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TONY HUNTINGTON

With great regret we have to report the sudden death of M500 supporter,
quizmaster and friend Tony Huntington at his home on 14th December 2011.

We first heard of Tony from his critical analysis of some of our proce-
dures. We decided that he was too formidable to be our adversary, so we
asked if we might be permitted to count him as our ally, a request which he
granted. He turned out to be such a felicitous colleague and friend, so full
of humour, that we came to wonder if his initial interactions with us had
been as much mischievous as serious. Wherever the truth lies, the day he
made that first contact was a good day for everybody connected with the
M500 Society.

Although he was on the M500 Committee for only a brief period in 1997
as Publicity Officer, before the demands of employment unexpectedly took
him to the Middle East, all of you who knew him will regard Tony with af-
fection as an essential part of the M500 establishment. Tony and Sonia have
been volunteer supporters of M500 since 1996 and their valuable assistance
in the running of the revision and winter weekends—with Tony commut-
ing from Oman in the years before his permanent return to England—has
always been much appreciated. Winter weekenders will remember Tony’s
many interesting and entertaining presentations, and his contributions to
the M500 magazine have been a regular source of delight and amusement
over the past fifteen years.

Tony’s presence at future M500 events, especially his lively winter week-
end sessions, will be sadly missed. Our sympathies go to his family and
friends, especially Sonia.

Russian peasant multiplication
Sebastian Hayes
Ogilvy and Andersen, in their excellent book Excursions in Number Theory,
recount the true story of an Austrian colonel who wanted to buy seven bulls
in a remote part of Ethiopia some sixty or so years ago. Although the price
of a single bull was set at 22 Maria Theresa dollars, no one present could
work out the total cost of the seven bulls—and the peasants, being peasants,
didn’t trust the would-be buyer to do the calculation himself. Eventually
the priest of a neighbouring village and his helper were called in.

The priest and his boy helper began to dig a series of holes in
the ground, each about the size of a teacup. These holes were
ranged in two parallel columns; my interpreter said they were
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called houses. The priest’s boy had a bag full of little pebbles.
Into the first cup of the first column he put seven stones (one
for each bull), and twenty-two pebbles into the first cup of the
second column. It was explained to me that the first column
was used for doubling; that is, twice the number of pebbles in
the first house are placed in the second, then twice that number
in the third, and so on. The second column is for halving: half
the number of pebbles in the first cup are placed in the second,
and so on down until there is just one pebble in the last cup. If
there is a pebble remaining when doing the halving it is thrown
away.

The division column (the right one) is then examined for
odd or even numbers of pebbles in the cups. All even houses
are considered to be evil ones, all odd houses good. Whenever
an evil house is discovered, the pebbles in it are thrown out and
not counted, and the pebbles in the corresponding ‘doubling’
column are also thrown out. All pebbles left in the cups of the
left, ‘doubling’ column are then counted, and the total is the
answer.

[C. S. Ogilvy & J. T. Andersen, Excursions in Number Theory]

The working on paper would be as follows.

Doubling column Halving column
7 22

14 11
28 5
56 2

112 1
154

The priest worked out the result using holes and pebbles in the way I have
demonstrated though instead of using different coloured beans the helper
simply removed the stones from right-hand holes opposite ones with an even
number in them. The colonel duly paid up, astounded to note that the crazy
system ‘gave the right answer’.

Let us go further back in time. We suppose that a ‘primitive’ society
had grasped the principle of numerical symbolism at the most rudimentary
level, namely that a chosen single object such as a shell or bean could be
used to represent a single different object, such as a tree or a man, and
that clusters of men or trees could be represented by appropriate clusters of
shells—the ‘appropriateness’ to be checked by the time-honoured method of
‘pairing off’. This society has not, however, necessarily attained the stage
of realizing that a single ‘one-symbol’ will do for every singleton, let alone



M500 243 Page 3

reaching the stage of evolving a base such as our base ten. Now suppose
the chief wants each of the villages in a certain area to provide ‘nyaal’ oru u u u u u uyoung men for some public works or warlike purpose. We
have ‘nyata’ or e e e e e evillages from which to draw the task force. The
chief relies on two shamans to carry out numerical calculations, both of
whom are adept in the practice of ‘pairing off’ but one has specialized in
‘doubling’ imaginary or actual quantities, the other in ‘halving’ imaginary
or actual quantities. Although both shamans know that every quantity can
be doubled, the ‘halving’ shaman knows that this procedure does not always
work in reverse. He gets round this by simply throwing away the extra bean
or shell—the equivalent of our ‘rounding off’ a quantity to a certain number
of decimal places.

The halving shaman works with a column of holes on the left-hand side
of a ‘numbering area’ (a flat piece of ground with holes in it) and he has a
store of short sticks, shells or some other common object, which he places
in the holes, or simply in a cluster on the ground. The doubling shaman
works with a similar column of holes on the right but he has a store of
beans or shells which are in two colours, light and dark. (The use of colour
to distinguish two different types of quantities, or to distinguish between
males and females, was the invention of a revered mathematical shaman
who taught the two current shamans.)

