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Arithmotriangulation
Bryan Orman
The general problem: to find a system of n points in the plane such that
their mutual separations are rationals or integers.

By its very nature this problem produces complicated systems of Dio-
phantine equations. Nevertheless it is possible to find solutions in simple
cases with the aid of trigonometric formulae and elementary geometry.

We start with the arithmotriangle, which is, by definition, a triangle
with rational sides (equivalently with integer sides, by simple scaling). With
the usual designation of the angles A, B, C and the sides a, b, c of a triangle,
it is clear that any triple (a, b, c) of integers satisfying max(a, b, c) < s
will give an arithmotriangle. Here 2s = a + b + c is the perimeter of the
triangle. So it is quite easy to produce arithmotriangles. We note here
that an arithmotriangle is Heronian if its area is an integer. In order to
construct arithmoquadrilaterals based on four points we need a classification
of arithmotriangles. The two diagonals have to be rational, so the approach
we will adopt requires two arithmotriangles to have a diagonal as one of their
sides, with the other diagonal itself producing two further arithmotriangles.
Thus we seek four matching arithmotriangles.

Some basic trigonometric results are needed:

the cosine rule: a2 = b2 + c2 − 2bc cosA,

the area: ∆ =
√
s(s− a)(s− b)(s− c),

the sine rule, involving ∆: 2∆ = bc sinA = ca sinB = ab sinC,

the sine rule, involving R: a = 2R sinA, b = 2R sinB, c =
2R sinC, abc = 4R∆, where R is the radius of the circumscribed
circle.

From the cosine rule we observe that cosA, cosB and cosC will all be
rational and, from the remaining formulae, we have that the products and
ratios of any two quantities from sinA, sinB, sinC, ∆ and R are all rational.

An example. Take a = 7, b = 8 and c = 9. Then the cosine rule gives
cosA = 2/3, cosB = 11/21 and cosC = 2/7. As s = 1

2 (7 + 8 + 9) =

12, it follows that ∆ =
√

12(12− 7)(12− 8)(12− 9) = 12
√

5 and R =

abc/(4∆) = 21
√

5/10. Finally, from the sine rule, sinA = a/(2R) =
√

5/3,
sinB = 8

√
5/21, sinC = 3

√
5/7.

The appearance of
√

5 in the above quantities suggests that arithmotri-
angles could be classified by the number

√
T , with T being the product of
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distinct primes. We will call T the order of the arithmotriangle.

As a further example, take a = 13, b = 14, c = 15. Then cosA = 3/5,
cosB = 33/65, cosC = 5/13, s = 21. But now ∆ = 84, and the triangle is
Heronian. The other quantities are R = 65/8, sinA = 4/5, sinB = 56/65,
sinC = 12/13, and all the quantities are rational so that in this case we
have T = 1. So this Heronian arithmotriangle has order T = 1, as is the
case for all Heronian arithmotriangles.

Our next task is to parametrize an arithmotriangle of order T . Any
angle a having a rational cosine will have both sinα and tan 1

2α characterized
by the same T . This follows from the identity sinα = (1 + cosα)(tan 1

2α).

It is convenient to introduce the rational q/p and define tan 1
2α = q

√
T/p

so that, by the half-angle formulae

cosα =
p2 − q2T
p2 + q2T

, sinα =
2pq
√
T

p2 + q2T
, tanα =

2pq
√
T

p2 − q2T
.

Furthermore the sum (or difference) of two arithmetical angles of order T
is also arithmetical of order T . This is easily demonstrated since, given

tan
1

2
θ1 =

q1
p1

√
T , tan

1

2
θ2 =

q2
p2

√
T ,

it follows that

tan

(
1

2
θ1 +

1

2
θ2

)
=

(p1q2 + p2q1)
√
T

p1p2 − q1q2T
.

Right-angled Heronian triangle (T = 1)

Since we have a right-angle, A = 1
2π and it is sufficient to set tan 1

2B = q/p
with p > q. Straightforward calculations give a = p2 + q2, b = 2pq, c =
p2−q2, recognized as the general Pythagorean triple, with ∆ = pq(p2−q2).

