∂b3
= − y, ∂3y

∂c3
= − y, ∂2y

∂b ∂c
= y,

are thus also associated with the group C3 but, in this case, with the C3L
1E2

natural space. From these three, we get equations like

∂3y

∂c3
= − ∂2y

∂b ∂c
.

At this point, I confess that I know very little about differential equa-
tions, but the equation immediately above looks hard to solve if one does
not know the answer. If anyone has seen this equation, or similar, before, I
would be grateful to know of it.
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In general, since every finite group has its own particular set of trigono-
metric functions, it has, associated with it, a particular set of differential
equations, and so we may speak of the dihedral differential equations or the
quaternion differential equations.

Since the quaternion rotation matrix is the Lie group SU(2), which is
associated with (particle physics) isospin, there is a particular set of differ-
ential equations associated with isospin. These isospin equations are not
quite as simple as the ones associated with the C3 group.

The basic quaternion (isospin) trigonometric functions are

QA = cos
√
b2 + c2 + d2, QB =

b sin
√
b2 + c2 + d2√

b2 + c2 + d2
,

QC =
c sin
√
b2 + c2 + d2√

b2 + c2 + d2
, QD =

d sin
√
b2 + c2 + d2√

b2 + c2 + d2
,

so that QB/b = QC/c = QD/d. They have the differential relations

∂QA

∂b
= −QB ,

∂QA

∂c
= −QC ,

∂QA

∂d
= −QD,

∂QB

∂b
=

1

b2 + c2 + d2

(
b2QA +

(
c2 + d2

) QB

b

)
,

∂QB

∂c
=

bc

b2 + c2 + d2

(
QA −

QB

b

)
,

∂QB

∂d
=

bd

b2 + c2 + d2

(
QA −

QB

b

)
and

∂2QB

∂c ∂d
=

−bcd
(b2 + c2 + d2)2

(
3QA +

(
b2 + c2 + d2 − 3

) QB

b

)
,

∂2QB

∂b2
=

b

(b2 + c2 + d2)2

(
3(c2 + d2)QA −

(
b4 + (b2 + 3)(c2 + d2)

) QB

b

)
.

Thus the differential equation

∂3y

∂b ∂c ∂d
=

cd

(b2 + c2 + d2)2

(
3by +

(
3− b2 − c2 − d2

) ∂y
∂b

)
has solution y = QA. And we can construct many other differential equa-
tions similarly. Such are the isospin differential equations. (I wonder if they
are of any use.)
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A curious sequence
Tony Forbes
Given a polynomial p(x) and a positive integer r, define Sn(p(x), r) by

Sn(p(x) ; r) =
1

n

n−1∑
k=0

p(k)

(
2k

k

)r

.

As a subscriber to NMBRTHRY, the internet forum for number theorists,
I became aware of an interesting conjecture. Zhi-Wei Sun of Nanjing Uni-
versity asserted that Sn(21x + 8, 3) is not only an integer but an integer
divisible by 4

(
2n
n

)
. The conjecture was soon proved by Kasper Andersen of

the University of Aarhus by showing that

1

4n
(
2n
n

) n−1∑
k=0

(21k + 8)

(
2k

k

)3

=

n−1∑
k=0

(
n+ k − 1

k

)2

.

Of course the big question is: What’s so special about 21x + 8? After
some experimentation using Mathematica I found in addition to Sn(21x+
8, 3) a few more examples of possible (i.e. not yet rigorously proved by me)
integer-only sequences Sn(p(x), r) with r ≥ 2, namely

Sn(5x4 + 6x3 + x2, 2), Sn(15x5 + 14x4 − 5x3, 2), Sn(15x2 + 16x+ 4, 2),

Sn(15x3 +17x2 +4x, 2), Sn(15x6 +50x5 +31x4, 2), Sn(25x4−29x2−8x, 2),

Sn(42x6+47x5+31x3, 2), Sn(45x6−47x4+50x3, 2), Sn(50x4−43x2+4, 2).

The list is not complete. There are further examples with r = 2, but
sequences with r > 2 seem to be rare—I can’t find any more.

If we allow the exponent r = 1, we get vast numbers of polynomials
producing integer sequences: 3x + 2, 3x2 + 6x + 2, 3x2 + 9x + 4, 3x2 +
15x + 8, 3x2 + 18x + 10, 3x2 + 24x + 14, 3x2 + 27x + 16, 3x2 + 33x + 20,
3x2 + 36x + 22, 3x2 + 42x + 26 and many more. It is possible that the
sum might yield to analysis, perhaps by someone extremely familiar with
the binomial coefficients. So (in addition to finding further examples with
r > 1) I offer as a challenge the problem of characterizing the polynomials
p(x) that produce integer sequences of the form

1

n

n−1∑
k=0

p(k)

(
2k

k

)
.
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Triskaidekaphilia
Bryan Orman
It is not the purpose of this article to discuss whether the number thirteen
is unlucky or even lucky, but to present some unusual arithmetical results
concerning this number.