The halving shaman sets out the sticks or shells representing the villages
and tries, if possible, to have two matching rows. The doubling shaman
watches carefully and, if the amount on the left can be arranged in two
rows exactly, as in this case, he starts off with a set of dark coloured beans
to represent the young men to be co-opted for the task at hand from each
village. We thus have the following.

Villages Young malese e e u u u ue e e u u u
Now the halving shaman selects half the quantity in the first hole, i.e. a
single row, and arranges it as evenly as possible in two rows. In this case,
there is a bean left over, and the doubling shaman, noticing this, doubles
the original amount on the right but also changes the colour of the beans.e e e e e e e e ee e e e e e e e
The halving shaman discards the extra unit on the left and once again
throws away a row. This leaves just a single bean eand, since we are not
allowed to split a bean or shell, this signals the end of the procedure as far
as he is concerned. The doubling shaman doubles his quantity and since the
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quantity on the right is ‘odd’ (since it cannot be arranged in a two matching
rows) he once again chooses light coloured beans.e e e e e e e ee e e e e e ee e e e e e ee e e e e e e
The two shamans collaborate to combine all the light coloured beans (but
not the dark coloured ones), giving a total of the following.e e e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e e
The chief is given this amount of beans and thus knows how many young
men he can expect to get for the task at hand. From experience, the chief
will have a pretty good idea of the size of this quantity and, if it seems
inadequate for the task, may decide to increase the quota of young men
impressed from each village. When preparing for battle, the chief might use
human beings as counters, pair them off against the beans, then have them
form square formations to judge whether he has a large enough army or
raiding force.

If asked by a time traveller why the dark-coloured beans—which are
always opposite an even number—are rejected, the doubling shaman would
probably say that even amounts are female (because of breasts) and the
chief doesn’t want effeminate men or boys who were still living with their
mothers.

The multiplicative system just demonstrated is very ancient indeed; it is
probably the very earliest mathematical system worthy of the name and was
doubtless invented, reinvented and forgotten innumerable times throughout
human history. Since it does not require any form of writing and involves
only three operations, pairing off, halving and doubling, which are both easy
to carry out and are not troublesome conceptually, the system remained
extremely popular with peasants the world over and became known as Rus-
sian Multiplication because, until recently, Russia was the European country
with by far the largest proportion of innumerate and illiterate peasants. It
is actually such a good method that I have seriously considered using it
myself, at any rate as a visual aid in doing mental arithmetic—it is one of
the tools employed by traditional ‘lightning calculators’ and mathematical
idiot savants.
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Actually, one could say that the three mathematical procedures predate
not only the earliest tribal societies but even the existence of mammals!
Viruses, the lowest form of ‘life’—if indeed they are to be considered alive
at all, which is still a matter of debate—are incapable of doubling, i.e. can-
not reproduce, let alone halving and have to get the DNA of another cell
to do the work for them. They may be considered capable of ‘pairing off’
however, since a virus seeks out the nucleus of a cell on the basis of one
virus, one nucleus. Bacteria, a much more advanced life form, reproduce by
mitosis, basically duplicating everything within the cell and splitting in two,
the ‘daughter’ cell being an exact replica (clone) of the ‘mother’ cell. So
they are capable of doubling. Some ‘advanced’ eukaryotes, including mam-
mals, are also capable of halving since this procedure is involved in sexual
reproduction (but not in other forms of reproduction). Animal and plant
cells are said to be diploid since they contain homologous pairs of chromo-
somes; in humans we have 2n = 46. However, the sex cells during meiosis
not only double in number but manage to halve the chromosome count,
producing so-called haploid cells (gametes) which, in our human case, come
in two kinds. Fusion of ‘egg’ and ‘sperm’ cells restores the diploid number
and incidentally introduces a further mathematical operation, combination,
which may be considered the distant ancestor of Set Theory. It is thus
maybe not at all surprising that peasants the world over have felt at home
with ‘Russian’ multiplication, being closer to Nature and thus to the three
basic processes of Nature, pairing off, doubling and halving on which human
reproduction depends.

A good written notation is not at all essential for Russian Multiplication,
but it does speed things up. Using our Hindu/Arabic notation, suppose you
want to multiply 147 by 19. This is a somewhat tedious enterprise if you
are not allowed a calculator and these days two students out of three would
probably come up with the wrong answer. So here goes.

19 × 147
9 294
4 588 147
2 1176 294
1 2352 2352

2793

Now do it with a calculator. The result: 2793.

Why does the system work? You might like to think about this for a
moment before reading on. (It personally took me a long time to cotton on
though someone I mentioned it to saw it at once.)

