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Solution 233.5 – Croquet
A croquet hoop made of wire of diameter 1 has an opening of
width w and is set into the (x, y) plane with the opening occu-
pying the interval from (−w/2, 0) to (w/2, 0). A croquet ball
has diameter d < w. What is the set of points from which the
ball, when struck in a non-spin-inducing manner, will eventually
go through the hoop, possibly after bouncing off its uprights a
number of times.

Robin Marks
Suppose that, on a curious croquet ground, one of the Queen of Hearts’s
soldiers doubles himself up to stand on his hands and feet and transforms
himself into a perfectly resilient hoop with perfectly round surfaces. The
hedgehog, who will be the ball, drinks a shrinking potion and curls up so
that he is perfectly round before shrinking to a diameter d which is negligible
compared with 1.

The flamingo, acting as the mallet, is sufficiently well behaved for a few
seconds to allow Alice to hit this exceedingly small hedgehog towards the
hoop, at an angle θ1 to the line joining the soldier’s hands and feet. Let the
soldier’s feet, on the left, and his hands, on the right, be numbered 1 and 2
respectively. Let the centres of circles 1 and 2 be O1 and O2.

Now suppose that the hedgehog rolls in a peculiarly straight line, only
just missing circle 2. He travels on, heading towards point S inside circle 1,
but before he reaches S he hits circle 1 at point C1 and bounces off, heading
towards the point C2 where he bounces off again. After many more bounces
he eventually emerges from the other side of the hoop.

The question we have to answer is: What is this angle θ1 such that the
hedgehog only just makes it through the hoop?

Let the radius of the hoop wire be r. To calculate what happens, first
choose the value of s, between 0 and 1. Point S is on the x-axis at a distance
sr from O1. A line passing through S which is a tangent to circle 2 has
point of tangency T .

Referring to Figure 1, in right-angled triangle TSO2, the angle TSO2 is
θ1, the hypotenuse has length h = 2r+w− sr, and the side TO2 has length
r. Hence distance TS =

√
h2 − r2; hence

tan θ1 = r/
√
h2 − r2.
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The first contact point C1 is at one of the two points where the line
going through T and S intersects circle 1. We find C1 by solving, for x and
y, the simultaneous equations for circle 1 and for the line ST :

r2 = y2 +
(
x+

w

2
+ r
)2
,

y =
r√

h2 − r2
(
x+

w

2
+ r(1− s)

)
,

giving two solutions. We choose C1 to be the solution with the greater x
value.

Having found C1 we can now calculate angle C1O1S, which is labelled
ψ1. The angle of incidence for the hedgehog is angle TC1N = angle O1C1S
= θ1 − ψ1. Because the hedgehog is not spinning we expect the angle of
incidence to equal the angle of reflection; the angle NC1C2 should also be
θ1 − ψ1. Thus after the first bounce the hedgehog changes direction by an
angle of 2(θ1 − ψ1).

The hedgehog’s new direction is along a line passing through C1 at angle
to the x-axis of θ1 − 2(θ1 − ψ1) = 2ψ1 − θ1. The second contact point for
the hedgehog, C2, is at one of the two points where this line intersects circle
2. To make calculations easier we find not C2 but the reflection of C2 in
the y-axis, by solving simultaneously the equation for circle 1 and for the
equation for the line passing through reflections of both C1 and C2. The
angle of this reflected line to the x-axis is θ2 = θ1−2ψ1. Therefore we solve,
for x and y,

r2 = y2 +
(
x+

w

2
+ r
)2
,

y = (tan θ2)x+ (y coordinate of C1)− (tan θ2)(x coordinate of C1),

again giving two solutions. We choose C2 to be the solution with the greater
x value.

Now we can calculate the angle ψ2, the angle subtended at O1 by the
reflection of C2, and hence we find angle

θ3 = 2(θ2 − ψ2)− θ2 = θ2 − 2ψ2 = θ1 − 2ψ1 − 2ψ2.

