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A combinatorial football problem
Garry Green and Terry Griggs
Sport is a rich area for the application of Mathematics at all levels. For
combinatorialists, the traditional game of football, towards the end of the
season when only one or two rounds of fixtures remain, sometimes offers
interesting situations. This was particularly the case at the end of the
2010/2011 season in the Blue Square North League. On 29th April 2011, a
date remembered for a certain Royal Wedding, the top of the League was
as follows.

P W D L F A Diff Pts
1. Alfreton 39 28 5 6 94 31 +63 89
2. Telford 39 22 13 4 68 29 +39 79
3. Boston 39 22 10 7 70 33 +37 76
4. Eastwood 39 22 6 11 80 48 +32 72
5. Nuneaton 39 21 9 9 64 41 +23 72
6. Guiseley 39 20 12 7 54 39 +15 72

For non-soccer aficionados P, W, D, and L are the numbers of games played,
won, drawn, and lost respectively; F and A are the numbers of goals scored
for and against and Diff is F−A. The final column is the number of points,
calculated as 3 for a win, 1 for a draw, and 0 for a loss.

There was one game left for each team to play, on Saturday 30th April.
In this division the top team, which must be Alfreton because they cannot be
overtaken, is automatically promoted. The next four teams enter a play-off
scenario with position 2 against position 5 and position 3 against position
4 with the winners of the two games playing a final game to determine
which other team will be promoted. Clearly both Telford and Boston have
already achieved play-off status but the other two places are between three
teams; Eastwood (E), Nuneaton (N), and Guiseley (G). In the case of equal
points, position is decided on goal difference and then if a further criterion
is needed, goals scored. So qualification for the play-offs for these three
teams depends on the results of their last games. What makes the situation
particularly interesting though is these final fixtures.

Alfreton v. Nuneaton and Eastwood v. Guiseley

To determine the possible outcomes needs a careful case by case analysis.
Below is a table showing the final positions of the three teams dependent
on the results of the two matches. We have made the assumption that no
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team will either win or lose so heavily that the goal differences will change
the positions. This is not an unreasonable assumption given that they are
+32, +23, and +15.

Alfreton win Draw Nuneaton win

4 G 75 4 G 75 4 N 75
Guiseley win 5 E 72 5 N 73 5 G 75

6 N 72 6 E 72 6 E 72

4 E 73 4 E 73 4 N 75
Draw 5 G 73 5 N 73 5 E 73

6 N 72 6 G 73 6 G 73

4 E 75 4 E 75 4 E 75
Eastwood win 5 N 72 5 N 73 5 N 75

6 G 72 6 G 72 6 G 72

As can be seen all of the six order possibilities occur with ENG appearing
four times and each other possibility just once. But this does not mean that
the probabilities of these orders are in the same proportion. That would
only be the case if the probabilities of each of the three outcomes in both
of the games is 1/3. So how might these probabilities be assessed? For the
Alfreton v. Nuneaton game, clearly Alfreton seem to be the better team and
have home advantage. But they have nothing to play for whereas Nuneaton
do and so might be better motivated. Nevertheless probably Alfreton have
the advantage. The other game is more difficult to predict. The teams seem
to be evenly matched but Guiseley have home advantage. Looking at the
betting odds on the internet on the evening prior to the games gave the
following.

Alfreton win 8/15 Draw 5/2 Nuneaton win 9/2

Guiseley win 13/10 Draw 5/2 Eastwood win 6/4

When converted to probabilities these are as follows.

Alfreton win 0.652 Draw 0.286 Nuneaton win 0.182

Guiseley win 0.435 Draw 0.286 Eastwood win 0.400
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Of course the sums of these probabilities for each game is not 1 but approx-
imately 1.12, reflecting the profit margin of the bookmaker. Standardizing
the probabilities gives the following results.

Alfreton win 0.583 Draw 0.255 Nuneaton win 0.162

Guiseley win 0.388 Draw 0.255 Eastwood win 0.357

We are now in a position to calculate the probabilities of the six possi-
ble outcomes. By multiplication and addition of the probabilities of the
outcomes of the two matches we obtain the following table.