Russian Multiplication works because any number can be represented as
a sum of powers of two (counting the unit as the 0th power of any number).
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Algebraically we have

N = Anx
n +An−1x

n−1 + · · ·+A1x
1 +A0

with x = 2. In practice there are only two choices of coefficient for the
An, An−1, . . . , A0 namely 0 and 1 because once we get to a remainder of
2 we move to the next column. When 0 is the coefficient this term is not
reckoned in the final count and is discounted just like the pebbles in the
hole opposite an even cluster. Since 1 × xn = xn, we can simply dispense
with coefficients altogether—which is not true for any other base.

If we look back at the pattern of black and grey in the right-hand
column and write 0 for black and 1 for grey, we have the representation
of the number on the left in binary notation (though it is in reverse order
compared to our system). Take the multiplication of 19 and 147 on page
5. The pattern in the right-hand column is, from the bottom upwards, as
follows.

grey
black
black
grey
grey = 10011 = 1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20

= 1910

A hole in the ground functions as a ‘House of Numbers’ and can only be
in two states: either it is empty or it has something in it (i.e. is non-empty).
The Abyssinian priest’s assistant who removed the stones from a house
opposite one with an even number of stones in it was placing the House
in the zero state. The right-hand column Houses were in fact functioning
in two different though related roles: on the one hand they were in binary
(empty or non-empty) while on the other hand they gave the quantities to
be added in base one.

Did people using the system know what they were doing? In most cases
probably not although, judging by their confidence in handling arithmetical
operations, the Egyptian scribes, using a very similar method I shall perhaps
write about in a subsequent article, almost certainly did: the peasants using
the system just knew it worked. There is nothing surprising or shocking
about this—how many people who use decimal fractions without a moment’s
thought realize that the system only works because we are dealing with an
indefinitely extendable geometric series which converges to a limit because
the common multiple is less than unity?

One might wonder whether it would be possible to extend the principle
of Russian Multiplication to tripling, quadrupling and so on? You might
like to think about this for a moment. Worked example: Take 19×23 using
3 as divisor and multiplier.
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19 23
6 69
2 207
?

We have already run into difficulties since we cannot get back to the unit.
On the analogy with modulus 2 Russian Multiplication, we might decide
we have to take into account the final entry on the right nonetheless, plus
all entries which are not opposite an exact multiple of 3. This means the
answer is 207 + 23 = 230, which is way off since 10 × 23 = 230. What has
gone wrong?

A little thought should reveal that, whereas in the case of modulus 2
we only had to neglect at most a unit on the left-hand side, in the case of
modulus 3 there are two possible remainders, 1 and 2. If we are opposite a
number on the left which is 1 (mod 3) we include the number on the right
in the final addition. However, if we are opposite a number which is 2 (mod
3) we must double the entry on the right since it is this much that has been
neglected. In the above 19 = (6× 3) + 1 and so it is 1 (mod 3) but 2 at the
bottom is (0 × 3) + 2 and so is 2 (mod 3). Applying the above we obtain
23 + (2× 207) = 23 + 414 = 437, which is correct.

To make the system work properly we need not one but two ways of
marking entries in the right-hand column to show whether they just have to
be added on or have to be doubled first. This is an annoying complication,
and even apart from this it is not that easy to divide into three and to
treble integers. And if we move onto higher moduli there are much greater
complications still. The Russian way of doing things ceases to be simple
and user-friendly.

Russian Multiplication is a good example of an invention excellent in
itself but which does not lead on to further inventions and discoveries: it
remains all on its own like an island in the middle of the Pacific Ocean.
Once the crucial improvement of distinguishing the entries to be added
from the others was made, there was nothing much that could be done in
the way of improvements except possibly the introduction of colour coding,
my distinction between dark and light coloured beans. To actually find a
better multiplication system you have to make a giant leap in time to the
ciphered Greek system of numerals or the full place value Indian system—
and even so the advantages would not have been apparent to peasants. If
you are only dealing with relatively small quantities, Russian Multiplication
is quite adequate, is easier to comprehend, and there are fewer opportunities
for making mistakes. In such a case we see that there is indeed a ‘simplicity
cut off point’ beyond which it is not worth extending existing techniques,
since the disadvantages outweigh the advantages. However, there may also
be a ‘second time round point’ when technology has become so sophisticated
that it has become ‘simple’ (= ‘user-friendly’) once more. Computers, being
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as yet relatively unintelligent creatures, have reverted to base 2 arithmetic
though I believe 16 is also used. Wolfram’s cellular automata based on
simple rules which specify whether a given ‘cell’ repeats or doesn’t can
perform complicated operations like taking square roots of large numbers.