Arithmotriangle with angle A = 1
3π (T = 3)

With T = 3 and tan 1
2A = 1/

√
3 =
√

3/3 we set tan 1
2B =

√
3 v/u. Then

tan
1

2
C = cot

(
1

2
A+

1

2
B

)
=

u− v
u+ 3v

√
3.

Next the sines of the angles can be calculated:

sinA =
1

2

√
3, sinB =

2uv
√

3

u2 + 3v2
, sinC =

(u− v)(u+ 3v)
√

3

2(u2 + 3v2)
.
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The sine rule gives

a = 2R sinA =
R
√

3

u2 + 3v2
(u2 + 3v2),

b = 2R sinB =
R
√

3

u2 + 3v2
4uv,

c = 2R sinC =
R
√

3

u2 + 3v2
(u− v)(u+ 3v),

where we have extracted a common term that leaves integers on the right-
hand side. Set R = 1

3 (u2 + 3v2)
√

3, and a = u2 + 3v2, b = 4uv, c =
(u− v)(u+ 3v).

Examples: u = 2, v = 1 produces a = 7, b = 8, c = 5 and u = 4, v = 1
produces a = 19, b = 16, c = 21.

Arithmotriangle with angle A = 2
3π (T = 3 again)

In this case tan 1
2A =

√
3 and, setting tan 1

2B =
√

3 v/u as before, we have

tan
1

2
C = cot

(
1

2
A+

1

2
B

)
=

u− 3v

u+ v

1√
3
.

Performing the same calculation as for the arithmotriangle with angle 1
3π

we find R = 1
3 (u2 + 3v2)

√
3 and a = u2 + 3v2, b = 4uv, c = (u+ v)(u− 3v).

An example: u = 4, v = 1 produces a = 19, b = 16, c = 5.

A quadrilateral can now be constructed using (19, 16, 5) with angle 2
3π

and (19, 16, 21) with angle 1
3π, and both these triangles have the same order,

T = 3. If the common side 19 is used as one diagonal of the quadrilateral
then we need to check that the other diagonal is rational, otherwise the
quadrilateral will not be an arithmoquadrilateral. To this end, we note
that the quadrilateral is cyclic since a pair of opposite angles sum to π (so
that’s why we introduced T = 3 arithmotriangles!). Ptolemy’s theorem,
that the sum of the products of its two pairs of opposite sides is equal to
the product of its diagonals, gives the other diagonal as 26 · 16/19. So we
have constructed a cyclic arithmoquadrilateral. See Figure 1.

Any equilateral triangle is a T = 3 arithmotriangle and so a cyclic
arithmoquadrilateral can be constructed as in Figure 2. And the general
T = 3 one is simply as in Figure 3.

So far our investigation has employed only T = 3 arithmotriangles to
produce cyclic arithmoquadrilaterals but now we look at the general arith-
motriangle, of order T .
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(u− v)(u+ 3v)

Figure 3

Arithmotriangle of order T

Setting tan 1
2B = q/(s

√
T ) and tan 1

2C = s
√
T/p then, by the usual calcu-

lations,

tan
1

2
A =

s(p− q)
√
T

pq + s2T
.

Furthermore

sinA =
2s(p− q)(pq + s2T )

√
T

(p2 + s2T )(q2 + s2T )
,

sinB =
2qs
√
T

q2 + s2T
,

sinC =
2ps
√
T

p2 + s2T
.