This number appears quite often in mathematical contexts, for example,
Euclid’s Thirteen Books of Elements and The Thirteen Archimedean Semi-
Regular Polyhedra. Of course there are many everyday references to the
number thirteen; a baker’s dozen and even a ‘thirteen’ which, prior to 1825,
was an Irish shilling worth thirteen pence. Some of the more interesting
ones are listed at the end of this article for amusement.

The number thirteen is the smallest emirp (a prime whose reverse is also
prime), which is interesting, but not as interesting as the fact that 12! + 1
is divisible by 132.

By Wilson’s Theorem, if p is a prime then (p− 1)! ≡ −1 (mod p). The
Wilson quotient is defined to be W (p) = ((p−1)!+1)/p and a Wilson prime
is a prime satisfying W (p) ≡ 0 (mod p). The first three Wilson primes are
5, 13 and 563, with no others less than 5 · 108. So 13 is quite special in this
context.

Now consider the following results involving the number thirteen:

13 = 22 + 32, 132 = 52 + 122, 133 = 92 + 462, 134 = 1192 + 1202.

The first thing we observe is the fact that all four involve the sum of just
two squares. A theorem of Lagrange states that any positive integer can be
written as the sum of four squares, some of which may be zero, so it is not
true that just two squares would suffice for all positive integers.

We note that if two integers, N and M , are each the sum of two squares,
N = a2 + b2 and M = c2 + d2 say, then so is their product. The identity

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2 (i)

establishes this property. The further identity

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2 (ii)

shows that it can be done in two ways. It follows that if N is the sum
of two squares then all its positive integer powers will also be the sum
of two squares. Evidently only primes need be considered since, by the
Fundamental Theorem of Arithmetic, every positive integer n > 1 can be
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expressed as the product of primes. Since a prime of the form 4k+3 cannot
be represented as the sum of two squares, the list of primes of interest is
further reduced. Finally, and most importantly, a prime of the form 4k + 1
can be represented as the sum of two squares, and the representation is
unique. All these basic results are to be found in David Burton’s Elementary
Number Theory, Allyn and Bacon, 1980.

Hereafter it is assumed that N = 4k+ 1 (prime) and therefore the sum
of two squares, N = a2 + b2. If N is the sum of two consecutive squares
then we write N = a2 + (a+ 1)2. We now examine each of the four results
in turn.

13 = 22 + 32

As 13 is a prime of the form 4k + 1, where k = 3, it can be represented as
the sum of two squares, but it is also the sum of two consecutive squares.
Is this true for all N = 4k + 1? If we write 4k + 1 = a2 + (a + 1)2, then
k = 1

2a(a + 1), which is a triangular number. So 13 is not special in this
sense. You may like to generate primes that can be written as the sum of
two consecutive squares by choosing some values of k.

132 = 52 + 122

Since 13 = 22 + 32, identity (ii) gives

132 = 13·13 = (22+32)(22+32) = (2·2−3·3)2+(2·3+3·2)2 = 52+122

and we note that identity (i) does not give a second representation. Gener-
ally, if N = a2 + b2 then N2 = (a2− b2)2 + (2ab)2, which is just the identity
for Pythagorean triples.

Although 13 is the sum of two consecutive squares, 132 is not. Is it
possible for a prime N = 4k + 1 to have its square, N2, represented as
the sum of two consecutive squares? If N2 = A2 + (A + 1)2 then A =
1
2 (
√

2N2 − 1 − 1). Since A is an integer we write 2N2 − 1 = M2 so that
A = 1

2 (M − 1), with M necessarily odd. Now M2− 2N2 = −1 is a Fermat–
Pell equation and its solution, in positive integers Mn, Nn), n = 1, 2, . . . is
given by Mn +Nn

√
2 = (1 +

√
2)2n+1. The first three solutions are

(M1 = 7, N1 = 5) giving 52 = 32 + 42,

(M2 = 41, N2 = 29) giving 292 = 202 + 212,

(M3 = 239, N3 = 169) giving 1692 = 1192 + 1202.