Continuing in this manner we calculate successively ψ3, ψ4, . . . . At
each step we calculate

θn = θ1 − 2ψ1 − 2ψ2 − · · · − 2ψn−2 − 2ψn−1.
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As the hedgehog zigzags towards the x-axis values of ψi are positive and
decreasing. If and when the hedgehog crosses the x-axis the ψi are negative;
successive values increase in magnitude before the hedgehog finally makes
it through the hoop.

The value chosen for s is 0.708164, giving initial angle θ1 = 33.9236◦

and the following calculated values of ψi.

ψ1 = 10.6441◦

ψ2 = 3.9129◦

ψ3 = 1.4867◦

ψ4 = 0.56741◦

ψ5 = 0.216647◦

ψ6 = 0.0825937◦

ψ7 = 0.0311374◦

ψ8 = 0.0108185◦

ψ9 = 0.00131825◦

ψ10 = −0.00686379◦

ψ11 = −0.0219096◦

ψ12 = −0.0588651◦

ψ13 = −0.154687◦

ψ14 = −0.405219◦

ψ15 = −1.06137◦

ψ16 = −2.78623◦

In Figure 1, we show the path of the vanishingly small hedgehog up to the
second contact point C2.

But now the shrinking potion has started to wear off; the hedgehog
grows to a visible size, diameter d. “How does this affect the calculations?”
Alice wonders. “Not a lot,” says the Knave of Hearts. “We only need
replace the hoop wire radius 1/2 with 1/2 + d/2, and also substitute w − d
for w. Then do the calculations again as above.”

In Figure 2, we show the path of the hedgehog now diameter d = 1/10
going through the gap w = 3/8. The shaded area between the circles shows
the area covered by the moving hedgehog’s body. The value chosen for s
is 0.708164, giving an initial approach angle θ1 of 33.9236◦. Each of the
points C1, C2, . . . lies on a dotted circle and indicates the position of the
hedgehog’s centre when his exterior is in contact with a hoop.

Approaching the x-axis he makes very slow progress, bouncing back and
forth almost horizontally (Figure 3). Note that many of the labels Ci have
been omitted from the central part of the hedgehog’s path because of lack of
space. Calculations show that his centre crosses the x-axis between contact
points C9 and C10. If we choose a starting value for s which is only 10−7

lower and repeat the calculations, he does not get through the hoop but
bounces back out into the +y half-plane from whence he came.
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Figure 1: Path of the vanishingly small hedgehog up to C2

Figure 2: Path of the visible hedgehog
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Figure 3: Magnified view of the path of the visible hedgehog

Problem 240.1 – Two tins of biscuits
Rex Watson
There are two tins, each containing n > 0 biscuits. Take a biscuit from a
tin chosen at random. Keep doing this until one tin is empty. What is the
expected number of biscuits that remain in the other tin?

[The problem also appeared on the wall of the OU Mathematics De-
partment Common Room.]
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Solution 233.3 – Six tans

Show that
6∏
j=1

tan
πj

13
=
√

13.

Norman Graham
Consider the equation cos 6θ = cos 7θ. This is satisfied by 6θ = 2nπ = 7θ,
n integral, 13θ = 0, 2π, 4π, 6π, 8π, 10π, 12π. Let c = cos θ, s = sin θ. Then

cos 6θ = <e6iθ = <(c+ is)6

= c6 − 15c4s2 + 15c2s4 − s6 = 32c6 − 48c4 + 18c2 − 1

and

cos 7θ = <e7iθ = <(c+ is)7

= c7 − 21c5s2 + 35c3s4 − 7cs6 = 64c7 − 112c5 + 56c3 − 7c.

Therefore 64c7− 32c6− 112c5 + 48c4 + 56c3− 18c2− 7c+ 1 = 0 and hence

(c− 1)(64c6 + 32c5 − 80c4 − 32c3 + 24c2 + 6c− 1) = 0,

the solutions of which are c = 1 and c = cj = cos 2πj/13, j = 1, 2, . . . , 6.

Let tj = tan2 πj/13. Since

tan2 θ =
sin2 θ

cos2 θ
=

1− cos 2θ

1 + cos 2θ
,

tj =
1− cj
1 + cj

and cj =
1− tj
1 + tj

.

