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The arithmetization of quadratic irrationals

Finding rational approximations to
√
N

Bryan Orman
Problem statement: To obtain a rational approximation to the square root
of a positive, square-free integer N , to a prescribed accuracy, the calculations
to be performed without the aid of a calculator. The procedure needs to be
efficient and relatively easy to apply.

There are several methods that could be employed to address the above
problem and these will be considered in turn, from the most demanding
to the most accessible. All the methods have special merits and they are
related, as will be seen. Reference will be made to just one book, David Bur-
ton’s Elementary Number Theory, Allyn & Bacon, 1980, but other books on
number theory cover much of the material needed for background reading.

Continued fractions (Burton, pages 313 ff)

The continued fraction representation of
√
N gives rise to convergents Ck =

pk/qk and these furnish the best approximations to
√
N in that every other

rational number with the same or smaller denominator differs from
√
N by a

greater amount. Furthermore, the accuracy of the approximation is given by
the inequality |

√
N−pk/qk| < 1/(qkqk+1). So, to apply this result to a given

integer N , we need to produce the infinite continued fraction representation
of
√
N , and from it the convergents, Ck. The standard notation for the

continued fraction is

√
N = a0 +

1

a1 +
1

a2 +
1

a3 + . . .

,

or √
N = [a0; a1, a2, a3, . . . , a3, a2, a1, 2a0].

The bar over the block of integers indicates that this block is repeated over
and over. The number of terms in the block is called the period of the con-
tinued fraction. Note the symmetry exhibited in the block. The convergents
are given by the finite continued fraction, obtained by truncating the infinite
continued fraction, that is, Ck = pk/qk = [a0; a1, a2, a3, . . . , ak]. In prac-
tice the convergents are determined recursively from the linear second-order
system:
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p0 = a0, q0 = 1,
p1 = a1a0 + 1, q1 = a1,
pk = akpk−1 + pk−2, qk = akqk−1 + qk−2.

An example will illustrate the effort involved with this approach. Con-
sider N = 33. The continued fraction representation requires the integer
part of

√
N to be extracted: this is a0. The remainder is written as a

reciprocal, with the process repeated. Thus

√
33 = 5 + (

√
33− 5);

so a0 = 5. Next,

√
33− 5 =

(
√

33− 5)(
√

33 + 5)√
33 + 5

=
8√

33 + 5
=

1√
33 + 5

8

and (
√

33 + 5)/8 = 1 + (
√

33− 3)/8; so a1 = 1. Then

√
33− 3

8
=

1

2 +

√
33− 3

3

;

so a2 = 2. Thus
√

33 = [5, 1, 2, 1, 10], with period 4, giving a0 = 5, a1 = 1,
a2 = 2, a3 = 1, a4 = 10, a5 = 1, etc. Applying the recurrence relations for
the ps and qs,

p0 = 5 q0 = 1, giving C0 = 5,
p1 = 6 q1 = 1, giving C1 = 6,
p2 = 17 q2 = 3, giving C2 = 17/3,

C3 =
23

4
, C4 =

247

43
, C5 =

270

47
, C6 =

787

137
, C7 =

1057

184
, C8 =

11357

1977
. . . .

Checking the accuracy, we expect C5 = 270/47 to be a rational approxima-
tion to

√
33 with an error of less than

1/q5q6 = 1/(47 · 137) ≈ 0.00016.

Indeed |
√

33− 270/47| ≈ 0.00012.

So this method, based on the continued fraction representation of
√
N ,

will produce rational approximations with predictable accuracy. However,
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it is extremely inefficient in that all the convergents need to be generated
before the required accuracy is achieved.

Pell–Fermat equations (Burton, pages 329 ff)

The appropriate Pell–Fermat equation for our purpose is x2−Ny2 = 1, and
we seek the pairs of positive integers (xk, yk), k ≥ 1, satisfying this equation
for a given N . We note that (x0, y0) = (1, 0) is a trivial solution and so we
call (x1, y1) the fundamental solution. One way of generating solutions is
to substitute successively y = 1, 2, 3, . . . into the expression 1 +Ny2 until
perfect squares are obtained.