Continuing, can both N and its square N2 be represented as the sum of

two consecutive squares? If N2 = A2 + (A + 1)2 =
(
a2 + (a + 1)2

)2
then,

by identity (ii), we have N2 = (2a+ 1)2 +
(
2a(a+ 1)

)2
.
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So quite simply A = 2a + 1 and A + 1 = 2a(a + 1) and these have the
unique, positive solution a = 1, with A = 3. Thus N = 5 is the unique
prime with the above property; 5 = 12 + 22 and 52 = 32 + 42.

133 = 92 + 462

We know that N3 can be expressed as the sum of two squares and so a
formula for N3 would be helpful. To this end we write N3 = NN2 so that
N3 = (a2 + b2)((a2− b2)2 + (2ab)2) and, applying identities (i) and (ii), two
representations for are obtained:

N3 = (a3 + ab2)2 + (b3 + a2b)2, N3 = (a3 − 3ab2)2 + (b3 − 3a2b)2.

Furthermore, for N = 13 we have a = 2 and b = 3 so that 133 =
262 + 392 = 92 + 462. Since 133 is not the sum of two consecutive squares
it would be interesting to ask whether both N and N3 can be represented
as the sum of two consecutive squares? To this end, the equation N3 =

A2 + (A + 1)2 =
(
a2 + (a + 1)2

)3
needs to be solved for A in terms of a.

Using the second representation of N3 above with b = a+ 1 gives

A2 + (A+ 1)2 = (2a3 + 6a2 + 3a)2 + (2a3 − 3a− 1)2.

And so, either A = 2a3 + 6a2 + 3a and A + 1 = 2a3 − 3a − 1, giving
3a2 + 3a− 1 = 0, which has no integer solutions. Or A+ 1 = 2a3 + 6a2 + 3a
and A = 2a3−3a−1, giving a(a+1) = 0, with the trivial result 13 = 02+12!
So N3 = A2 + (A+ 1)2 has no solution in the positive integers.

It is left to the reader to show that the first representation for N3 also
leads to no solution in the positive integers.

134 = 1192 + 1202

This looks more promising since 134 is expressed as the sum of two consecu-
tive squares. A general formula forN4 is now necessary for the investigation.
Complex factorization is extremely helpful here:

N4 = A2 +B2 = (a2 + b2)4, (A+ iB)(A− iB) = (a+ ib)4(a− ib)4.

There are just two identifications here for A + iB. Setting A + iB = (a +
ib)4 = a4 + 4a3bi− 6a2b2 − 4ab3i+ b4 leads to

A = a4 − 6a2b2 + b4 and B = 4a3b− 4ab3. (iii)

With a = 2 and b = 3 these give 134 = 1192 + 1202.

Setting A+ iB = (a+ ib)3(a− ib) leads to

A = a4 − b4 and B = 2ab(a2 + b2). (iv)
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With a = 2 and b = 3 these give 134 = 652 + 1562, which is the same as
652 + 1562 = 132(52 + 122) = 132132 = 134!

What about consecutive squares? Is it possible for other values of N to
have both N and N4 expressed as the sum of consecutive squares? Using
(iii), either A = a4 − 6a2b2 + b4 and B = A + 1 = 4a3b − 4ab3, or A =
a4 − 6a2b2 + b4 and B = A − 1 = 4a3b − 4ab3. As b = a + 1 the first
pair of equations leads to f(a) = 2a4 − 6a2 − 4a − 1 = 0, and this has no
solution in the positive integers since f(1) = −9, f(2) = −1, f(3) = 95 and
f(a) > 0 for a > 3. The second pair of equations lead to a4−3a2−2a = 1 or
a(a+ 1)2(a− 2) = 0. This equation has the unique solution a = 2 (positive
integer), giving b = 3, and eventually |A| = 119 and |B| = 120. Using (iv)
it can be shown that there are no further solutions in positive integers.

So 13 is a very special integer in that both it, and its fourth power, can
be expressed as the sum of two consecutive squares and no other integer has
this property. This is a remarkable uniqueness property. If you have yet to
appreciate the special nature of the number 13 then consider the following
results concerning squares.

The only squares among the Fibonacci numbers are 1 and 144
and the only squares among the Pell numbers are 1 and 169.

These have been proved.

Markov numbers are the union of the solutions (x, y, z), called Markov
triples, to the Markov equation

x2 + y2 + z2 = 3xyz.

This equation entered the mathematical literature in a paper by Markov
(A. A. Markoff, Sur les formes quadratiques binaires indefinies, Math. Ann.
15 (1879), pp. 381–406 and 17 (1880), pp. 379–400), although interested
readers would find J. H. Conway and R. K. Guy, The Book of Numbers,
Springer, New York 1996, pp. 187–189, more accessible!