Therefore tj , j = 1, 2, . . . , 6, are the solutions to the equation

64(1− t)6 + 32(1− t)5(1 + t)− 80(1− t)4(1 + t)2 − 32(1− t)3(1 + t)3

+ 24(1− t)2(1 + t)4 + 6(1− t)(1 + t)5 − (1 + t)6 = 0.

The product
∏6
j=1 tj is the constant in this equation, which is 64 + 32 −

80− 32 + 24 + 6− 1 = 13. Therefore

6∏
j=1

tan
πj

13
=

√√√√ 6∏
j=1

tan2 πj

13
=
√

13,

as required.

Note that this solution uses the same methods as my solution to ‘Prob-
lem 233.2 – Three secs’ in M500 238.
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Solution 236.4 – Real function
Suppose A and θ are real. Show that (A+ iA tan θ)log(A sec θ)−iθ

is also real.

Steve Moon
Let f(A, θ) = (A+ iA tan θ)log(A sec θ)−iθ. Take logs to enable powers to be
handled more easily. Thus

log f(A, θ) =
(

log(A sec θ)− iθ
)(

logA+ log(1 + i tan θ)
)

=
(

log(A sec θ)− iθ
)(

logA+ log

(
1 +

i sin θ

cos θ

))
=

(
log(A sec θ)− iθ

)(
logA+ log(cos θ + i sin θ)− log cos θ

)
,

and since − log cos θ = log sec θ and log(cos θ + i sin θ) = log eiθ = iθ, we
have

log f(A, θ) =
(

logA+ log sec θ − iθ
)(

logA+ log sec θ + iθ
)

=
(

log(A+ log sec θ
)2

+ θ2,

Hence f(A, θ) = e(logA+log sec θ)2+θ2 , which is real for real A and θ.

Problem 240.2 – One
Bob Bertuello
(1) If you put the numbers from 1 to 10 in alphabetical order, in which
position would ONE be placed.

(2) If you put the numbers from 1 to 100 in alphabetical order, in which
position would ONE be placed?

(3) If you put the numbers from 1 to 1000 in alphabetical order, in
which position would ONE be placed now?

. . .

Problem 240.3 – Double sum
Show that

∞∑
r=1

∞∑
s=r+1

1

r2s2
=

π4

120
.
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Solution 234.4 – Tetrahedron
Three sides of a tetrahedron form an equilateral triangle of side
a. The other three sides have length 1. Show that the diameter
of the sphere that circumscribes the tetrahedron is

√
3√

3− a2
.

What if three sides have length 1 and three sides have length
a 6= 1, but no face of the tetrahedron is equilateral?

Stuart Walmsley
The centre of the circumscribed sphere will lie on the threefold symmetry
axis of the tetrahedron, that is, the line joining the unique vertex to the
centre of the equilateral triangle.

If ABC denotes the base equilateral triangle and P its centre, that is,
the point equidistant from A, B and C, then elementary trigonometry shows
that the length of AP is a/

√
3.

[It was at about this point when the Editor started to draw a diagram
on a convenient piece of scrap paper. He recommends that the reader do
likewise. . . . — TF]

If D is the fourth vertex, the centre of the circumsphere, O, is on the
line DP in the right angled triangle APD, such that AO = OD = r, where
r is the radius of the circumsphere.

Then if in the isosceles triangle AOD, the angle ADO is denoted by ω,
angle AOD is π − 2ω. Remembering that AD = 1, by the sine rule

r =
sinω

sin 2ω
=

1

2 cosω
.

But, from the full right angled triangle APD, sinω = a/
√

3. So

cos2 ω = 1− a2

3
=

3− a2

3

and

d = 2r =
1

cosω
=

√
3√

3− a2
,

as required. Note that if a = 1, d becomes
√

3/2, the appropriate value for
the regular tetrahedron.
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For the second part, let AB = AC = a, then BC = 1 and the other edge
meeting A must be of length 1. The figure may be completed in two ways,
mirror images of each other. Let BD = a. Then CA = AB = BD = a and
BC = CD = DA = 1.