For our example we find that 1+33 ·42 = 232 and 1+33 ·1842 = 10572,
so that (x1, y1) = (23, 4) and (x2, y2) = (1057, 184). These are just the
convergents C3 and C7 obtained previously. This ties in with a theorem
that states that ‘All positive solutions of x2 −Ny2 = 1 are given by Ckn−1
if the period of the continued fraction representation of

√
N is even, or by

C2kn−1 if the period is odd’. For N = 33 we have n = 4 so we expect to get
C3, C7, . . . , but the period will not be known if this method is employed!

This method generates a subset of the convergents of
√
N and does

save some effort, a good thing, but it does require the perfect square calcu-
lation, over and over again. For N = 33 the solutions are found for y = 4
and y = 184 which shows that this part of the procedure is time consum-
ing. Fortunately this can be avoided since only the fundamental solution is
needed to generate all the solutions. If x21 −Ny21 = 1, then

(x1 +
√
Ny1)(x1 −

√
Ny1) = 1

and so
(x1 +

√
Ny1)n(x1 −

√
Ny1)n = 1.

Setting xn +
√
Nyn = (x1 +

√
Ny1)n, we have xn−

√
Nyn = (x1−

√
Ny1)n

and hence x2n − Ny2n = 1. This means that xn +
√
Nyn = (x1 +

√
Ny1)n

will generate all solutions of the Pell–Fermat equation from the known fun-
damental solution (x1, y1).

For our example we have the fundamental solution (x1, y1) = (23, 4) and
so x2 +

√
33y2 = (23+4

√
33)2 = 1057+184

√
33, giving C7 = 1057/184, and

x3 +
√

33y3 = (23 + 4
√

33)3 = 48599 + 8460
√

33, giving C11 = 48599/8460.

From the equation defining the solution (xn, yn) we can derive uncoupled
second-order linear recurrence relations similar to those for the continued
fraction pair (pk, qk), namely xn+2 = 2x1xn+1−xn and yn+2 = 2x1yn+1−yn,
for n > 0. The initial conditions are the trivial solution (x0, y0) = (1, 0)
and the fundamental solution (x1, y1). Unfortunately not all integers have
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convenient fundamental solutions for this method to be generally useful;
N = 33 has (23,4) as we have seen, but N = 13 has (649, 180) and N = 29
has (9801, 1820). The culprit of course is the period of the continued fraction
for these integers, both 13 and 29 having a period of length 5.

Second-order recurrence relations (Burton, pages 286 ff)

Since both the previous methods involved second order recurrence relations
for (pk, qk) and (xn, yn), and, recalling that the classical Fibonacci sequence
un, generated from un+2 = un+1 + un with u1 = u2 = 1, has the property
that vn = un+1/un → (1 +

√
5)/2 as n → ∞, it should be possible to

construct a recurrence relation whose sequence leads to a rational approxi-
mation to

√
N .

Consider the problem: un+2 = 2αun+1+βun, with u1 and u2 prescribed.
The trial solution un = λn leads to the quadratic equation λ2−2αλ−β, with
solutions λ± = α ±

√
α2 + β, and the general solution, un = Aλn+ + Bλn−.

Since |λ−/λ+| < 1 we have

vn = un+1/un → λ+ = α+
√
α2 + β,

or
vn − α = un+1/un − α→

√
α2 + β =

√
N,

say. The rate of convergence depends on |λ−/λ+| < 1, and the decomposi-
tion N = α2 +β, with |β| < α, will produce the fastest convergence of vn to√
N . Since vn ≈ 2α for large n, the most convenient starting values u1 and

u2 should mirror this and so u1 = 1, u2 = 2 would be the natural choice.

In our example, N = 33 = 62 − 3, so that α = 6 and β = −3. The
recurrence relation becomes un+2 = 12un+1 − 3un, with u1 = 1 and u2 =
12. Simple evaluations lead to u3 = 141, u4 = 1656 and u5 = 19449.
Furthermore v1 = 6, v2 = 23/4, v3 = 270/47 and v4 = 1057/184, and we
see that this simpler method has produced the known convergents. This
method works for all N and so is certainly superior to both the previous
methods.

The Newton–Raphson method

From the Pell–Fermat method we have

x2n +
√
Ny2n = (xn +

√
Nyn)2 = x2n +Ny2n + 2xnyn

√
N.