Order ENG GEN EGN GNE NGE NEG

Probability 0.422 0.226 0.149 0.099 0.063 0.041

Interpreting these results shows that Eastwood have an 84% chance of reach-
ing the play-offs whilst Nuneaton have a 62% chance and Guiseley a 54%
chance. But to finish 4th the chances are Eastwood 57%, Nuneaton 10%,
and Guiseley 33%. So Nuneaton have a better chance than Guiseley of
making the play-offs but less than a third of the chance of being 4th which
seems slightly counter-intuitive.

We embarked on this analysis because as Boston fans we wanted to
know which team would be Boston’s most likely opponents in the play-off
match. But this raises another interesting combinatorial situation. Looking
at the League Table shows that if Boston win their last game and Telford
lose theirs, then they will both have 79 points and Boston’s goal difference
will be at least +38 and Telford’s at most +38. So the two teams would
swap position because of Boston’s superior goals scored, unless Boston win
by only one goal and Telford lose by only one goal and in doing so score 3 or
more goals than Boston. If it is just 2 goals more, for example if Boston win
1-0 and Telford lose 3-4, then both teams would have identical goals for (71)
and goals against (33). We are not sure how the positions are then decided.
It may be on the results of the matches during the season between the two
teams. But Telford won 1-0 at Boston and in return, Boston won 1-0 at
Telford. But it might also be on the number of wins and in this case Boston
would have 23 to Telford’s 22. But until 1981, only 2 points were awarded
for a win in which case Telford could not be caught in second position. For
the last games both Telford and Boston had what appeared to be easy home
games so we assumed that both would win and their positions would not
reverse. This makes Eastwood, Boston’s most likely play-off opponents.
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So what actually happened? As expected both Telford and Boston won
so Telford came 2nd and Boston 3rd. Alfreton beat Nuneaton 3-2 and
Guiseley and Eastwood drew 2-2. So Eastwood were 4th, Guiseley were
5th, and Nuneaton were 6th. But there was a final twist to the story. Be-
cause their ground did not match the requirements for promotion, Eastwood
were disqualified from the play-offs, so Boston played Guiseley and Telford
played Nuneaton. The final was contested between Guiseley and Telford
with Telford winning 3-2 and joining Alfreton in promotion.

Problem 244.1 – Counting graphs
How many simple graphs are there with n vertices, where each vertex has
degree 1 or 2?

Counting graphs is in general rather difficult. However, in this case I
(TF) think the problem is doable since the graphs in question consist only of
collections of paths and cycles. For example if n = 6, the answer is eight: (i)
6-path, (ii) 6-cycle, (iii) 4-path and 2-path, (iv) 4-cycle and 2-path, (v) two
3-paths, (vi) 3-path and triangle, (vii) two triangles, (viii) three 2-paths.

Problem 244.2 – A quick number wonder
Martin Hansen
Whilst working on something else I started to suspect that the following
might be true.

√
1× 2× 3× 4 + 1 = 2× 3− 1√
2× 3× 4× 5 + 1 = 3× 4− 1√
3× 4× 5× 6 + 1 = 4× 5− 1

Is it a fluke or will the pattern continue to hold? Counter-example or a
proof, please.

Problem 244.3 – Two sums
Show that

∞∑
n=1

1

(n2 + 2n)2
=

4π2 − 33

48
and

∞∑
n=1

1

(n3 + 3n2 + 2n)2
=

4π2 − 39

16
.
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A sliding-block puzzle
Tony Forbes
The diagram represents a sliding-block puzzle consisting of elements moving
within the confines of a square tray.

A 1

2 3 4

5 6 7

The objective is to move piece A to the bottom right-hand square (currently
occupied by 7) by the usual process of sliding the little squares horizontally
and vertically. To make the problem more challenging the pieces are con-
strained to move as follows.

Pieces 3 and 6 cannot move into a corner.

Pieces A and 7 can only move horizontally into or out of a corner.

Pieces 2 and 4 can only move vertically into or out of a corner.

There are no restrictions on the movements of pieces 1 and 5.

You could implement this thing with the top-left 3×3 part of a standard
Sam Lloyd puzzle, but you must at all times remember to avoid breaking
the rules. If you want a purpose-built toy to play with, you might like to
know that this game has been marketed under the names Impossible!! and
Twice by Dario Uri of Bologna. The constraints are achieved mechanically
by inserting pins in the centres of the corner squares of the tray and cutting
horizontal and vertical grooves in the appropriate pieces.