This cycle of invention, stasis, disappearance and reinvention happens
all the time; it is more often than not impossible to improve on an early
invention without making a giant leap, a leap requiring not only new ideas
but large-scale social and economic changes which are usually felt to be
undesirable because they are disruptive, or are quite simply out of the
question given the available technology. Short of hiring expensive modern
haulage equipment the best way to move large heavy objects across un-
even ground is the time-honoured Egyptian system of wooden rollers which
are repeatedly brought round to the front. (I have often had occasion to
use this system myself in inaccessible places and it is surprising how well
it works.) The longbow made of yew and animal gut more than held its
own against the far more advanced crossbow: the English bowmen won
Agincourt against axe-wielding French knights and Genoese crossbowmen
largely because the crossbow is slow to reload and its effectiveness is much
reduced in wet weather (the English kept their catgut dry until the battle
began). In point of fact the longbow, an extremely rudimentary weapon,
was only superseded in speed, range and accuracy by the repeating rifle—
one of Wellington’s military advisors seriously suggested re-introducing the
longbow against Napoleon’s Grande Armée. And the horse as a means of
transport was only superseded by the railway; messages were not trans-
mitted much faster across Europe (if at all) under Napoleon than under
Augustus Caesar.

Tony Forbes writes — Curiously, Russian peasant multiplication does have
an interesting modern application. It is the system that is used to perform
computations on elliptic curves. In the Abelian group associated with an
elliptic curve one often wants to ‘multiply’ a point X on the curve by a posi-
tive integer j to give j X = X+X+· · ·+X, where + is the group operation.
Indeed, I included this topic in a series of talks on elliptic curves, which I
delivered at the London South Bank University in 2007. However, I did
make the change to the more politically correct form: Russian agricultural
community multiplication.

The computation of j X is done with just the two procedures: (i) dou-
bling and (ii) the addition of X to something. Start with Y = O, the
identity element of the group, and assume the base 2 representation of j
is available—as it would be on a typical modern computer. Then scan the
binary digits of j from left to right. If you see a 1, double Y and add X.
If you see a 0, just double Y . For example, 42 is 101010 in base 2; so 42X
gets computed as Y = 2(2(2(2(2(2O +X)) +X)) +X).
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Problem 243.1 – Cheese
Tony Forbes
You have a 1 m3 cube of cheese to divide equitably among k people. (Per-
haps you are hosting a cheese and wine party for a large gathering.) So you
slice off 1/km from one end by a plane cut parallel to one of the faces of the
cube, leaving a cuboid of dimensions 1 m× 1 m× (1− 1/k) m. However, for
the second and subsequent pieces you must make the cut through a cross-
section of minimum area. (Obviously you want to save wear on the cheese
cutter.)

Denote by di the distance (in metres) of the ith cut from the nearer of
the two faces parallel to it. For example, if k = 7, then d1 = 1/7, d2 = 1/6
since the second slice is made 1/6 m from one of the 1 m× 6/7 m faces, and
d3 = 1/5 since the third slice is made 1/5 m from one of the 5/6 m× 6/7 m
faces of the 1 m× 6/7 m× 5/6 m cuboid left by the second cut.

Find a formula for the sequence of numbers d1, d2, d3, . . . , dk−1.

Problem 243.2 – Cosh integral
Tony Forbes
Let n be a positive integer. Show that∫ ∞

−∞

∫ ∞
−∞

dx dy

coshn x coshn+1 y
=

2π

n
. (1)

Of course, one can split it up, evaluate each integral separately and then
multiply. However I feel that because of the truly elegant nature of (1)
there might be an alternative and more enlightening proof of appropriate
simplicity.

If it makes life easier, you may assume that∫ ∞
−∞

dx

coshx
= π and

∫ ∞
−∞

dx

cosh2 x
= 2.

Can you get from SHIP to DOCK without using an intermediate word
containing two consecutive vowels? Usual rules apply. (i) Substitute one
letter at a time. (ii) Do not deviate from English as she is spoke.
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Solution 234.4 – Tetrahedron
Three sides of a tetrahedron form an equilateral triangle of side
a. The other three sides have length 1. Show that the diameter
of the sphere that circumscribes the tetrahedron is

√
3√

3− a2
.

What if three sides have length 1 and three sides have length
a 6= 1, but no face of the tetrahedron is equilateral?

Dick Boardman
I offer here an alternative way of solving the second part of the problem,
which is in some ways easier to comprehend (at least for me) than Stuart
Walmsley’s solution in M500 240.

Consider an equilateral triangle ABC with |AB| = 1 and |AC| =
|BC| = a in the (x, y)-plane and with coordinates

A =

(
−1

2
, 0, 0

)
, B =

(
1

2
, 0, 0

)
, C =

(
0,

√
4a2 − 1

2
, 0

)
.

Let D = (u, v, w) be the fourth point of the tetrahedron and suppose |AD| =
a and |BD| = |CD| = 1. The coordinates of D are determined by solving

u2 + u+ 1
4 + v2 + w2 = a2,

u2 − u+ 1
4 + v2 + w2 = 1,

u2 +
(
v − 1

2

√
4a2 − 1

)2
+ w2 = 1,

and choosing the solution with w > 0 to obtain:

D =

a2 − 1

2
,

3a2 − 2

2
√

4a2 − 1
,

√
a6 − 2a4 − 2a2 + 1

1− 4a2

 .