Thus x2n = x2n +Ny2n and y2n = 2xnyn and the convergent z2n = x2n/y2n
is equal to (x2n +Ny2n)/(2xnyn), or

z2n =
1

2

(
zn +

N

zn

)
.
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This is precisely the Newton–Raphson method applied to the function
f(x) = x2 −N .

Another way to describe this method is ‘squaring the rectangle’, since a
rectangle with sides zn and N/zn has area N . A new rectangle, with one side
equal to the average of these two sides, that is, z2n, and the other equal to
N/z2n, will have area N . These rectangles become more and more square-
like, and in the limit they become a square of side

√
N . In our example,

N = 33 and z1 = 6, the α in the previous method. The sequence produced
by the iteration is simply 23/4, 1057/184, 2234497/388976, . . . coinciding
with the familiar convergents C3, C7 and, unexpectedly, C15.

Conclusion

The Newton–Raphson method is the superior method for finding rational
approximations to

√
N and would be used in all circumstances. But what of

the other methods? They are all linked as they reflect the quadratic nature
of the problem and the appearance of second-order recurrence relations is
therefore no surprise. What has been presented here is a modest unification
of four related methods through a quite simple problem.

Last words
Did you know that the last two words are sufficient (and sometimes nec-
essary) to identify a Shakespeare play? See how many you can recognize
before you look them up. (This is like something we did in M500 207.)

say Amen! restore amends. before another. memory. Assist.
lead away. us befall! untimely bier. ’em clap.
every day. happy day. my diseases. has ending.
me farewell. Mistress Ford. me free. mutual happiness!
our hearts. lasting joy. should know. so long.
good night. shot off. a peace. up, pipers!
take pity. heart relate. Nerissa’s ring. and realm.
her Romeo. at Scone. great solemnity. tam’d so.
drums strike. acceptance take. but true. this way.
be won.

‘A new galaxy spotted by the Hubble telescope is 13.1 billion light years
away and would take the space shuttle, at 17,600 mph, 1.35 million years
to reach it, astronomers said.’ [Telegraph (21 Oct 2010), spotted by Ralph
Hancock. OK, we give up! Where did the 1,350,000 years come from?]
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Solution 231.5 – Four cos and four tans
Prove that

cos4A

cos2B
+

sin4A

sin2B
= 1 ⇒ cos4B

cos2A
+

sin4B

sin2A
= 1.

Tony Forbes
The obvious solution to

cos4A

cos2B
+

sin4A

sin2B
= 1 (∗)

is A = B. If, as one reader suggested, this is the only solution of (∗) then
the problem becomes trivial. However, I’m not so sure.

Anyway, I thought I would have a go—on the assumption that there
really do exist non-trivial solutions to (∗). As is usual with problems like
this the difficult part is trying to discover the right approach.

Writing (∗) as

(cos4A)(sin2B) + (sin4A)(cos2B) = (cos2B)(sin2B)

and using cos2B + sin2B = 1 to expand the right-hand side to either
cos2B − cos4B or sin2B − sin4B, we obtain

cos4B = cos2B − (cos4A)(sin2B)− (sin4A)(cos2B),

sin4B = sin2B − (cos4A)(sin2B)− (sin4A)(cos2B).

Now replace sin4A by (1 − cos2A)2 in the first equality, replace cos4A by
(1− sin2A)2 in the second and simplify:

cos4B = −(cos2A)(cos2A− 2 cos2B),

sin4B = (sin2A)(1 + cos2A− 2 cos2B).

Hence cos4B/ cos2A+ sin4B/ sin2A = 1, as required.

Solution 233.4 – Three tans
Show that the cubic k3 − 21k2 + 35k− 7 = 0 has roots tan2 1

7π,
tan2 2

7π and tan2 3
7π.

Norman Graham
See page 11 for my solution to Problem 233.2 – Three secs. The two prob-
lems are the same!
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Solution 233.1 – Hill
A cannon of mass M fires a shot of mass m to hit a target at
distance a. At distance b in the line of fire there is a hill of height
h. Assuming that the shell just clears the hill before going on
to strike the target, prove that the gun must have been aiming
at an angle of

arctan

(
M

M +m
· ah

b(a− b)

)
to the horizontal.