[. . . And at this point the Editor decided that a 3-dimensional cardboard
model would serve better than any diagram on paper. — TF]

The line joining the midpoints of the centre members of these trios,
AB and CD, is a two-fold axis of symmetry, the only symmetry element if
a 6= 1. The circumcentre must therefore lie on this line. Choose this as the
z-axis. Let the origin be at the midpoint of AB and let AB lie along the
x-axis. Let the angle the line CD makes with the x-axis be φ with c = cosφ
and s = sinφ, and let j be the common z coordinate of C and D. Then we
have the following.

Coordinates of A: ( 1
2a, 0, 0)

Coordinates of B: (− 1
2a, 0, 0)

Coordinates of C: ( 1
2c,

1
2s, j)

Coordinates of D: (− 1
2c, −

1
2s, j)

The coordinates ensure that CA = BD and BC = DA. Then

AB2 = CA2 if a2 = 1
4 (a− c)2 + 1

4s
2 + j2

and

CD2 = CB2 if 1 = 1
4 (a+ c)2 + 1

4s
2 + j2,

which simplify to

4a2 = 1 + a2 − 2ac+ 4j2 and 4 = 1 + a2 + 2ac+ 4j2.

Adding leads to
j2 = 1

4 (1 + a2).

Subtracting leads to c = (1− a2)/a.

The centre of the circumsphere, G, lies on the z-axis by symmetry.
Let the coordinates of G be (0, 0, g). Then GA = GB and GC = GD by
symmetry, so it is required that GA2 = GC2. Now

GA2 = 1
4a

2 + g2 and GC2 = 1
4 + (j − g)2.

Simplification using j2 = 1
4 (1 + a2) leads to

g =
1

4j
=

1

2
√

1 + a2
.
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The radius of the circumsphere, r say, is GA so that

r2 =
a2

4
+ g2 =

a2

4
+

1

4(1 + a2)
=

1 + a2 + a4

4(1 + a2)
,

giving the diameter

d =

√
1 + a2 + a4

1 + a2
,

which may also be written as

d =

√
1− a6

1− a4
.

As before, if a = 1, d becomes
√

3/2, the appropriate value for the
regular tetrahedron.

The restrictions on the value of a imposed by the geometry are not made
clear through d (in contrast to the first problem). For two isolated triangles
with sides {1, 1, a} and {1, a, a}, the restriction on a is obviously 1

2 < a < 2.
A further restriction is associated with the cosine c: c = (1−a2)/a = 1/a−a.
Its limits are −1 ≤ (1− a2)/a ≤ 1. The second of these leads to

1− a2 − a ≤ 0.

The quadratic is recognized as that of the golden mean (which is therefore
associated with one more improbable problem). In this way the restriction
on a can be written

0.618 . . . =

√
5− 1

2
≤ a ≤

√
5 + 1

2
= 1.618 . . . .

Final comment. The differences in the detailed forms of the two tetra-
hedra considered here can be traced to the following feature. In the first
tetrahedron, the two sets of three edges are geometrically distinct: one set
forms a triangle and the other a tripod. There is one type of isosceles tri-
angle, implying that a < 2. The limit in which the apex of the tripod is
in the same plane as the base triangle imposes the more restrictive condi-
tion a <

√
3. In contrast, in the second tetrahedron, the two sets of three

edges are geometrically equivalent, forming as they do a set of three edges
with two common vertices. The value of a is then restricted by the relative
orientation of the two sets—that is, through the cosine parameter.

Also solved by Steve Moon.
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Solution 231.6 – Three arctans
Suppose a, b, c > 0 and let p = a+ b+ c. Prove that

arctan

√
ap

bc
+ arctan

√
bp

ca
+ arctan

√
cp

ab
= π. (1)

What if there is no restriction on a, b and c?

Steve Moon
For any A, B, C, we can form the identity

tan(A+B + C) =
tanA+ tan(B + C)

1− tan(A) tan(B + C)

=
tanA+ tanB + tanC − tanA tanB tanC

1− tanA tanB − tanB tanC − tanC tanA
.