The sine rule produces

a = (p− q)(pq + s2T ), b = q(p2 + s2T ), c = p(q2 + s2T )

with

R =
(p2 + s2T )(q2 + s2T )

4s
√
T

and
∆ = pqs(p− q)(pq + s2T )

√
T .
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The cyclic arithmopolygon of order T

It should be clear from the construction of our example of an order-3 cyclic
arithmoquadrilateral that all the angles subtended by a vertex on the chord
joining any pair of vertices are arithmetical of order 3. This means that
the general cyclic arithmopolygon with arithmetical angles of order T can
be investigated with, for example, the arithmoquadrilateral as a particular
case. To this end we consider n successive points A1, A2, . . . , An on a
circle of radius R, with an origin O between An and A1, and a tangential
base line OB at O from which all relevant angles are measured. Let θi,
i = 1, 2, . . . , n, be the angle between OB and OAi. See Figure 4.

r

r

rr

r

r A1

A2

AiAj

An−1

An

O B

θi

θj

Figure 4

With tan 1
2θi = s

√
T/pi, and p1 > p2 > · · · > pn > 0, then aij , the length

of the side from Ai to Aj , i > j, is equal to 2R sin(θj − θi). Finally

aij =
|pi − pj |(pipj + Ts2)

(p2i + Ts2)(p2j + Ts2)
,

with R = 1/(4s
√
T ).

Example. Consider the cyclic arithmoquadrilateral with T = 2, s = 2,
and p1 = 10, p2 = 5, p3 = 2, p4 = 1. The mutual separations of the
four points are a12 = 145, a23 = 243, a34 = 165, a14 = 297, a13 = 308,
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a24 = 312, where the lengths have been scaled up by the factor 33 · 54
to produce integer values. The radius of the circumscribed circle is then
R = 33 · 27

√
2/8 (Figure 5).

r

r
r

r
A1

A2

A3

A4

297

145

165

308312

243

Figure 5

With the addition of a fifth point A5, between A2 and A3 with p5 = 3,
a cyclic arithmopentagon is obtained with mutual separations a12 = 2465,
a13 = 5236, a14 = 5049, a15 = 4389, a23 = 4131, a24 = 5304, a25 = 2484,
a34 = 2805, a35 = 2079, a45 = 4356. The radius of the circumscribed circle
is now R = 17 · 33 · 27

√
2/8. The additional point requires a further scaling

of the system by a factor of 17 (Figure 6).

To confirm that the calculations have been performed correctly, it is
sufficient to examine, say for example, the angles subtended by the vertices
A2, A5 and A3 on the chord A1A4. The cosine rule gives the angle as
tan−1 2

√
2, in keeping with the order T = 2 for this system.

The general construction of cyclic arithmopolygons has been achieved.
To go further and produce just arithmopolygons requires the techniques of
inversion with respect to a vertex of a cyclic arithmopolygon, the vertex
being employed as the pole of the transformation. Angles are preserved and
lengths remain rational. However this approach, although quite fruitful,
leads to fairly involved algebra, even for arithmoquadrilaterals, so enough
is enough!
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Figure 6

Problem 236.1 – Relationships
Tony Forbes
‘With humans being what they are, if you had a drama centring on three
women and three men, there’s no end to the amount of platonic and ro-
mantic entanglements that could ensue.’ So says Caitlin Moran, writing in
The Times, 6 March 2010 (thanks to Robin Marks for sending me a copy)
about ITV’s Married Single Other.

The article continues, ‘Well obviously there is—simple mathematics tells
us that it’s 36.’ A few days later a Times correspondent asserted that the
correct figure is not 36 but 15, her reason being that human relationships
are symmetric and not reflexive.

Well, I can see 15 comes from six-choose-two, but I have to disagree
with it. Before I attempt to explain my own answer (which I believe to
be nearer 755) I thought it would be a good idea to collect M500 readers’
thoughts on the matter. So here is the problem for you to solve: How many
distinct sets of relationships can you have involving six people. Remember
that there are two types of entanglements, platonic and romantic.
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Problem 236.2 – Series
Tommy Moorhouse
It is well known that

∞∑
n=1

1

n2
=

π2

6
.

In contrast, the sums
∞∑
n=1

1

n(n+N)

with N an integer greater than zero, are all rational. Consider

∞∑
n=1

1

n(n+ 1)
.

This sum converges and is equal to 1. If we let

S(M) =

M∑
n=1

1

n(n+ 1)
,

we find that S(9) = 0.9, S(99) = 0.99. Show that this pattern holds for all
the sums of the form S(9999 . . . 9). Find a closed expression for S(M). Show
that

∞∑
n=1

1

n(n+N)
=

1

N

N∑
k=1

1

k
.