Norman Graham

-

6

v

u b a

h

The standard formula is s = ut+ 1
2αt

2, where t = time, s = distance, u =
initial velocity and α = uniform acceleration.

Horizontally to the hill, b = ut. Vertically, h = vt − 1
2gt

2. Hence h =
vb/u− 1

2g(b/u)2. Similarly, at the target, 0 = va/u− 1
2g(a/u)2. Therefore

1

2

g

u2
=

v

au
and h =

vb

u
− b2 v

au
.

Hence

h =
v

u

(
b− b2

a

)
and

v

u
=

ah

b(a− b)
.

If the gun recoils at velocity u1, conservation of momentum gives Mu1 =
mu. Relative to the gun, the horizontal velocity is u + u1 = u(1 + m/M).
Therefore relative to the gun, the elevation is

tan−1
v

u+ u1
= tan−1

(
M

m+M

ah

b(a− b)

)
.

I do not think there is a formula which allows for R, the radius of the Earth,
which would involve a variable direction of gravity. In practice, this does
not matter since a � R for guns. However, it is relevant to the launch of
satellites, for which the path is traced by computer simulation.
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Solution 232.5 – Three points on a cuboid
Take a cuboid and mark a point on each of three mutually or-
thogonal faces. Show how to construct the lines on each of the
three faces at the intersections of the plane that passes through
the three points.
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�
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�
��

��
�
��

r
rr

Dick Boardman
We restate the problem as follows. Given a set of axes and given three
points, one in the (x, y) plane, P , one in the (y, z) plane, Q, and one in the
(x, z) plane, R, find points M on the x axis, N on the y axis and V on the
z axis such that V , R and M are collinear, V , Q and N are collinear, and
N , P and M are collinear.

The basis of the method is as follows. Let the coordinates of the given
points be P = (Px, Py, 0), Q = (0, Qy, Qz) and R = (Rx, 0, Rz). Choose a
variable point V on the z axis, V = (0, 0, Vz). Let N be the point where the
line V Q meets the y axis: N = (0, Ny, 0). Let M1 be the point where the
line V R meets the x axis: M1 = (M1x, 0, 0) and let M2 be the point where
the line NP meets the x axis: M2 = (M2x, 0, 0). We need to choose V such
that M1 = M2.

By similar triangles,

Qy

Vz −Qz
=
Ny

Vz
,

Rx

Vz −Rz
=
M1x

Vz
, and

Px

Ny − Py
=
M2x

Ny
.

Solving M1 = M2 and eliminating Ny then gives

Vz =
PyQzRx + PxQyRz

PxQy + PyRx −QyRx
, Ny =

PyQzRx + PxQyRz

QzRx − PxQz + PxRz
,

M1x = M2x =
PyQzRx + PxQyRz

PyQz − PyRz +QyRz
.
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Robin Marks
Starting with the equation of a plane P of the form ax + by + cz + d = 0,
divide through by a to get an alternative form: x+ a2y + a3z = a1, where
a1, a2 and a3 are constants to be determined. To find the point xP where P
intersects the x axis, substitute y = 0 and z = 0, giving xP = a1. Similarly
yP = a1/a2 and zP = a1/a3.

Let the three points on the faces of the cuboid be p1 = (0, p12, p13),
p2 = (p21, 0, p23), p3 = (p31, p32, 0). Substitute these into the equation for
P to get three simultaneous equations:

a2p12 + a3p13 = a1, p21 + a3p23 = a1 and p31 + a2p32 = a1.
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Solve these three equations for a1, a2 and a3. Intersections of the axes with
the plane P are

xP = a1 =
p12p23p31 + p13p21p32
p12p23 + p13p32 − p23p32

,

yP =
a1
a2

=
p12p23p31 + p13p21p32
p13(p21 − p31) + p23p31

,

zP =
a1
a3

=
p12p23p31 + p13p21p32
p12(p31 − p21) + p21p32

.

We construct the desired lines by joining xP , yP and zP in pairs.