The makers give the best known solution length as 50 moves. However,
Dick Boardman has managed to improve this figure to 42, and we are
delighted to publish his solution in this magazine. (Look away now if you
want to try the puzzle for yourself.)

The marketed package actually contains two games (as suggested by
the name Twice). In the second variant piece 2 has its orientation changed;
it is now allowed to move horizontally but not vertically into and out of a
corner. Here Dick is in agreement with the stated optimum solution: 70
moves.
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Solution to the sliding-block puzzle
Dick Boardman
Number the squares as on the right. My program exam-
ines possible positions in a ‘breadth first’ search. That
is, it creates a list of positions as follows.

0 1 2

3 4 5

6 7 8

Starting from a ‘parent’ position, there are two, three or four possible
‘child’ positions. If a child position is not already in the list it is added
to the list, together with a record of who its parent was and how far it is
from the start position, that is, its depth. When all the children have been
added, the next child becomes the parent and its children have a depth one
greater. Thus the list grows, with the depth either the same, or increasing
by one. Whenever the depth changes, all positions with the smaller value
are in the list.

The target is to move tile A into the bottom right corner (square 8).
If a position meets this target, my program works backwards through the
list, parent by parent, to the start position, to find the route to get to it.
This procedure finds the shortest possible route (or routes) from the start
to the target. The author of the puzzle says that the shortest known is in
50 moves; however, my program finds a solution in 42 moves.

Start with pieces A, 1, 2, . . . , 7 in locations 0, 2, 3, . . . , 8 respectively.
For the nth step, piece p is moved from location s to location d, leaving the
array as indicated in the 5th column, zero denoting the empty square.

n s d p state

1 2 1 1 A10234567
2 5 2 4 A14230567
3 4 5 3 A14203567
4 1 4 1 A04213567
5 0 1 A 0A4213567
6 3 0 2 2A4013567
7 4 3 1 2A4103567
8 7 4 6 2A4163507
9 6 7 5 2A4163057

10 3 6 1 2A4063157
11 0 3 2 0A4263157
12 1 0 A A04263157
13 4 1 6 A64203157
14 7 4 5 A64253107

n s d p state

15 6 7 1 A64253017
16 3 6 2 A64053217
17 4 3 5 A64503217
18 1 4 6 A04563217
19 0 1 A 0A4563217
20 3 0 5 5A4063217
21 6 3 2 5A4263017
22 7 6 1 5A4263107
23 4 7 6 5A4203167
24 1 4 A 5042A3167
25 0 1 5 0542A3167
26 3 0 2 2540A3167
27 4 3 A 254A03167
28 5 4 3 254A30167

n s d p state

29 2 5 4 250A34167
30 1 2 5 205A34167
31 4 1 3 235A04167
32 7 4 6 235A64107
33 8 7 7 235A64170
34 5 8 4 235A60174
35 4 5 6 235A06174
36 3 4 A 2350A6174
37 6 3 1 2351A6074
38 7 6 7 2351A6704
39 4 7 A 2351067A4
40 5 4 6 2351607A4
41 8 5 4 2351647A0
42 7 8 A 23516470A
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Solution 241.4 – Product
Obtain an expression (as a function of n) for the product

f(n) =

n∏
k=2

k2

k2 − 1
.

Basil Thompson
The numerator of the expression is (n!)2. The denominator is

(1 · 2)(2 · 4)(3 · 5) . . . ((n− 1)(n+ 1)) = (n− 1)!(n+ 1)!/2.

Thus f(n) = 2n/(n+ 1).

Richard Gould
Expressing each term as

k

k − 1
· k

k + 1
,

we see that all fractions except the first and last cancel, giving f(n) =
2n

n+ 1
.

Tony Forbes

On the other hand, g(n) =

n∏
k=2

k2

k2 + 1
seems to be more difficult.

n 2 3 4 5 6 7 8 9 10 . . .

g(n)
4

5

18

25

288

425

144

221

5184

8177

127008

204425

8128512

13287625

329204736

544792625

1316818944

2200962205
. . .

Can anyone see a pattern in those fractions? If you take the product to
infinity, you get a simple answer in each case. Thus f(∞) = 2 but changing
the sign from minus to plus produces g(∞) = Γ(2− i)Γ(2 + i) ≈ 0.544058.
This suggests another problem.