Problem 236.3 – Periodic function
A function f : R → R is periodic with period 2π and is differentiable any
number of times. Must f(x) be a polynomial in cosx and sinx? What if
instead f : C→ C is analytic?

Problem 236.4 – Real function
Suppose A and θ are real. Show that

(A+ iA tan θ)log(A sec θ)−iθ

is also real.
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A simple statics problem
Bryan Orman
A uniform square lamina ABCD of mass M is freely supported at A, such
that AC is vertical. A mass m is attached at the vertex B and the lamina
is allowed to rotate to a new equilibrium position. Show that the angle

through which AC has rotated is arctan
m

m+M
.

Let the sides of the lamina have length 2a and its diagonals 2d. Since
the lamina is uniform its centre of mass is at O, and is at G when the mass
m is attached.
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Taking torques about G we have OG =
m

M +m
d and GB =

M

M +m
d and

these can be written as OG = λd and GB = µd, with λ =
m

M +m
and

λ + µ = 1. If the angle OAG is α, the angle through which the lamina
has rotated, then tanα = OG/OA = λ. Finally we have the result that

α = arctan
m

m+M
.

Now consider the right angled triangle OAB. Let P and Q be the feet of
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the perpendiculars from G and O on to the side AB. Now tanβ = GP/AP .
Since

AP = AQ+QP = a+OG cos
π

4
= a+

λd√
2

= (1 + λ)a

and GP = PB = (1− λ)a, it follows that tanβ =
1− λ
1 + λ

. As α + β =
π

4
,

we have

arctanλ+ arctan
1− λ
1 + λ

=
π

4
.

This identity is interesting, since, by using the double-angle formula

tan 2θ =
2 tan θ

1− tan2 θ
with tan θ = 1/5, we have tan 2θ = 5/12 and tan 4θ =

120/119. These give arctan 120/119 = 4 arctan 1/5. With λ = 120/119 in
the identity we end up with the well-known Machin’s formula:

π

4
= 4 arctan

1

5
− arctan

1

239
.
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Problem 236.5 – Harmonic quotients
Let

1 +
1

2
+

1

3
+ · · ·+ 1

n
=

a(n)

b(n)
,

the nth harmonic number expressed as a fraction in its lowest terms (so
that gcd(a(n), b(n)) = 1). Let s(n) = b(n)/b(n− 1).

For which n do we have s(n) < 1. In particular, show that s(2·3n) = 1/3.

Thanks to Victor Moll for the idea behind this problem.
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A differential equation on the integers
Tommy Moorhouse

Preliminaries The set of functions from the positive whole numbers with
values in the integers has some interesting properties. One of these is the
fact that the product of two such functions f and g given by

f ∗ g(n) =
∑
jk=n

f(j)g(k)

is commutative, associative and distributive over addition. That is, it is
a product with properties very much like ordinary multiplication. When
considering differential equations satisfied by ordinary functions we often
make use of the following property, Leibniz’s rule:

d

dx
(fg) =

(
d

dx
f

)
g + f

d

dx
g.

If we want this rule to extend to our integer functions with the ∗ product
we find that, denoting differentiation by ∇, so that the function obtained
by differentiating f is ∇f , the only possibilities are

∇f(n) = κ(n)f(n),

where κ satisfies κ(mn) = κ(m) + κ(n). We will use the specific function
κ(pk11 p

k2
2 · · · pkrr ) = k1p1+k2p2+· · ·+krpr. Here the ps are all primes and the

function maps an integer to the sum of its prime factors properly counted.

An aside Some readers will be familiar with the ‘finite difference’ derivative
∇f(n) = f(n)−f(n−1). Although this derivative can be applied to integer-
valued functions there is a sense in which it is not natural—it does not satisfy
Leibniz’s rule when the product is given by ∗. It does arise more naturally
in a related context to be explored in a future article.