Problem 238.1 – Disc
Choose a point at random in the unit disc. Choose a direction at random.
What is the expected distance from the point to the unit circle in the chosen
direction? (Thanks to Emil Vaughan for communicating this to me.)

Problem 238.2 – Zeros
Let f(z) be a quadratic in the complex plane. Suppose the zeros of f(z),
z1 and z2 (which not necessarily distinct), lie in the closed unit disc. Prove
that the zero of f ′(z) lies in the intersection of the closed unit discs centred
on z1 and z2.

This is a special case of Sendov’s conjecture, which you can find in Robin
Whitty’s web site, http://www.theoremoftheday.org.

Problem 238.3 – Sums
Let

Sn(k) =

n∑
j=0

(−1)j
(
n

j

)
(n− j)k,

where k ≥ 2 is an integer. Prove that

S1(k)

1
− S2(k)

2
+
S3(k)

3
− · · · ± Sk(k)

k
= 0.

Answers to quiz on page 5: R3, MND, CoE, Cor; WT, H62, R2, H8; 12N, JC,

T&C, PPoT; AYLI, MWoW, T, 2GoV; AWTEW, H63, MfM, KL; H42, H, Cym,

MAaN; TA, O, MoV, H61; R&J, tSp, A&C, TotS; ToA, H5, KJ, LLL; H41.
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Solution 233.2 – Three secs
Show that

sec4
π

7
+ sec4

2π

7
+ sec4

3π

7
= 416.

Norman Graham
To show that sec4 π/7 + sec4 2π/7 + sec4 3π/7 = 416 or, equivalently,(

1 + tan2 1
7π
)2

+
(
1 + tan2 2

7π
)2

+
(
1 + tan2 3

7π
)2

= 416,

it suffices to prove that

3 +

3∑
j=1

tj + 2

3∑
j=1

t2j = 416,

where tj = tan2 jπ/7. Moreover, since

tan2 θ =
sin2 θ

cos2 θ
=

1− cos 2θ

1 + cos 2θ
,

we have tj = (1− cj)/(1 + cj), where cj = cos 2πj/7.

Consider the equation cos 4θ = cos 3θ. This is satisfied by 4θ = 2nπ±3θ
(n integral), that is, 7θ = 0, 2π, 4π, 6π, . . . . But, writing c for cos θ,

cos 4θ = 2 cos2 2θ − 1 = 2(2c2 − 1)2 − 1 = 8c4 − 8c2 + 1,

cos 3θ = cos 2θ cos θ − sin 2θ sin θ = (2c2 − 1)c− 2c(1− c2) = 4c3 − 3c.

Hence 8c4 − 4c3 − 8c2 + 3c+ 1 = 0; that is,

(c− 1)(8c3 + 4c2 − 4c− 1) = 0.

Now c = 1 has solution θ = 0 and 8c3 + 4c2 − 4c − 1 = 0 has solutions cj .
But cj = (1− tj)/(1 + tj); so the tj are the solutions to

8(1− t)3 + 4(1− t)2(1 + t)− 4(1− t)(1 + t)2 − (1 + t)3 = 0.

This gives t3 − 21t2 + 35t− 7 = 0 on collecting like terms. Thus
∑
tj = 21

and
∑
tjtk = 35. Also

(∑
tj
)2

= (t1+t2+t3)2 =
∑
t2j+2

∑
tjtk. Therefore

3 + 2
∑

tj +
∑

t2j = 3 + 2 · 21 + 212 − 2 · 35 = 416,

as required.
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Solution 232.3 – Three degrees
Devise a ruler-and-compasses geometric construction for

1

16

((√
6 +
√

2
)(√

5− 1
)
− 2

(√
3− 1

)(√
5 +
√

5

))
.

If you have a calculator handy, you can verify that this expres-
sion and sinπ/60 are the same—hence the title of the problem.

Dick Boardman
We construct angles of 36◦ and 30◦, substract them to get 6◦ and bisect
6◦ to get 3◦. To illustrate the method, sketch an isosceles triangle ABC
where AB = AC and ∠BAC = 36◦. Then ∠ACB = ∠ABC = 72◦.
Draw the bisector of ∠ABC and let it meet AC at D. Then 4BDA is
isosceles with base angles 36◦ and 4BCD is isosceles with base angles
72◦. Hence AD = DB = BC. Triangles ABC and BCD are similar
and hence AB/BC = BC/(AC − AD) = BC/(AB − BC). Therefore
AB/BC = (1 +

√
5)/2.