If S = (x, y, z) is the centre of the circumcircle and d its diameter, then
|AS| = |BS| = |CS| = |DS| = d/2. Solving for x, y, z and d then yields

S =

0,
1− 2a2

2
√

4a2 − 1
,

1

2

√
1− 3a2 + a4

1− 3a2 − 4a4

 , d =

√
a4 + a2 + 1

a2 + 1
.

As before, this works only when
√

5− 1 ≤ 2a ≤
√

5 + 1.
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Problem 243.3 – Odd sequence
Robin Whitty
Alexander Sharkovsky defined an ordering on the positive integers by virtue
of the fact that each may be uniquely specified in the form 2rp where r is a
non-negative integer and p is a positive odd number. Sharkovsky’s famous
theorem on limit cycles in iterated functions is based on this ordering, which
is usually specified informally thus:

3, 5, 7, . . . , 2 · 3, 2 · 5, 2 · 7, . . . , 22 · 3, 22 · 5, 22 · 7, . . . , . . . , 23, 22, 21, 20.

Give a precise definition of this ordering.

Solution 240.3 – Double sum

Show that

∞∑
r=1

∞∑
s=r+1

1

r2s2
=

π4

120
.

Bryan Orman
We have

∞∑
r=1, s=1

1

r2s2
=

∞∑
r=1

1

r2

∞∑
r=1

1

s2
=

π2

6

π2

6
=

π4

36

and
∞∑

r=1, s=1

1

r2s2
=

∞∑
r=1, s=r+1

1

r2s2
+

∞∑
s=1, r=s+1

1

r2s2
+

∞∑
r=s=1

1

r2s2

= 2

∞∑
r=1, s=r+1

1

r2s2
+

∞∑
r=1

1

r4
=

π4

36
.

Therefore
∞∑

r=1, s=r+1

1

r2s2
=

1

2

(
π4

36
− π4

90

)
=

π4

120
.

Note that we have used

∞∑
r=1

1

r2
=

π2

6
from the Fourier series of x2,

|x| ≤ π with x = π and

∞∑
r=1

1

r4
=
π4

90
from the Fourier series of (x2 − π2)2,

|x| ≤ π with x = π.



Page 12 M500 243

Solution 236.2 – Series

Find a closed expression for S(M) =

M∑
n=1

1

n(n+ 1)
and show

that

∞∑
n=1

1

n(n+N)
=

1

N

N∑
k=1

1

k
.

Reinhardt Messerschmidt
Let

SN (M) =

M∑
n=1

1

n(n+N)
.

We have:

SN (M) =

M∑
n=1

1

N

[
1

n
− 1

n+N

]
=

1

N

[
M∑
n=1

1

n
−

M∑
n=1

1

n+N

]

=
1

N

[
N∑

n=1

1

n
+

M∑
n=N+1

1

n
−

M∑
n=1

1

n+N

]
(if M > N)

=
1

N

[
N∑

n=1

1

n
+

M−N∑
n=1

1

n+N
−

M∑
n=1

1

n+N

]

=
1

N

[
N∑

n=1

1

n
−

M∑
n=M−N+1

1

n+N

]
. (1)

Suppose k is an integer greater than 0. From (1):

S1(10k − 1) = 1− 1

(10k − 1) + 1
= 1− 10−k;

in other words S1(9999 . . . 9) = 0.9999 . . . 9. The second summation in (1)
has N non-negative terms that decrease as n increases; therefore

0 ≤
M∑

n=M−N+1

1

n+N
≤ N

[
1

(M −N + 1) +N

]
=

N

M + 1
.

Now limM→∞N/(M + 1) = 0; therefore

∞∑
n=1

1

n(n+N)
= lim

M→∞
SN (M) =

1

N

N∑
n=1

1

n
.
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Problem 243.4 – Triangle

Here’s something
that you can eas-
ily do on the train
to work. Given
that AE = AF
and BD = BF ,
show that β +
2α = π. r r

r
rr

r
A F B

C

D

E

α

β

Tea
An engineer, a scientist and a mathematician make tea.

The engineer goes first, watched by the others. He fills the kettle with
water from the sink tap. He puts the kettle on the stove and lights the gas.
Whilst waiting for the water to boil he busies himself getting the teapot,
teaspoons, cups and saucers ready, retrieving the milk from the fridge and
the sugar from the sugar cupboard. When the water is ready he uses some
to wash out the teapot and returns the kettle to the stove. Then he adds
tea-leaves to the teapot followed by boiling water. The teapot is closed and
wrapped in a tea-cosy. The gas is turned off. After four minutes the tea is
poured into the cups with milk and sugar added as desired. Tea is served.

The scientist goes next. The starting point is as before except that
the kettle is full of water. No problem—he copies the engineer’s procedure
except for the first step.

Now it’s the mathematician’s turn. Again, the kettle is full of water.
The mathematician ponders for several seconds before arriving at his solu-
tion to the problem. He empties the kettle.

By the way, I (TF) had some feedback about the filler at the bottom of
M500 241 page 10 from one or two people.