Now if we set

A = arctan

√
ap

bc
, B = arctan

√
bp

ca
, C = arctan

√
cp

ab
,

then

tan(A+B + C) =

√
ap

bc
+

√
bp

ca
+

√
cp

ab
−
√

p3

abc

1− p

c
− p

b
− p

a

=

√
p

(√
a

bc
+

√
b

ca
+

√
c

ab
− p√

abc

)

1− p(ab+ bc+ ca)

abc

=

√
p
(
a
√
abc+ b

√
abc+ c

√
abc− p

√
abc
)

abc− p(ab+ bc+ ca)
= 0.

So

tan

(
tan−1

√
ap

bc
+ tan−1

√
bp

ca
+ tan−1

√
cp

ab

)
= 0.

If x > 0, then arctanx ∈ (0, π/2). Moreover, tanx = 0 ⇒ x = nπ
for some integer n. So if a, b, c > 0, then A,B,C ∈ (0, π/2) and therefore
A+B + C = π.
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If one of a, b, c is zero, the relationship still holds (because 0 + π/2 +
π/2 = π) as long as we take tan−1 k/0 = π/2.

If more than one of a, b, c are zero, the expression is undefined since
tan 0/0 is undefined.

Tony Forbes
If not all of a, b and c are non-negative, the above analysis doesn’t seem to
work. To try to see what is going on let us put b = 2, c = 3. If we call the
resulting expression on the left of (1) T (a), then

T (a) = arctan

√
a(a+ 5)

6
+ arctan

√
2(a+ 5)

3a
+ arctan

√
3(a+ 5)

2a
.

We must make the assumption that the things being square-rooted are non-
negative and that for finite real x the function arctan(x) takes its principal
value, the one in the range (−π/2, π/2). As we have seen, T (a) = π when
a ≥ 0, and we are interested in what happens when a < 0. Clearly T (−5) =
0. In between, when −5 < a < 0, we have to leave T (a) undefined since it
involves imaginary quantities.

However, T (a) is well defined for a ≤ −5 but it is not equal to π, as you
can see from the following plot.

−60 −50 −40 −30 −20 −10 10 20

1

2

3

Interestingly, if we negate the first term in T (a) to get

U(a) = − arctan

√
a(a+ 5)

6
+ arctan

√
2(a+ 5)

3a
+ arctan

√
3(a+ 5)

2a
,

then it turns out that U(a) does have a constant value, namely zero, for a <
−2. Unfortunately I can’t see a good reason for making this transformation.
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Solution 237.5 – Another sum

Show that

∞∑
n=1

1

n2(n+ 1)2
=

π2 − 9

3
.

Steve Moon
Expanding 1/(n2(n+ 1)2) using partial fractions,

∞∑
n=1

1

n2(n+ 1)2
=

∞∑
n=1

(
1

n2
+

1

(n+ 1)2
+

2

n+ 1
− 2

n

)

= 2

∞∑
n=1

1

n2
− 1− 2 = 2

∞∑
n=1

1

n2
− 3.

We now consider
∑∞
n=1 1/n2.

Using the Taylor series for sinx, we have

sinx

x
= 1− x2

3!
+
x4

5!
− · · ·+ (−1)n

x2n

(2n+ 1)!
+ . . . .

Now (sinx)/x = 0 for x = nπ, n = ±1,±2,±3, . . . , and we can write
(sinx)/x as an infinite product of linear terms given by these roots:

sinx

x
=

(
1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)(
1− x

3π

)(
1 +

x

3π

)
. . .

=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
. . . .

Multiply out and equate the coefficient of x2 in the expansion of (sinx)/x
to obtain

−
(

1

π2
+

1

4π2
+

1

9π2
+ . . .

)
= − 1

π2

∞∑
n=1

1

n2
= − 1

3!
= − 1

6
.

Therefore
∞∑
n=1

1

n2
=

π2

6

and hence
∞∑
n=1

1

n2(n+ 1)2
= 2

∞∑
n=1

1

n2
− 3 =

π2 − 9

3
.