Now for the actual construction. Construct a right-angled triangle PQR
(with right angle at Q), where PQ = 1 and QR = 4. Extend PR to S where
RS = PQ = 1. This constructs the length 1 +

√
5. Note that PQ = 1 is

the unit length for the rest of the construction.

Next, construct triangle ABC with AB = AC = 1 +
√

5 and BC = 2.
This creates an angle of 36◦ at A. On base AC construct an equilateral
triangle ACF and bisect angle FAC to meet CF at G. This produces an
angle of 30◦ at A. Then ∠BAC − ∠GAC = 36− 30 = 6 = ∠BAG. Bisect
∠BAG to give an angle of 3◦. Construct a triangle with angles 3◦, 90◦, 87◦

and hypotenuse 1. The other sides will be sin 3◦ and cos 3◦

This needs to be related to the expression given for sin 3◦.

Tony Forbes
From the above (or otherwise), we see that sin 30◦ = 1

2 , cos 30◦ = 1
2

√
3,

sin 36◦ =
√

1
8 (5−

√
5) and cos 36◦ = 1

4 (1 +
√

5). Therefore

sin 6◦ = sin 36◦ cos 30◦ − cos 36◦ sin 30◦ =
1

8

(√
30− 6

√
5−
√

5− 1

)
.

Plug this value into sin2 6◦ = 4 sin2 3◦(1 − sin2 3◦) and solve. The main
difficulty will be in convincing yourself that your solution is the same as the
one given in the statement of the problem.
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Solution 186.3 – Two hands
(i) At what times do the hour and minute hands overlap on a
normal analogue clock? (ii.a) When do the hour, minute and
second hands overlap exactly? (ii.b) Apart from that special
case, at what times do the three hands of a clock overlap as
closely as possible?

Tony Forbes
This came up in a conversation recently. So, although it has been a long
time since it first appeared, I thought it might be of sufficient interest to
resurrect it for M500 in case you too get involved in a similar discussion.
The interesting part is (ii.b). However, we require the solution to (i), which
is not too difficult to obtain with the help of the back of a small envelope:
60h/11 minutes past h for h = 0, 1, 2, . . . , 10, as shown below together with
the case h = 11 added at the end. I have also drawn the second hand, and
you can read off the answer to part (ii.a) from the first (or last) clock.

For part (ii.b) we look at the clocks where the second hand is near the
other two. There seem to be two candidates: just after 3:16, where the
second hand has gone a little too far and must be backed up by about 5
seconds to meet the hour hand, and just before 8:44, where we need to wind
the second hand forwards. Surprisingly (at least to me) both cases qualify.

I won’t bother with all the tedious analysis. Nevertheless you can easily
verify that the results are correct. When the time is 3:16 and 11760/719
seconds exactly, the hour and second hands line up at (70560/719)◦ ≈
98.1363◦ (measured clockwise from midday) but the minute hand is slightly
behind at (70200/719)◦ ≈ 97.6356◦. And at 8:43:(31380/719) the directions
are (188280/719)◦ ≈ 261.864◦ and (188640/719)◦ ≈ 262.364◦ respectively.
In each case the angle between the hour and minute hands is (360/719)◦ ≈
0.500695◦.



Page 14 M500 238

Solution 233.7 – Cyclic quadrilateral
A convex quadrilateral of sides a, b, c
and d is inscribed in a circle of radius 1.
What is d in terms of a, b and c?

Robin Marks
For ease of description, let a, b
and c be arranged in descending
size order so that a ≥ b ≥ c.
In a unit circle, centre O, draw
a chord of length a. Label it
a. The chord a divides the cir-
cle into a major and a minor seg-
ment except for the case a = 2
when there are two equal seg-
ments (semicircles).

q
q

q
q

q
q

qO
a

b1

b2

c1

c2

d1

d2

In the major segment (or, if a = 2, in a semicircle), draw a chord b1 of
length b starting at one end of a, and another chord c1 of length c starting
at the other end of a. Finally join the free ends of b1 and c1 to form the
chord d1 of length d1, forming a cyclic quadrilateral ab1d1c1.