Differential equations It is now interesting to explore the solutions of
‘differential equations’ in the above setting. The simplest such equation
is ∇f = z, where z(n) = 0 for all n (in other words ∇f(n) = 0 for all
n.) Since κ(1) = 0, κ(n) > 0 we must have f(n) = 0 for n > 0 with f(1)
undetermined. Then f is just a multiple of I, the identity function. This is
analogous to the constant functions in ordinary calculus having vanishing
derivatives.
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In ordinary calculus the equation

df

dx
= λf

may be used to define the exponential functions Ceλx, with constant C, fol-
lowing the idea that deλx/dx = λeλx. We can take the differential equation
to define a set of functions of x, one for each value of λ, by

eλ(x) = eλx.

The functions E[m] We consider solutions of the analogous equation for
integer functions

∇f = mf,

where m is a positive integer. You can check that, since

∇f(n) = κ(n)f(n),

f must be non-zero only for n such that κ(n) = m, and at these arguments
f(n) is not determined. This means that the differential equation has many
distinct solutions (corresponding, perhaps, to the choice of C above). For
later convenience we choose one solution, namely f(n) = n if κ(n) = m,
f(n) = 0 otherwise, and call it E[m]. It is important to note that E[m] is
a function, not a number. Each E[m] acts on the natural numbers to give
an integer E[m](n).

It is interesting to see to what extent the function E[m] shares the
familiar properties of the exponential function. For example, we can check
that

E[m] ∗ E[n] = E[m+ n]

as follows:

∇(E[m] ∗ E[n]) = (∇E[m]) ∗ E[n] + E[m] ∗ ∇E[n] (1)

= (m+ n)E[m] ∗ E[n]. (2)

Therefore E[m]∗E[n] satisfies the definition of E[m+n] and, by our choice
above, is uniquely determined.

The function E[0] satisfies ∇E[0] = z, where z(n) = 0 for all n, from
which we deduce that E[0](n) vanishes except, possibly, at n = 1, where its
value is undetermined. We choose E[0](1) = 1.
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Analogous to the property log(ex) = x we see that

κ(E[m](n)) = m

for all n in κ−1(m). The analogue of elog(x) = x is not as straightforward to
interpret. It would give

E[κ(m)](n) = n

if κ(n) = κ(m), but this does not allow us to uniquely specify the result.
Although E[κ(m)](n) = m is one of the possibilities other integers, namely
all those in κ−1(m), are candidates.

You may like to check whether any of the other properties of the expo-
nential function make sense in this setting, or try to solve other differential
equations on the integers.

Letter
Leibniz’s formula for π
Dear Tony,

I would like to make the following comments on the historical introduc-
tion to Sebastian Hayes’s paper ‘Leibniz’s Formula for π’ in the April 2010
issue of M500.

In the first place neither Newton nor Leibniz invented calculus, a clear
statement of the calculus relationship between the infinite series for sines
and cosines is to be found in the works of Madhava of Sangamagrama in
1425. The infinite series for arctangents is based on Newton’s reversion of
infinite series described in the epistola posterior, 1676, intended for Leibniz.
In 1671 James Gregory had applied Newton’s reversion of series technique to
the infinite series for tangents to arrive at the infinite series for arctangents,
leading to the so-called discovery of Leibniz. The reversion of an infinite
series has nothing to do with calculus.

I would agree with Sebastian Hayes’s query about the Γ(0.5) =
√
π; this

I think was obtained from Stirling’s formula reconciling factorials with pow-
ers. This formula was not intended for low amounts, nevertheless someone
seems to have ignored this limitation to produce an elegant but nonsensical
result.

Peter L. Griffiths
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Panic strikes again
Ralph Hancock
Once more Dr Urban Panic summoned me to Antibes. It was with a familiar
sinking feeling that I approached his sumptuous villa, where some gardeners
were cleaning graffiti from the boundary wall, including a puzzling drawing
of a winged pig that seemed to be relieving itself on the heads of angry
people below.