Problem 244.4 – Another product

Show that
∞∏
k=1

k2

k2 + 1
= Γ(1− i)Γ(1 + i) = |i!|2 =

π

sinhπ
≈ 0.272029.
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Solution 203.7 – Rhombus
A snooker table has a playing area of sides a × b, a > b, and
its cushions have coefficient of elasticity e, 0 < e ≤ 1. A ball,
initially placed in contact with the a side, is struck so that it
leaves at angle θ to the side. The ball then follows a rhombus-
shaped path and returns to its starting point. Show that t =
tan θ satisfies the quadratic 2 a b t2+(a2−b2)(1+e) t−2 a b e = 0.

Steve Moon
The snooker table is OPQR with dimensions a × b, a > b. The ball is
initially struck at A, follows the path ABCDA describing a rhombus with
∠OAB = θ, ∠BAD = α.

�
�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

	

PP
PP

PP
PP

PP
PP

PPP

i

PPPPPPPPPPPPPPP

q

� a -

� x -

a− x

?

b

6

?

y

6
?

b− y

6

O R

P Q

B

D

A

C

α

α

180◦ − α

180◦ − α

θ

θ

Let the initial speed along AB be u. Let OA = x, PC = a − x, OB = y,
BP = b− y. Therefore

y = x tan θ and thus BP = b− x tan θ.

Note that x ≥ a/2 because the rebound speed normal to the side hit is
reduced by a factor of e each time; so ∠OBA > ∠PBC for the first bounce.
If e = 1 then x = a/2 and y = b/2 for a rhombus path.

Resolving, the speed parallel to the direction of AO is u cos θ; so after
hitting the table edge at B, the rebound speed component parallel to PC is
eu cos θ and the speed component parallel to the direction of BP is u sin θ.
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The ball now travels from B to C. Therefore the time taken to traverse the
distance BP at speed u sin θ equals the time to traverse the distance PC at
speed eu cos θ. Thus

a− x
eu cos θ

=
b− x tan θ

u sin θ
.

Hence
(a− x) tan θ = e(b− x tan θ)

and therefore

x =
a tan θ − eb
tan θ(1− e)

, (1)

on assuming 0 < e < 1. (If e = 1, go back a line to derive tan θ = b/a.)

Also, since ABCD is a rhombus, AB = BC; so by Pythagoras,

x2 + x2 tan2 θ = (b− x tan θ)2 + (a− x)2

and the x2 terms conveniently disappear on multiplying out to give

x =
a2 + b2

2(a+ b tan θ)
. (2)

Eliminating x between (1) and (2),

a tan θ − eb
tan θ(1− e)

=
a2 + b2

2(a+ b tan θ)
.

With a bit of work this reduces to

2ab tan2 θ + (a2 − b2)(1 + e) tan θ − 2abe = 0

and, setting t = tan θ, the required result follows.

We could have derived the same result by considering triangles CQD
and DRA:

(i) the launch angle is θ = ∠QCD, and

(ii) the initial velocity u is then u1 = eu along CD; so the resultant
treatment is in terms of velocity components scaled by a factor of e,
which cancels out in the derivation of the analogue to (1).

Each time the ball traverses the complete rhombus it is ‘relaunched’ from
A at θ to AO with velocity scaled by a factor of e2 to that of the previous
circuit along AB.
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Letter

The three squares problem
Tony,

I have generated a few sets in order that I might find a solution, but
unfortunately I can’t see any pattern among my numbers. As ever, I put a
bit of coding together to generate these sets up to 2000. [This is Problem
237.1 – Three squares: Find three numbers such that the product of any
pair plus the square of the third is a square.]

There are two sets of numbers for each entry. The first set is (a, b, c) as
described in the problem statement. The second set, which I have designated
(x, y, z), are the squares so generated (or rather their roots). Although my
original scan was only up to 2000, I tried a few tentative searches up to 5000,
but I didn’t find any more examples; I wonder if the results are limited.
Perhaps you could publish this list in the hopes that the wider readership
of M500 may find a proper solution.