In the minor segment, similarly draw chords b2 and c2 from the ends
of a. If b2 and c2 intersect or their ends touch there is no second solution.
Otherwise join the free ends of b2 and c2 to form chord d2 of length d2,
forming a second cyclic quadrilateral ab2d2c2.

We need to find d1 and, if it exists, d2. Let us introduce the notation
that x̂ denotes the angle subtended at the centre of the circle by a chord of
length x. Then sin x̂/2 = x/2 and hence x̂ = 2 arcsinx/2.

The condition for the smaller solution d2 is that the angles subtended
at O by b2 and c2 add up to less than the angle subtended by a, that is,
â > b̂ + ĉ, or, in other words, arcsin a/2 > arcsin b/2 + arcsin c/2. If this

condition is true then d2 exists and d̂2 = â− b̂− ĉ, or

d2 = 2 sin

(
arcsin

a

2
− arcsin

b

2
− arcsin

c

2

)
.

This is a satisfactory solution to the problem as set. However, my pocket
calculator cannot calculate arcsin. Could the arcsin terms be eliminated?
On the internet I found the addition formula

arcsinx± arcsin y = arcsin
(
x
√

1− y2 ± y
√

1− x2
)
.
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So

arcsinx− arcsin y − arcsin z

= arcsin
((
x
√

1− y2 − y
√

1− x2
)
− z
√

1−
(
x
√

1− y2 − y
√

1− x2
)2)

= arcsin
((
x
√

1− y2 − y
√

1− x2
)
− z
(√

1− x2
√

1− y2 + xy
))

(∗)

= arcsin
(
− xyz

+x
√

1− y2
√

1− z2 − y
√

1− x2
√

1− z2 − z
√

1− x2
√

1− y2
)
.

Substituting x = a/2, y = b/2 and z = c/2 gives an ‘arcsin-free’ solution

d2 =
1

4

(
−abc+a

√
4− b2

√
4− c2−b

√
4− a2

√
4− c2−c

√
4− a2

√
4− b2

)
.

Given 2 ≥ a ≥ b ≥ c, the value the above expression for d2 lies in the
interval −a (when a = b = c) to +a (when b = c = 0); however if the second
cyclic quadrilateral is to be convex, as required, d2 has to be greater than
zero.

Now we consider the solution d1. The angle d̂1 subtended at the centre
O by d1 is 2π minus the sum of the angles subtended by a, b1 and c1; that is,
d̂1 = 2π− â− b̂− ĉ, or arcsin d1/2 = π− arcsin a/2− arcsin b/2− arcsin c/2.
Hence

d1 = 2 sin

(
arcsin

a

2
+ arcsin

b

2
+ arcsin

c

2

)
.

Using the arcsin addition formula again on this expression leads to

d1 =
1

4

(
−abc+a

√
4− b2

√
4− c2+b

√
4− a2

√
4− c2+c

√
4− a2

√
4− b2

)
.

For convex cyclic quadrilaterals the value the above expression for d1 lies
in the interval 0 (for example when a = b = c =

√
3) to 2 (for example

when a = b = c = 1). It is possible for d1 to be negative, for example when
a = b = c = 1.9, but then the cyclic quadrilaterals are not convex.

Note. To obtain (∗) the following has been used:√
1−

(
q
√

1− p2 ± p
√

1− q2
)2

=
√

1 + 2p2q2 − p2 − q2 ∓ 2pq
√

1− p2
√

1− q2
)

=
√

(1− p2)(1− q2) + p2q2 ∓ 2pq
√

1− p2
√

1− q2
)

=

√(√
1− p2

√
1− q2 ∓ pq

)2
=
√

1− p2
√

1− q2 ∓ pq.
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Cellular automata
Chris Pile
I was interested to see the article by Sebastian Hayes on cellular automata
(M500 235). I first saw this in a full-page article in The Daily Telegraph
in 1999 (January 13th) prior to the publication of the book by Stephen
Wolfram. At the time I was disappointed, as the first ‘rule’ that I tried was
no. 140 (my house number!) and this resulted in just a vertical line.