Do the rationals form a group under addition? No. For example,
3 ∈ Q and 1

7 ∈ Q but 3 + 1
7 = 22

7 = π, and π is irrational.

Yes, this is a joke. Well, at least I think so. However, Marianne Fairthorne
tells me that this (or something like it) was offered by a London university
undergraduate as the solution to an assignment question!
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Problem 243.5 – Counting caterpillars
Tony Forbes
A caterpillar is a tree where there is a central path of maximal length and
every vertex not on the path is at distance 1 from it. Like this, for example.s s s s s s s
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(i) How many caterpillars of n vertices are there?

(ii) If that’s too difficult, consider the same problem for a specific type
of directed caterpillar, where the edges of the body point towards one end
and the legs point towards the body.s s s s s s s- - - - - -
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The effect of this complication is that, for example, these two caterpillarss s s s- - -
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are now regarded as distinct. You should get the answer 2n−3.

Problem 243.6 – Piles of coins
Jeremy Humphries
There are 10 piles of 10 coins each. Nine piles are good and one pile is
counterfeit. Good coins weigh 10 and dud coins weigh 9. You have a
kitchen scale which tells you the weight in the pan, and you need to identify
the dud pile in as few weighings as possible. How many weighings?

What does the dummy say to the ventriloquist, to make sure that they have
the required equipment and paraphernalia when they are setting out for an
engagement?

“Got all the gear?” [JRH]
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Solution 241.3 – Multiplicative function
Let f be a function that maps positive integers to positive in-
tegers. Suppose also that f is multiplicative; in other words, if
gcd(x, y) = 1 then f(xy) = f(x)f(y). Suppose moreover that f
is increasing; in other words, if y > x then f(y) > f(x). Suppose
furthermore that f(2) = 2. Show that f must be the identity
function.

Tony Forbes
Nobody has sent anything; so I might as well offer my no-frills, somewhat
messy attempt to solve this problem. If there is a clever proof that can be
delivered in a sentence or two, then I am unaware of it.

The first thing to recall is that, as with any multiplicative function,
f(1) = 1. Also there is the trivial observation that the increasing property
implies f(n+ 1) ≥ f(n) + 1. In particular, f(3) ≥ f(2) + 1 = 3.

Let us put f(3) = 3+t for some integer t ≥ 0. Then by the multiplicative
property we have f(6) = 6 + 2t. Hence

f(4) ∈ [4 + t, 4 + 2t] and f(5) ∈ [5 + t, 5 + 2t].

Therefore

f(10) = f(2)f(5) ∈ [10 + 2t, 10 + 4t],

f(12) = f(3)f(4) ∈ [12 + 7t+ t2, 12 + 10t+ t2],

f(15) = f(3)f(5) ∈ [15 + 8t+ t2, 15 + 11t+ t2].

Now f(7) ∈ [7+2t, 7+4t] since it must lie in the interval [f(6)+1, f(10)−3].
Also f(7) ∈ [ 12 (14 + 7t + t2), 12 (14 + 11t + t2)] since f(14) = 2f(7) lies in
[f(12) + 2, f(15) − 1]. However, the two intervals for f(7) do not overlap
unless t = 0 or 1.

Assume t = 1. Then the intervals for f(7) overlap in just one value,
namely f(7) = 11, which leads to the following deductions: f(3) = 4,
f(6) = 8, f(8) = 12, f(9) = 13, f(10) = 14, f(5) = 1

2f(10) = 7, f(15) =
f(3)f(5) = 28 and finally f(18) = 2f(9) = 26, contradicting the increasing
nature of f .

Hence t = 0 and f(3) = 3. Therefore f(6) = 2f(3) = 6, f(4) = 4,
f(5) = 5, f(10) = 2f(5) = 10, f(7) = 7, f(8) = 8, f(9) = 9, f(18) =
2f(9) = 18 and so on.
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How to solve inequalities
Tony Forbes
This came up in a previous issue, where we were puzzled by the seemingly
ad hoc method of solving an equality like x2 < 4. (See M500 241, p. 15.)

The general problem is to find a method for solving P (x) > 0 for x,
where P (x) is a polynomial, that avoids arm waving and magic tricks (such
as drawing graphs). Here’s one way.

We can assume without loss of generality that the leading coefficient of
P (x) is ±1. Factorizing P (x) over the reals, we have

P (x) = p0(x)p1(x)p2(x) . . . pr(x)q1(x)q2(x) . . . qs(x) > 0,

where r, s are non-negative integers, p0(x) = ±1, the other pi(x) are linear
factors, the qj(x) are irreducible quadratic factors, and all factors with the
possible exception of p0(x) have leading coefficient 1. The qj(x) are positive-
definite quadratic forms and can therefore be cancelled to obtain

p0(x)p1(x)p2(x) . . . pr(x) > 0.

Now for every possible way of selecting an even number of factors, solve
pi(x) < 0 for each of the selected factors (if any) simultaneously with
pj(x) > 0 for the non-selected factors (if any).