Regards,

Ken Greatrix

a b c x y z a b c x y z

9 9 40 21 21 41 9 73 328 155 91 329
13 21 136 55 47 137 17 276 1172 569 310 1174
20 48 77 64 62 83 20 81 404 182 121 406
21 68 356 157 110 358 29 36 260 101 94 262
29 141 680 311 199 683 33 89 488 211 155 491
33 185 608 337 233 613 37 69 424 175 143 427
37 85 312 167 137 317 37 240 1108 517 314 1112
45 112 628 269 202 632 48 97 580 242 193 584
53 165 872 383 271 877 56 165 221 199 199 241
57 308 1460 673 422 1466 61 228 1156 517 350 1162
68 165 932 398 301 938 69 80 341 179 173 349
69 301 1480 671 439 1487 77 384 1844 845 538 1852
84 113 788 310 281 794 89 440 969 659 529 989
93 100 772 293 286 778 105 121 904 347 331 911

128 129 1028 386 385 1036 132 205 1348 542 469 1358
137 153 1160 443 427 1169 141 304 1780 749 586 1792
153 209 1448 571 515 1459 161 240 1604 641 562 1616
176 213 1556 602 565 1568 177 308 1940 793 662 1954
189 352 589 493 485 643 224 341 1725 799 709 1747
237 245 1928 727 719 1943 297 320 377 457 463 487
301 1573 1896 1753 1745 2017 320 528 713 692 712 823
340 589 1584 1024 941 1646 400 400 561 620 620 689
536 693 1341 1103 1095 1473
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Solution 241.2 – Irrational numbers
If πe is irrational, prove that at most one of π+e, π−e, π2 +e2,
π2 − e2 is rational.

Stewart Robertson
Let

A = π + e, B = π − e, C = π2 + e2, D = π2 − e2.

Clearly A and B cannot both be rational as this would imply that 1
2 (A +

B) = π was rational. Similarly, C and D cannot both be rational as this
would imply that 1

2 (C +D) = π2 was rational. Also A and C cannot both
be rational as this would imply that

1

2
(A2 − C) =

1

2

(
(π + e)

2 −
(
π2 + e2

))
= πe

was rational. Similarly, B and C cannot both be rational as this would
imply that − 1

2 (B2 − C) = πe was rational.

Now, A and D cannot both be rational because this would imply that

D

A
=
π2 − e2

π + e
=

(π + e)(π − e)
(π + e)

= π − e = B

was rational and we showed above that this is not possible if A is rational.
Similarly B and D cannot both be rational as this would imply that D/B =
A was rational and we showed above that this is not possible if B is rational.

Therefore, having exhausted all possible combinations, we conclude that
at most one of π + e, π − e, π2 + e2, π2 − e2 can be rational.

Problem 244.5 – Ten primes
Patrick Walker

1 1 1 7
1 1 5 3
2 2 7 3
9 3 1 1

The numbers in each row, each column and each diagonal are prime. And
no two are the same. Is it possible to find a square with the same properties
but with all the digits odd?
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Solution 236.6 – Products

Compute

n∏
i=2

i−1∏
j=1

sin
jπ

i
and

n∏
i=2

i−1∏
j=1

cos
jπ

i
.

Steve Moon
To try to get a feel for a solution we compute the first few products, some-
times resorting to a calculator:
2−1∏
j=1

sin
jπ

2
= 1,

3−1∏
j=1

sin
jπ

3
=

3

4
,

4−1∏
j=1

sin
jπ

5
=

1

2
,

5−1∏
j=1

sin
jπ

5
=

5

16
,

6−1∏
j=1

sin
jπ

2
=

3

16
,

7−1∏
j=1

sin
jπ

3
=

7

64
,

8−1∏
j=1

sin
jπ

5
=

1

16
,

9−1∏
j=1

sin
jπ

5
=

9

256
.

So a pattern has emerged; the inner product for a given i being

i−1∏
j=1

sin
jπ

i
=

i

2i−1
. (1)

Therefore

n∏
i=2

i−1∏
j=1

sin
jπ

i
=

n∏
i=2

i

2i−1
=

n!

21+2+···+n−1 =
n!

2n(n−1)/2
.

Also

n∏
i=2

i−1∏
j=1

cos
jπ

i
= 0 since the factor cosπ/2 = 0 is always present.