I have not read Wolfram’s A New Kind of Science, but I have reviewed
this topic after seeing the article in M500. The eight ‘generators’ that give
rise to the 256 rules are best numbered from the right-hand side so that
the rule number can be read as the binary equivalent in powers of 2. It
is a simple matter to generate the patterns on a computer but many are
predictable. To give more insight into pattern generation, the presence of
each generator can be shown as a different colour or symbol; as, for example,
in the following table.

27 26 25 24 23 22 21 20

XXX XXO XOX XOO OXX OXO OOX OOO
H G F E D C B A

The patterns can be separated into ‘odd’ and ‘even’ rule numbers (the
presence or absence of generator A). Only generators A, B, C and E can start
a pattern. By inspection, it can be seen that generator C produces a vertical
line, which occurs 16 times (generated by rule 4 plus multiples of 32, or rule
12 plus multiples of 32). The Sierpinski triangle occurs eight times, being
generated by rule 18 plus multiples of 64, or rule 26 plus multiples of 64.
Inspection of the eight generators shows that some patterns are symmetrical
or exist in mirror-image pairs; e.g. the interesting rule 30 pattern is a mirror
image of rule 86 since generator G is a mirror image of generator D.

The even-numbered rules give rise to 32 full triangular patterns and 16
half triangles. The odd-numbered rules produce a background of horizontal
stripes, and from rule 129 onwards the pattern is ‘negative’. (Rule 129 is a
Sierpinski pattern.) The rules produce 36 triangles (13 mirror image pairs
and 10 symmetrical). Rule 45 (or 101) gives a complex triangular pattern
and rule 169 (or 225) gives a widening ‘river’ pattern [see back cover].

Cellular automata can produce dynamic patterns as in the game of
‘Life’, invented by John Conway, in which new cells are ‘born’ (appear
on the grid) and old cells ‘die’ (disappear from the grid) according to the
status of neighbouring cells. The grid could also be triangular or hexagonal.
Maybe if the cells are part of a three-dimensional lattice, we could produce
patterns to simulate the origin of the universe as the ‘big bang’, starting
from a single cell with the appropriate rules!
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Problem 238.4 – Wednesday’s child
I have two children, one of whom is a boy born on a Wednesday. Assuming
boys and girls as well as days of the week are equally likely, what’s the
probability that my other child is also a boy?

This is similar to something that appeared in New Scientist last year.
But not identical, for it differs in one small detail. Anyway, it is possible
readers of that excellent magazine will by now have forgotten the issues
raised by this innocent-looking probability question.

Skidoo
Eddie Kent
An acquaintance suggested an interesting type of puzzle we could use in
M500. A number is asserted as equal to an abbreviation, which has to be
reconstructed to a well-known expression. An example is 26 = ‘L in the A’
with a solution ‘letters in the alphabet.’ My subconscious tells me I’ve seen
this before, perhaps Jeremy has used something like it, but I had a look on
the internet and found some examples. They are often clever, frequently
baffling (even when the answer is known1), but ultimately trivial. One
thing became clear though: 23 is always equal to S, and the S is invariably
‘skidoo’. Why?

One is led to New York; to 175 Fifth Avenue at its junction with
Broadway at 23rd Street: the location of the first skyscraper. Orig-
inally the Fuller but now known as the Flatiron Building, it rises 22
stories and creates a kind of wind tunnel at its base. New Yorkers
used to place bets on how far the debris would extend when the wind
blew it down. But young men congregated opposite at 23rd to watch
ladies’ skirts blowing up, sometimes as far as their knees. (See, for in-
stance, http://www.archive.org/details/What Happened 1901 for an engag-
ingly cheerful piece of film.)

Since this was clearly a nuisance, policemen would regularly turn up to
move them on. They were told to ‘skedaddle’, or more often ‘skid(d)oo’.
And the operation became known as ‘the 23 skidoo’. This has become a
common phrase in America, as in ‘giving someone the 23 skidoo,’ but it
does not appear to have crossed the herring-pond. (Although a British
punk band did adopt the name, briefly.)

1If you want to tax the little grey cells, find the answer to 8675309 = J. Think US
pseudo-punk, Tommy Tutone.
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