Inside there was now a small, square ploughed field beside the house, sur-
rounded by a tall wire fence. Although the Mediterranean sky was cloudless,
the furrows did not look sunlit. I watched a gull glide over the fence—and
abruptly vanish.

With customary effusiveness the doctor welcomed me into his labora-
tory, which contained some odd-looking devices, one of them apparently
a cross between a combine harvester and a bathyscaphe. “You remember
that jam sandwich I did last year?” (It had taken weeks to get the taste of
his iron jam out of my mouth.) “Well, I’ve really made progress on that.
The thing was just inverted in the fourth dimension—no more topologically
significant than turning over a sheet of paper. But now we’re well on the
way to a real four-dimensional sandwich.”

“Four-dimensional bread?” I said. “What are you growing in that
field?”

“Clever, isn’t it? I had to dig down 50 metres to fit in the field. Funny
thing is, we found that ordinary bread wheat grows quite well in 4D. It’s
a hexaploid, you see—three times the usual number of chromosomes. We
used hexaploid brassicas for the trials, so you can have mustard on your
sandwich.”

“And butter?”

“Ah, butter is naturally 4D. You make it out of cream, which is an
emulsion of fat droplets in water. Churn it a bit, and suddenly it becomes
an emulsion of water droplets in fat. Obviously, you couldn’t do that in
3D.”

He showed me a white cube. “Now, you’ll be wondering how we slice
the bread. Ever heard of the ham sandwich theorem? In n-dimensional
space a sandwich made of n objects can be cut exactly in half by an (n−1)-
dimensional knife. Just as an infinitely thin pancake, 2D, can be bisected
by a wire, 1D. So here’s our 3D knife.” He produced a cubical tin box the
same size as the bread, and dropped both into a machine.

“We can’t put a handle on the knife, so we have to fire it through the
bread.” He pressed a button and there was a sharp bang. Two white cubes,
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seemingly the same size as the original, dropped out of the machine.

“Now we butter it.” He reinserted both cubes and pressed another
button. This time one cube emerged. It had a yellow line of butter halfway
down each side. Worryingly, all the lines joined end to end around the
edges, no matter which way you looked at it. It made my head hurt.

I said, “You talked about a ham sandwich.”

“Hmm, we’re still working on our four-dimensional pigs. We got as far
as hexaploids, but the mutation was lethal.” He passed me some distressing
photographs. “But I’m sure we’ll crack it in time.”

“Well,” I said, “at least you’ve got as far as bread and butter.” I picked
up the cube.

“Don’t eat that!” shouted the doctor. “It’ll disrupt the very fabric of
your being. We fed one to one of our pigs, and it literally exploded. They
found part of its head in Nice, and a leg in Cannes.”

“Then how do propose to market your sandwiches if people can’t eat
them?”

“Not a problem. Think of noodles. People buy them all the time and
no one can eat them.”

Leibniz’s rules for a certain function ring
Tommy Moorhouse
Consider the integer-valued functions from the non-negative integers (i.e.
0, 1, 2, . . . ) with pointwise addition (f+g)(n) = f(n)+g(n) and the product

f ◦ g(n) ≡
∑

j+k=n

f(j)g(k),

where the sum extends over pairs of non-negative integers summing to n.
Define N(m) = m for integer m, and define a pointwise product f · g by

f · g(n) = f(n)g(n).

See if you can show that ∇f ≡ N · f satisfies Leibniz’s rule

∇(f ◦ g) = (∇f) ◦ g + f ◦ (∇g),

i.e.
N · (f ◦ g) = (N · f) ◦ g + f ◦ (N · g).

Can you describe the solutions to the differential equation ∇f = 0?
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Professor Pile’s prime pathway revisited
Chris Pile
Returning from my visit to the professor [M500 229 14–15] I attempted
to answer some of the queries raised. I started by looking for a century
with no primes around the 4000th, as he had suggested, and I discovered
that the 4133rd century has only one prime, 413353. I thought that primes
had a gregarious nature so I was surprised to see this isolated example. I
envisaged trudging along the pathway over the blue ridge mountains on the
trail of the (most) lonesome prime!