For example, solve x5 − 5x4 + 6x3 − x2 + 5x < 6. Thus

P (x) = −x5+5x4−6x3+x2−5x+6 = −(x−1)(x−2)(x−3)(x2+x+1) > 0.

Hence we solve (−1)(x− 1)(x− 2)(x− 3) > 0. Eight cases; column 1 in the
table indicates the selected negative factors. Thus 2 < x < 3 or x < 1.

none −1 > 0, x− 1 > 0, x− 2 > 0, x− 3 > 0 no solution
1st & 2nd −1 < 0, x− 1 < 0, x− 2 > 0, x− 3 > 0 no solution
1st & 3rd −1 < 0, x− 2 < 0, x− 1 > 0, x− 3 > 0 no solution
1st & 4th −1 < 0, x− 3 < 0, x− 1 > 0, x− 2 > 0 2 < x < 3
2nd & 3rd x− 1 < 0, x− 2 < 0, −1 > 0, x− 3 > 0 no solution
2nd & 4th x− 1 < 0, x− 3 < 0, −1 > 0, x− 2 > 0 no solution
3rd & 4th x− 2 < 0, x− 3 < 0, −1 > 0, x− 1 > 0 no solution
all four −1 < 0, x− 1 < 0, x− 2 < 0, x− 3 < 0 x < 1

I hope this helps. I leave it for the reader to deal with the inequality
that started this discussion: x2 < 4.
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Solution 239.1 – Three coins
Arthur, Ford and Marvin play a game. They try to predict the
outcome of three coin tosses. As usual with coins and the tossing
thereof, the probability of guessing correctly is always 1/2. After
the tossings are decided, the person (or persons, if there is a tie)
with the most results correct wins (or share) a Valuable Prize of
£300, say. For example, if the forecasts are Arthur HHH, Ford
THT, Marvin TTT and the results are HHT, then Arthur and
Ford get £150 each. If the players play independently, clearly
they have equal chances of winning. However, after Arthur and
Ford have made their predictions and before Marvin has made
his, Ford offers to show his forecast to Marvin in return for a fee
of £1. What should Marvin do?

Vincent Lynch
First of all, when the forecasts are independent, the probability of 0, 1, 2,
3 correct is 1/8, 3/8, 3/8, 1/8 as it is a binomial distribution.

And when two forecasts are independent, we may multiply the proba-
bilities to find the probability of both occurring.

First suppose that Marvin is so devoid of probability knowledge that
he pays £1 and chooses the same forecasts as Ford. Then, suppose the
probability of them having an equally good forecast as Arthur is p. Then
they win £100 each with probability p, and if that is not the case, they have
probability 0.5 of winning £150 each. So, by the law of total probability,
their expectation is £(100p+ 75(1− p)) = £(100− 25(1− p)) < £100.

So, there is a good case for forecasting exactly the opposite of Ford.

But we must calculate the probabilities.

I’m studying M343 this year, but don’t propose to use any fancy nota-
tion. When Marvin forecasts the opposite to Ford, he wins £300 when his
forecast is better than the others. Either all three are correct, probability
1/8 and A not all correct, probability 7/8: 1/8 · 7/8 = 7/64. Or, when he
has two correct and A has zero or one correct: 3/8 · 1/2 = 3/16.

He wins £150 when both his and A’s are fully correct: 1/8 · 1/8 = 1/64;
Or when both he and A have two correct: 3/8 · 3/8 = 9/64. Marvin cannot
win with one or less correct, because then Ford has two or more correct.

With this strategy, Marvin’s expectation is therefore

£

(
300

(
7

64
+

3

16

)
+ 150

(
1

64
+

9

64

))
= £112.50.



Page 18 M500 243

So it is certainly worth paying £1 for the increased net expectation of
£111.50. But wait; crafty Ford now has, by symmetry, the net expectation
of £113.50. So Marvin is in the driving seat. Instead of paying, he should
be receiving. So he can make a counter-offer. But how much should Ford
be prepared to pay to avoid being double-crossed? I haven’t worked that
one out yet. If Ford has learned his probability in the ‘Restaurant at the
end of the Universe’, he will strike a hard bargain.

May I say I have thoroughly enjoyed the M500 magazine, and wished I
had subscribed to it when I started with OU.

Problem 243.7 – Circuit
Tony Forbes
Behold a simple circuit containing two capacitors and two resistors. (Typical
values might be something like C1 = 0.7µF, C2 = 0.3µF and R1 =
R2 = 5 MΩ.) The diagram represents the initial state, with 150 volts across
C1. What happens when the switch is closed? In particular, what are the
voltages on each side of C2 as functions of time?

�
��

C1 0 v

150 v

C2 0 v

0 v

R1

R2

Problem 243.8 – Pentadecagon
Tony Forbes
Devise a nice ruler-and-compasses construction for the regular 15-gon.
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Letter
Tetrahedron
Tony,

I returned from holiday to find M500 240 and the solution to Problem
234.4 – Tetrahedron. [For the statement of the problem, see Dick Board-
man’s solution on page 10 of this issue.]