Also solved by Bryan Orman (in M500 239) and Tommy Moorhouse.
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Shannon entropy
Ralph Hancock
The piece on Shannon entropy led me to look at the research on those two
famous and maddening unsolved things, the Voynich manuscript and the
Phaistos Disc, both of which have been suspected of being fakes. Both have
had their entropy analysed.

The Voynich MS, of the 15th–16th century, is a single book, 170 char-
acters, 35 words, 20–30 letters in alphabet (uncertainty as to which are
duplicates) plus a few dozen rarer symbols. Its entropy comes out about
the same as Latin, midway between the literary style of Julius Caesar and
the commoner style of the Vulgate; a striking result. The illustrations, of
equally maddening incomprehensibility, show that (if it is meaningful) it is
about a restricted range of subjects, such as plants. Code or anagrams are
suspected by some researchers. All attempts at a solution so far have been
feeble and ridiculous.

The Phaistos Disc, very roughly c. 1700 BC, is a unique clay disc, bear-
ing 241 characters stamped into the clay in a spiral on each side by using
punches bearing a set of 45 symbols having the character of ideograms. The
entropy of this very small sample suggests that it is meaningful. Again, no
attempted solution has made a shred of sense. Suggestions have been made
that the disc is actually not a text but a ludo-like board game, but the
entropy test suggests otherwise.

The disc is of the same date and geographical area as another unde-
ciphered script, Linear A, which was written in Crete between 1800 and
1450 BC, but has no apparent relation to it. There are several hundred
clay tablets in Linear A, mostly small and, as you would expect, the script
evolves over time. Apparently with 60–100 symbols for syllables plus a
range of illustrative ideograms, it is fairly similar to the slightly later Linear
B, which has been deciphered because it was a way of writing Greek, but
the language used here is still unknown, despite attempts at matching all
the local languages to it.

It is noticeable what broad hints you need to solve an undeciphered
script. In the case of Linear B it was a line of text with a picture of a tripod
at the end and the decipherer Michael Ventris’s guess that the language was
Greek, and that the first four syllables of the text were ti-ri-po-de. Egyptian
hieroglyphics needed more: a bilingual inscription, the Rosetta Stone (it has
three inscriptions, but two or them are Egyptian in different scripts, so the
third one in Greek was the key); plus the correct guess that the hieroglyphs
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enclosed in oblong boxes were royal names, which of course also occurred
in the Greek version; plus the fact that a language derived from ancient
Egyptian, Coptic, had only just died out and was still understood.

Shannon entropy also reminds me of the WinZip test for authorship.
The idea is that different authors’ texts will compress by different amounts.
To prove that Shakespeare was not written by Christopher Marlowe, take
ten random excerpts from each author, all of roughly the same length, re-
duce them to plain text files having exactly the same characteristics, and
crunch them with WinZip. Then examine the percentage by which each
is compressed (which WinZip tells you in the zip file contents list). The
Shakespeare texts will fall within a range, the Marlowe ones within a dif-
ferent range. I am told that it is quite accurate, though of course there is
no reason why two different authors shouldn’t crunch by the same amount.

Problem 240.4 – Cycles
Show that the complete graph on n vertices, Kn, can be partitioned into
cycles of length n if and only if n is odd. Here is what the case n = 5 looks
like.

= +
rrr

r r
rrr

r r
rrr

r r
Re: Problem 233.6 – The quartic and the golden mean
In the statement of ‘Problem 233.6 – The quartic and the golden mean’
— show that the straight line passing through the two points of inflection
of a quartic meets the quartic again at the two points with x coordinates
τp−q/τ and τq−p/τ , where p and q are the x the coordinates of the points
of inflection and τ = 1