The first few Markov triples are (1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13),
(2, 5, 29), . . . . So the first few Markov numbers are 1, 2, 5, 13, 29, 34, 89,
169, 233, 433, 610, . . . . We note that both 13 and its square, 169, are
Markov numbers.

I have conjectured that 13 is the only Markov number whose
square 169 is also a Markov number.

This is still an open question for number theorists and, if it is true, it would
establish 13 as a special one!
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A Thirteen Miscellany

In Christianity there were thirteen at the last supper.

The Great Seal of the United States has 13 arrows, 13 stars, 13 olive
leaves with 13 olives. These form a triangle over the eagle with the number
13 at each vertex.

In Sweden, Trettondagsafton is thirteen day eve, that is, twelfth night.

In the Spanish speaking world it’s Tuesday the thirteenth; ‘En Martes,
ni te cases ni te embarques’, that is, ‘On Tuesday, neither get married nor
start a journey’.

When the Earth revolves once, the Moon revolves thirteen times.

Anagram: ELEVEN + TWO = TWELVE + ONE.

13,333,333,333,333 is divisible by 13 and its quotient is 1,025,641,025,641
and is a prime.

p12 − q12 is divisible by 13 only when p and q are not divisible by 13.

Problem 235.2 – Quartic roots
Let α, β, γ and δ be the roots of the quartic

ax4 + 4bx3 + 6cx2 + 4dx+ e = 0.

Show that the equation

3
√
αβ + γδ − x+ 3

√
αγ + βδ − x+ 3

√
αδ + βγ − x = 0

has the solution

x =
2
(
c3 − 2ad2 − 2b2e+ 3ace

)
a (3c2 − 4bd+ ae)

.

Problem 235.3 – Odd pairs
Show that

∞∑
i=0

∞∑
j=i+1

1

(2i+ 1)4
1

(2j + 1)4
=

π8

16 · 8!
.
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Problem 235.4 – Matrix
Tony Forbes
Construct an n×n matrix as follows. Partition n into n1 and n2, n1, n2 ≥ 2,
and divide the matrix into four parts. The top left part is an n1×n1 matrix
with a on the diagonal and c everywhere else. The bottom right part is an
n2 × n2 matrix with b on the diagonal and d everywhere else. The rest of
the matrix elements are e. Also we insist that a, b, c, d and e are integers
satisfying a 6= b, a 6= c and b 6= d.

In every example I have created I have observed that the rank of the
matrix is either n or n − 1. So here is the problem: Either prove that the
matrix has rank at least n− 1, or find a counter-example. Also it would be
nice to know exactly when rank n− 1 occurs.

Let us fix n = 16, a = 5, b = 6, c = 1 and d = e = 2. Then here is what
the matrix looks like when n1 = 6 and n2 = 10:

5 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
1 5 1 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 5 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 5 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 1 5 1 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 5 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 6 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 6 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 6 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 6 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 6 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 6 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 6 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 6 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6



.

This particular matrix is actually A · AT, where A is the adjacency matrix
of a certain generalized 2-design. As a consequence, it has rank 15. Rank
15 also occurs when n1 = 12 (for which I have no explanation) but the rank
is 16 for all other values of n1.

Thanks to Derek Patterson of Queen Mary, University of London for
the idea behind this problem.
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Snow and sausages
Tony Huntington
Dressed like extras for a cheap remake of Scott of the Antarctic, a select
group braved their way through the January snow to Florence Boot Hall
at the University of Nottingham to participate in the annual M500 Winter
Recreational Mathematics Weekend. Mel and Angela guided us through a
selection of ‘investigations’ which formed the theme of the weekend. These
were simply-worded problems that lend themselves to ‘extensions’. There
were no ‘right’ answers, and no limits to how far you chose to take the in-
vestigation. My thanks to Mel Starkings and Angela Allsopp for an enter-
taining and challenging weekend, to Rob Rolfe who organized and presented
our Friday Night Quiz, and to Diana Maxwell for arranging everything and
for ensuring that all ran smoothly.

On the Friday evening, Mel set us thinking about the mathematics of
sausages. Suppose that you have a string of sausages (these are, of course,
mathematical sausages and so all are of equal length); then, in general, the
string could be arranged in a triangular shape. Given a known number of
sausages in the string, then the sausage number is the maximum number
of different (non-congruent) triangles that you can construct from a given
string. If we let N be the number of sausages, and f(N) be the sausage
number, then what is f(42), and f(2010)? Is there a general formula?

A little bit of thought reveals that the sausages are not essential to
the problem (although they are essential to the cooked breakfast that we
enjoyed in the Dining Hall on both mornings, in my opinion). What we are
considering is triangles with three integer sides. Let the three sides be a, b
and c. Then

a+ b+ c = N.