I echo your editorial remark about the difficulty of picturing the second
case.

I did build a model, but it occurred to me after sending in the solution
that the easiest way to see what is going on is to focus on the limiting 2-
dimensional polygon. This is readily drawn. It is a trapezium with three
equal sides AB = BC = CD, say, and the fourth side is equal in length to
each of the two diagonals. This figure has a 2-fold rotation axis joining the
mid points of BC and AD and reflection planes containing this axis in the
plane and normal to the plane of the trapezium.

The tetrahedron is formed by twisting AD out of the plane of the paper
(one up and one down!) so that the length pattern is conserved. The
symmetry planes are lost but the two-fold axis remains and the centre of
the circumsphere is to be found on it.

The golden mean result becomes clearer when it is recognized that the
trapezium (with its diagonals) is part of a regular pentagon with its in-
scribed star. In fact the illustration on page 15 could have been adapted
for the tetrahedron.

I must also add that I intended to delete the second expression for d on
page 10, as it introduces a bogus singularity at a = 1, but it somehow got
left in.

Best wishes,

Stuart Walmsley

s

s s

sA D

B C
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Voting in M500
Eddie Kent
Judith is shortly to request nominations for new Committee members of
The M500 Society. It might be of interest for members to have the method
we use in elections spelled out.

Single transferable vote

There are many different ways of conducting an election. We follow
the Royal Statistical Society in the version we use. It is known as Meek’s
method and has the approval of the Electoral Reform Society. It is used
by the London Mathematical Society and other organizations. From an
elector’s point of view the system is simple: numbers have to be placed
against candidates’ names on the ballot paper to indicate the voter’s order
of preference (equal rankings are allowed, and not all candidates have to be
given a rank).

Two basic principles govern the counting. First, if a candidate needs v
votes to be elected but actually has n > v, then a fraction (n−v)/n of each
of these votes is passed on to candidates ranked lower on the ballot paper.
The fact that some votes could thus become fractional causes no problem.
Secondly if, after the above procedure has been iterated as far as possible,
there are still vacant seats, all the votes of the candidate with the lowest
total vote are redistributed in the same way. (If two candidates are tied at
the lowest vote, then one is chosen at random.) A precise description of the
procedure follows.

1. Each candidate, at any stage of the election, is either elected, hopeful
or excluded. Initially everyone is hopeful.

2. At each stage of the count, each candidate x has an associated
weight wx. At this stage the candidate keeps a proportion wx of any vote or
fraction of a vote received, and the remaining proportion (1−wx) is passed
on to another candidate (or in equal shares to a group of candidates if these
have equal rankings). Excluded candidates have weight 0, so keep nothing.
Hopeful candidates have weight 1 and keep everything which is passed to
them. Elected candidates have weights between 0 and 1 determined as in
§4.

3. If on a ballot paper candidates a, b, c, etc. are ranked with a first, b
second, c third and so on, then, at any stage, a receives from that elector wa

of the vote, b receives (1−wa)wb of the vote, c receives (1−wa)(1−wb)wc

of the vote, and so on. Notice that if any candidate listed is hopeful, all
fractions transferred to later candidates are 0. If any part of the vote remains



M500 243 Page 21

to be passed on after the whole list has been dealt with (which could happen
easily if the ballot paper ranks only one candidate), that part is counted as
excess. Initially there is no excess.

4. The quota—the vote a candidate must exceed at any stage in order to
be elected—is defined to be (total votes−total excess)/(number of seats+
1). The weights for elected candidates at each stage are determined
(uniquely) by the requirement that the vote which remains with each of
them is equal to the current quota; these weights are calculated by an iter-
ative procedure.

5. At each stage the quota and weights are calculated according to §4,
and then the procedures of §§2,3 are applied. Any candidate with more
than the current quota of votes is declared elected and retains this status
thereafter. If this means that at least one hopeful candidate changes to an
elected candidate, the procedure is repeated.

6. If no hopeful candidate was elected in §5, the hopeful candidate with
the lowest total vote at this stage (or one such chosen at random if there
are many) is declared excluded, and the procedure is repeated with that
candidate’s weight changed to 0.

7. When the total number of elected candidates is equal to the number
of seats the process stops. (Adapted from the paper ‘Single transferable
vote by Meek’s method’ by I. D. Hill, B. A. Wichmann and D. R. Woodall
(Computer J. 30 (1987), 277–281), where more details can be found.)

How many mathematicians does it take to change a light-bulb?

1. Zero. It’s a problem for engineers.

2. O(1).

3. 1.0000000000000000000005 approximately.

4. Three. One to hold the ladder and one to climb up the ladder to
change the bulb.

5. Impossible. There is no ruler-and-compasses construction.

6. Exact value not known, but estimated to be less than 1010
10963

.

Any more? Warning. Do not try this at home. Changing light-bulbs is
dangerous work that is best left to qualified electricians.
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