However we still need to prove (1). Making use of Euler’s formula for
the sine function,

sin θ =
exp(iθ)− exp(−iθ)

2i
=

1

2i

exp(2iθ)− 1

exp(−iθ)
,

we have

k∏
j=1

sin
jπ

k + 1
=

1

2kik

(
exp
(

2iπ
k+1

)
− 1

exp
(
iπ
k+1

) )(
exp
(

4iπ
k+1

)
− 1

exp
(

2iπ
k+1

) )
. . .

(
exp
(
2kiπ
k+1

)
− 1

exp
(
kiπ
k+1

) )

=
1

2k

(
1− exp

(
2iπ

k + 1

))(
1− exp

(
4iπ

k + 1

))
. . .

(
1− exp

(
2kiπ

k + 1

))
(2)
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since

exp

(
iπ

k + 1

)
exp

(
2iπ

k + 1

)
. . . exp

(
kπ

k + 1

)

= exp

(
iπ

k + 1
+

2iπ

k + 1
+ · · ·+ kiπ

k + 1

)
= exp

(
kiπ

2

)
= ik.

Now consider the identity

zk+1 − 1 = (z − 1)(1 + z + z2 + · · ·+ zk).

The roots of the left-hand side are the k+ 1 (k+ 1)th roots of unity. Hence
we can factorize zk+1 − 1 as (z − 1)(z − z1)(z − z2) . . . (z − zk), where
zj = exp(2πij/(k + 1)). So we can write

(z − z1)(z − z2) . . . (z − zk) = 1 + z + z2 + · · ·+ zk.

Putting z = 1, this gives

(1− z1)(1− z2) . . . (1− zk) = k + 1,

which we can substitute into (2) to get

k∏
j=1

sin
jπ

k + 1
=

1

2k
(1− z1)(1− z2) . . . (1− zk) =

k + 1

2k
.

Solution 242.2 – Quintic
Show that the real root of the cubic x3 − x− 1 is also a root of
the quintic x5 − x4 − 1.

Vincent Lynch
I learned how to do polynomial division when I was 12 years old, and that
is all that is needed here. Using the usual algorithm we find that

x5 − x4 − 1 = (x3 − x− 1)(x2 − x+ 1).

So all the roots, including the real root, of (x3−x−1) are roots of x5−x4−1.
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Solution 242.4 – Two sums
Prove that

n∑
r=1

(
2n− r − 1

n− r

)
2r = 22n−1

and
n∑
r=1

(
2n− r − 1

n− r

)
2rr = 2n

(
2n− 1

n

)
.

Recall that these were the two probability sums associated with
the biscuit tins problem, 240.1: There are two tins, each contain-
ing n > 0 biscuits. Take a biscuit from a tin chosen at random.
Keep doing this until one tin is empty. What is the expected
number of biscuits that remain in the other tin?

D. Hughes
Consider the first sum. Change the variables from n to m, m = n − 1,
n = m+ 1, and from r to k, k = n− r = m+ 1− r, r = m− k + 1. Then
the sum is

Sn =

m+1∑
m−k+1=1

(
2(m+ 1)− (m− k + 1)− 1

k

)
2m−k+1.

Now

m+1∑
m−k+1=1

=

(m+1)−(m+1)∑
(m−k+1)−(m+1)=1−(m+1)

=

0∑
−k=−m

=

0∑
k=m

=

m∑
k=0

.

So

Sn = 2m+1
m∑
k=0

(
m+ k

k

)
2−k = 2m+1Fm,

where

Fm =

m∑
k=0

(
m+ k

k

)
2−k = 2m

[see Concrete Mathematics by R. L. Graham, D. E. Knuth and O. Patashnik,
Addison–Wesley, 1989]. So

Sn = 2m+12m = 22m+1 = 22n−1.
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I seemed to recall that my answer to Problem 240.1 was different from
equation (2) of M500 242, page 9:

22−2nn

(
2n− 1

n

)
. (∗)

But when I look into it, they are the same in slightly different forms. Fur-
thermore, (∗) is probably the most compact form. It is interesting to use
Stirling’s formula,

n! ∼
√

2πn (n/e)n,

to approximate the expected value for large n. This gives a nice result: viz.
2
√
n/π, which is a good approximation for even modest values of n.