The 4921st century has two primes (492103 and 492113), two adjacent
orange [black] tiles, and then 113 yellow [white] tiles before the next orange
tile (492227). Over a hundred yellow tiles but still no complete century
block. The professor must have misunderstood!

With fewer primes in each block it is easier to check for patterns. The
5404th century with four primes is symmetrical about the ‘5’ line, as is the
6327th century with six primes and the 6828th with two primes.

The 7018th century, with four primes, is the same when turned through
180 degrees. The professor has admitted there were times when he didn’t
know whether he was coming or going!

Checking the centuries with two primes, I have found two patterns the
same: the 6194th century and the 7454th century. The pattern extends for
−2 and +1 decades into adjoining centuries. The 7837th century has 17
primes while the 7839th century has only two.

There are 40 potential prime positions in each century (giving a maxi-
mum of 240 possible patterns) although it appears that only about half the
positions can be occupied in one block. Of these 40 positions, there are
at least 12 (and at most 14) non-primes divisible by 3, at least five (and
at most six) non-primes divisible by 7. Allowing for multiples of 21, at
least 15 of the 40 potential positions are occupied by numbers divisible by
3 or 7, leaving 25 potential primes. Removing multiples of 11 brings the
maximum possible number of primes down to 23. Apart from the first two
century blocks, I had not expected to see any more than 17 primes. Then
I read M500 226 and saw Wroblewski’s 26-digit prime 18-tuplet, which has
18 primes in the century block.

More questions arise.

(1) Where is the first prime-free century?

(2) How many different patterns are there?
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(3) How many patterns occur a finite number of times?

(4) Is the number of 18-prime centuries finite?

(5) What is the average number of primes per century?

[To remind you of what we are talking about, or if you haven’t seen
M500 229, here is what the beginning of the ‘prime pathway’ looks like.
Century-blocks 1–3. — TF]
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A lonesome prime, 413353. Blocks 4132–4134.
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A blank century slightly displaced. Blocks 4921–4923.
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Symmetrical patterns about the ‘5’ line. Blocks 5403–5405 . . .
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. . . and 6326–6328.
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A 180-degree reversible century. Blocks 7017–7019.
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[To make use of this space at the bottom of the page before continu-
ing the pathway, it is worth pointing out that if you manage to obtain a
definitive answer to question (4) above, there might be a substantial prize
to claim. And an interesting related problem occurred to me.

(4a) Must 18 primes in a century block include at least one occurrence
of twin primes? — TF]
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A repeated pattern of two primes in a century. Blocks 6193–6195 and
7453–7455.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

A dense century containing 17 primes followed by two sparse centuries.
Blocks 7837–7839.
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Problem 236.6 – Products
For integer n, compute

n∏
i=2

i−1∏
j=1

sin
jπ

i
and

n∏
i=2

i−1∏
j=1

cos
jπ

i
.
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M500 Winter Weekend 2011

100% Proof

100% proof. This is what mathematics demands, yet universities
complain that undergraduates sometimes lack even the most basic
ideas of proof and its importance. Proof is practically non-existent
in schools compared with forty years ago.

This winter, in an enquiring, investigative and fun context, the
M500 Winter Weekend will explore some basic proofs, re-find
some old ones, and run through a whole range of proofs that should
be taught, and often aren’t. Also we will explore what makes math-
ematics and mathematicians different. Mathematicians demand
proof, but aren’t the ‘laws’ of other disciplines merely the latest
best guess?

If you are interested in mathematics and want a fantastic week-
end, then this is for you, accessible to anyone who has studied
mathematics—even if you’re just starting. In addition we will have
a whole range of social activities: good conversation, good food,
the famous M500 quiz, a fun maths competition and the chance to
meet friends old and new. Here’s looking at .

The thirtieth M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

7th–9th January 2011.

Cost: £190 to M500 members, £195 to non-members. You can obtain a

booking form from the M500 site.

http://www.m500.org.uk/winter/booking.pdf

If you have no access to the internet, send a stamped addressed envelope to

Diana Maxwell.
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