If we are only considering real triangles (i.e. each triangle encloses a real,
finite area), then each side must be at least 1 unit long, so

a, b, c,N ∈ Z+ and N ≥ 3.

Now, without loss of generality, let us assume that the lengths of the
three sides are such that a ≥ b ≥ c. Then

a < b+ c, a < N − a, a <
N

2
.

And the other two sides will be less than, or equal to, a. Using integer
arithmetic, we can define the upper bound on a as

AU = (N − 1)÷ 2.
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The lower bound on a will occur when a = b = c (if that is possible). In
integer arithmetic this can be expressed as

AL = (N + 2)÷ 3.

And so we can say that
a ∈ {AL ∩AU}.

The number of elements in the set of a is

Na = AU −AL + 1.

Each of the elements in the set of a will appear in at least one triangle, so
Na represents a lower bound on f(N).

Now considering the ‘next longest’ side, b, its upper bound must be a
(otherwise it would be longer than a and so a would not be the longest
side), so

BU = a.

The lower bound on b will occur when b = c (if that is possible). In integer
arithmetic this can be expressed as

BL = (N − a+ 1)÷ 2.

And similarly
b ∈ {BU ∩BL}.

So, for a given N , we can find the largest and smallest values of a. Thus
a is integer and will take on each of the integer values between AL and AU .
For each value of a, we can find the largest and smallest values of b. Indeed,
b is integer and will take on each of the integer values between BL and BU .
And for each combination of a and b, we can find c as c = N − (a + b),
and so we can define each possible triangle in turn, and then count them to
find the sausage number, f(N). Incidentally, because of the way that the
sides of the triangles are found, they must all be mutually non-congruent.
The discussion above does not lead to a general formula for f(N), but is
the basis of an algorithm for finding f(N) for any given N .

Using this algorithm, the values of f(N) for N between 3 and 13, with
intermediate values, are shown in the big table on the next page. And values
of f(N) for N between 3 and 32 are on the little table below it.
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N AU AL BU BL

a b c f(N)

3 1 1 1 1 1 1 1

4 1 2 0

5 2 2 2 2 2 1 1

6 2 2 2 2 2 1 1

7 3 3 3 2 2 2 2
3 1

8 3 3 3 3 3 2 1

9 4 3 3 3 3 3 3
4 3 3 2

4 1

10 4 4 4 3 3 3 2
4 2

11 5 4 4 4 4 3 4
5 3 3 3

4 2
2 1

12 5 4 4 4 4 4 3
5 4 4 3

5 2

13 6 5 5 4 4 4 5
5 3

6 4 4 3
5 2
6 1

N f(N) N f(N) N f(N) N f(N) N f(N)

3 1 9 3 15 7 21 12 27 19
4 0 10 2 16 5 22 10 28 16
5 1 11 4 17 8 23 14 29 21
6 1 12 3 18 7 24 12 30 19
7 2 13 5 19 10 25 16 31 24
8 1 14 4 20 8 26 14 32 21



M500 235 Page 21

Applying this algorithm to the case where N = 42 we can find that

f(42) = 37.

This is about the limit if calculating sausage numbers by this method by
hand. As N increases, so the number of individual calculations needed
to find f(N) increases. I wrote a small computer program based on this
method to find f(N). This enabled me to answer the question, What is
f(2010)? And the answer is . . . 84,169.

This is the ‘sledgehammer’ approach to maths and is frowned upon by
Luddite purists. So, is there a general formula for f(N)?

If all this talk of sausages has your mouth watering you will surely like to
know that next January there will be another M500 Winter Weekend
at Nottingham University. See below for details.

M500 Winter Weekend 2011

A Weekend of Mathematics and Socializing

Join with fellow mathematical enthusiasts for a weekend of mathematical
fun. If you are interested in mathematics and want a fantastic weekend, then
this is for you, accessible to anyone who has studied mathematics even if
you’re just starting. The thirtieth M500 Society Winter Weekend will
be held at

Florence Boot Hall, Nottingham University

7th–9th January 2011.

The overall theme will be Proof. Cost: £190 to M500 members, £195 to
non-members. You can obtain a booking form from the M500 site.

http://www.m500.org.uk/winter/booking.pdf

If you have no access to the internet, send a stamped addressed envelope to

Diana Maxwell.

We will have the usual extras. On Friday Tony Huntington is running
a pub quiz with Valuable Prizes, and for the sing-song on Saturday night
we urge you to bring your favourite musical instrument (and your voice).
Hope to see you there.
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