It is also easy to show that prob[n, 1] = prob[n, 2], and that prob[n, r+
1] < prob[n, r] for r > 1. [Recall that

prob[n, r] =
1

22n−r−1

(
2n− r − 1

n− r

)
is the probability of r biscuits remaining in the non-empty tin after starting
with n biscuits in each tin.] In other words, the most likely value for the
number of remaining biscuits is 1 or (equally) 2, irrespective of n. This
seemed slightly counterintuitive to me. Finally, there is what we might call
the chocolate biscuit problem, when the tins are chosen with probabilities
p and q (p > q). I’ve made no progress with this.

PS. One place to look for binomial identities is Henry Gould’s web site
at http://www.math.wvu.edu/∼gould/. The result needed to solve 242.4a is
equation (1.16) in Vol.2.pdf.

Problem 244.6 – Flagpole integral
Compute ∫ π/2

α

(
tan θ −

√
tan2 θ − α2

)
dθ,

where 0 < α < π/2 is a constant.

When you get to page 17 you will see that this integral occurs in Vincent
Lynch’s discussion of the flagpole problem. Ideally an exact solution is
desired. However, we would also be interested in a good approximation on
the assumption that 2/α2 is the Earth’s radius in metres. Beware: removing
the tan θ term might cause trouble near θ = π/2.
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Solution 241.6 – Flagpole
Denote the radius of the (perfectly spherical) Earth by R. A
flagpole of height 1 is observed at a time chosen at random on a
sunny day. What is the expected length of its shadow? Assume
that this takes place near the Equator on a day when the sun is
directly overhead at midday.

Vincent Lynch
When I first tackled this problem, I found it intractable. But lying on
the beach in Zakynthos reading Kumar’s excellent Quantum and observing
the shadows of sunshades, I realized that the key to a solution was to use
approximations. As soon as we left the beach I went to a store and bought
an A4 exercise book. In half an hour I had a solution.

R
Α

Α

R
t

Θ

By symmetry, we only need to calculate the mean from dawn to midday.
Just after dawn only the lowest part of the pole casts a shadow. We need to
calculate the angle of inclination, θ, of the sun measured from the flagpole
foot when the whole of the flagpole first casts a shadow. Let this be α.
The sun’s rays through the top of the pole are then tangent to the earth’s
surface. Then we have (see left-hand diagram, above):

cosα =
R

R+ 1
.

Using cosα ≈ 1− α2/2 and R + 1 ≈ R, we arrive at α2 ≈ 2/R and at this
point the length of the shadow is Rα. For 0 < θ < α, the shadow length is
Rθ.

We now need a new diagram to show what happens when θ > α. We
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apply the sine rule to the obtuse triangle (see right-hand diagram). This is

R+ 1

sin
(
θ +

π

2
− t
) =

R

sin
(π

2
− θ
) . (∗)

If we expand and use the approximations

cos t ≈ 1 and sin t ≈ t,

we get t ≈ (cot θ)/R and the shadow length is Rt = cot θ.

Now that we have expressions for the length of shadow for both phases,
we can calculate the mean. It is

2

π

[∫ α

0

Rθ dθ +

∫ π/2

α

cot θ dθ

]
=

2

π

[
Rα2

2
− log sinα

]
≈ 1

π

[
Rα2 − logα2

]
,

using sinα ≈ α. We now only have to substitute α2 ≈ 2/R to get a result.
The mean length of shadow is approximately (2 + logR/2)/π. Wikipedia
gives R as approximately 6378137m; so using that figure I get 5.40339m for
the mean shadow length.

However, numerical integration using the exact formula

t = θ − arccos

(
R+ 1

R
cos θ

)
for the second interval yields a somewhat larger figure, 5.52635m. It turns
out that t ≈ (cot θ)/R is too crude for small θ. If we use cos t ≈ 1− t2/2 in-
stead of cos t ≈ 1 in the simplification of (∗), we get a better approximation:

t ≈ tan θ −
√

tan2 θ − 2/R.

It is actually possible to integrate this function of θ. The details are hor-
rendous but the answer that arises for the mean shadow length does agree
with the ‘exact’ value to 5 decimal places.

While looking at the Wiki site I found a very good quiz question. ‘in
which country is the point on land nearest to outer space.’ Because of
flattening at the poles it is not Everest but the peak of a mountain in
Ecuador, not far from the equator; so the equatorial bulge gets it nearer to
outer space!
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