2 (
√

5 + 1) is the golden ratio — in M500 233, or
at least when Stuart Walmsley’s solution was published in M500 237, the
Editor of this magazine should have mentioned that this intriguing connec-
tion between the quartic and τ was first discovered by Lin McMullin; see,
for example, http://www.theoremoftheday.org/Theorems.html, number 165.
Although Robin Whitty did in fact provide the Editor with this reference
when he initially communicated the problem to him, and again when the
problem appeared in M500 233 apparently incorrectly attributed, regret-
tably, and for reasons that do not stand up to scrutiny, the Editor chose to
ignore Robin on both occasions. Apologies — TF.
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Narayana’s Cows
Eddie Kent
Guten Tag, Herr Archimedes is the title of the German translation of a
book on the history of mathematics by a Ukranian scholar named Andrej
Grigorewitsch Konforowitsch. This book contains many curiosities, includ-
ing the following, which Konforowitsch attributed to Narayana, an Indian
mathematician in the 14th century:

A cow produces one calf every year. Beginning in its fourth year each
calf produces one calf at the beginning of each year. How many cows are
there altogether after, for example, 17 years?

One wonders if Fibonacci ever visited India; this problem is so similar
to one that he set. In the Fibonacci case each member of the sequence
is arrived at by adding together the two previous numbers. In Narayana’s
case one adds the previous number in the sequence to the number two places
before that: Nn = Nn−1 +Nn−3.

There are many ways of looking at this pattern, like at what point do
calves outnumber cows, and what is the rate of growth of the herd. Or one
could investigate different periods for calves to mature. But principally one
has to find a number.

To help in solving this, note that in the first, second and third years
there is just the original cow and her calf, then two and finally three calves.
In the fourth year the oldest calf becomes a mother and we begin a third
generation of Narayana’s cows.

By the eighth year the herd, that went from one to two to three to four
to six to nine to thirteen to nineteen now jumps to 28 and in the ninth
year 13 new calves are born. One is a daughter of the original cow; six are
granddaughters, and six are great-granddaughters.

By the 15th year the herd numbers 406; this includes the original cow, 15
daughters, 78 granddaughters, 165 great-granddaughters, 126 great-great-
granddaughters and 21 great-great-great-granddaughters.

In the 16th year we have one new daughter, 13 new granddaughters,
55 new great-granddaughters, 84 new great-great-granddaughters, 35 new
great-great-great- granddaughters and the very first great-great-great-great-
granddaughter.

Now we arrive at the 17th and final year of the problem. You
have probably calculated what the population is by now, but if you
haven’t, or if you want to check your work, you can just count the notes
at http://music.ensembleklang.com/track/narayanas-cows, where Ensemble
Klang play the herd in a composition by Tom Johnson.

(There is a version of Narayana’s Cows on YouTube, but that is in
Greek, which some people might find a little too stimulating.)
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Problem 240.5 – Cows
Tony Forbes
Show that the number of cows in Eddie’s article on page 16 is given by

1√
93

((
α− 1

α

)
Rn+4 +

(
ρα− 1

ρα

)
Sn+4 +

(
α

ρ
− ρ

α

)
Tn+4

)
,

where α = 3

√
1
2

(
29 + 3

√
93
)
, ρ = 1

2

(
− 1 + i

√
3
)
, a cube root of 1, and
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1

3

(
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1

α

)
, S =

1

3

(
1 + ρα+

1

ρα

)
, T =

1

3

(
1 +

α

ρ
+
ρ

α

)
are the three roots of x3 − x2 − 1. As is usual in such situations, one must
also assume that the cows are immortal.

I am intrigued by the appearance of the square root of 93 in a simple
problem involving cattle breeding. I wonder if herdsmen can offer an expla-
nation. I also wonder if the farming industry is aware of the solution to this
problem and in particular the value of the important constant α ≈ 3.0711.
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The thirty-seventh M500 Society Mathematics Revision Weekend
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from bed and breakfast Friday night to lunch Sunday is £257 (in Aston’s
Lakeside flats) or £307 (Aston Business School), The cost for non-residents
is £123 (includes Saturday and Sunday lunch). M500 members get a dis-
count of £10. For full details and an application form, see the Society’s web
site at www.m500.org.uk, or send a stamped, addressed envelope to

Jeremy Humphries, M500 Weekend 2011.

The Weekend is open to all Open University students, and is designed to
help with revision and exam preparation. We expect to offer tutorials for
most mathematics-based OU courses, subject to sufficient numbers.
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