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Solution 240.1 – Two tins of biscuits
There are two tins, each containing n > 0 biscuits. Take a biscuit
from a tin chosen at random. Keep doing this until one tin is
empty. What is the expected number of biscuits that remain in
the other tin?

Ken Greatrix
I’m not sure exactly how I arrived at the following solution but it probably
involved a lot of guesswork and trial and error with just a small amount of
logic thrown in for good measure. It was when I restated the problem in
terms of tossing a coin to choose a tin at random that my previous studies
of probability forced themselves back into memory. How many coin tosses
do you need to ensure n heads? More to the point—what is the expected
number of coin tosses in total when n heads have occurred?

After furtively searching through my course materials (being the hoarder
that I am I didn’t dispose of them—much to my wife’s disgust!), I initially
thought it would be some sort of Poisson process but finally I realized that
I could use a modified version of the negative binomial distribution to solve
the problem:

µ = 2

2n−1∑
x=n

(2n− x)

(
x− 1

n− 1

)
qx−npn.

The multiplier digit, 2, is there because it’s ‘double-sided’. There are two
similar processes occurring at the same time: one counting heads and the
other counting tails. They are two dependent variables, but their individual
means can be added to obtain the total mean.

The limits of the summation are n (in the unlikely situation where one
tin has been chosen continually) and 2n− 1, ensuring that a minimum of 1
biscuit remains in the other tin. The term (2n− x) multiplying the terms
of the summation is the number of biscuits remaining in the other tin. The
rest of the formula is taken directly from the M245 Handbook (The Open
University, 1984) and represents the probability that x biscuits in total need
to be taken in order to remove all n biscuits from one of the tins.

Extending the problem. If you have two tins of biscuits with different
numbers of biscuits in each, then the average number remaining in the other
tin when one is emptied is given by

µ =

m+n−1∑
x=m

(m+n−x)

(
x− 1

m− 1

)
qx−mpm+

m+n−1∑
y=n

(m+n−y)

(
y − 1

n− 1

)
qy−npn.
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With three tins and any (different) start values, the formula becomes

µ =

a+b+c−2∑
x=a

(a+ b+ c− x)

(
x− 1

a− 1

)
qx−apa

+

a+b+c−2∑
y=b

(a+ b+ c− y)

(
y − 1

b− 1

)
qy−bpb

+

a+b+c−2∑
z=c

(a+ b+ c− z)
(
z − 1

c− 1

)
qz−cpc

to calculate the expected remainder in two tins when the third is emptied.

I have a bit of a concern here. There must be at least one biscuit
remaining in each of two tins when the third is empty, hence the upper
limit of summation shown as (a+ b+ c− 2). But how do I know that these
two biscuits aren’t both in the same tin, with two tins being empty?

Challenge problems

1. What is the expected number of biscuits remaining in the third tin
when the other two tins have been emptied? The situation here is whether
you remove a tin from the game when it becomes empty (and then reduce
the problem to two tins), or whether you continue to count random choices
of the empty tin.

2. Using either of the constraints described in the first challenge, what
is the formula for any number of tins with any number of biscuits in each?

3. Put me out of my misery—show that the upper limit of summation
in the three-tin version should be (a+ b+ c− 2).

By way of encouragement to Dick Boardman (and others in a similar
situation), I also have a background in engineering. Serving an apprentice-
ship with an electrical company, I gained an ‘ONC’ and a ‘Full-Tech C&G’,
both of which are now obsolete. Having found the maths components of
these qualifications to my liking, I decided to follow up by enrolling with
the OU. I don’t feel that I have yet made the full transition to mathemat-
ical thinking, but from what you say you’re only one step away from this.
Your approach seems to be one of specialized thinking, by which I mean
using examples, models and particular values. The next step is to put your
ideas into a generalized formula. But actually you seem to have got to that
situation—your program must use a formula to calculate your particular
examples.
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Initially I also followed the computer simulation route. I tried various
values of starters, but when I used higher values, I noticed that the probabil-
ities seemed to follow a normal distribution curve, as shown in the diagram
for 50 biscuits initially in each tin.

start value 50 number of trials 370479
average value 7.963847 theoretical value 7.958924

Probability bar-chart of remaining biscuits

I compiled it as a free-running simulation, only stopping it when the values
settled to a steady state. The dots to the right of each bar are the expected
(calculated) value, and even without a goodness-of-fit test it would seem to
be correct. The grey dotted line is a representation of the positive half of a
normal distribution but as you can see, although it’s close, I couldn’t make
it fit exactly showing that the probabilities don’t follow this format. I would
suggest that the distribution of the probabilities of biscuits remaining does
indeed tend towards a normal distribution as n→∞.

Problem 245.1 – Birthday dinner
Tony Forbes
Four members of a dinner club dine out four times a year, each time to
celebrate the birthday of one of their number. At these events the agreement
is that the birthday person’s meal is free, the entire cost being met equitably
by the other three members of the group. This year, however, in order to
economize and because the relevant birthdays are close to each other, the
third and fourth meals are combined into one. How should the bill be
settled?
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Solution 242.4 – Two sums
Prove that

n∑
r=1

(
2n− r − 1

n− r

)
2r = 22n−1

and
n∑

r=1

(
2n− r − 1

n− r

)
2rr = 2n

(
2n− 1

n

)
.

Tommy Moorhouse
The first step in proving this result is a lemma.

Lemma 1
2n−1∑
k=n

(
k − 1

k − n

)
2−k =

1

2
.

Proof This seems to be done most easily as follows. Denote the sum in
the lemma by Sn. Then

Sn+1 =

2n+1∑
k=n+1

(
k − 1

k − (n+ 1)

)
2−k

=

2n∑
l=n

(
l

l − n

)
2−(l+1) =

2n∑
l=n

(
l

n

)
2−(l+1) (1)

=

2n∑
l=n

2−(l+1)

{(
l − 1

l − n− 1

)
+

(
l − 1

l − n

)}
, (2)

where (1) follows by renumbering (l = k − 1) and (2) is Pascal’s triangle
identity. We will refer to the second version of the sum in (1) below.

Renumbering in the first term of (2) (m = l − 1) gives (remembering
that the m = n− 1 binomial coefficient must vanish)

Sn+1 =

2n−1∑
m=n

2−(m+2)

(
m

n

)
+

2n∑
l=n

2−(l+1)

(
l − 1

n− 1

)
=

1

2

(
Sn+1 − 2−(2n+1)

(
2n

n

))
+

1

2

(
Sn + 2−2n

(
2n− 1

n− 1

))
. (3)

But (
2n

n

)
= 2

(
2n− 1

n− 1

)
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so the last terms in the brackets in (3) cancel and we find

Sn+1 =
1

2
(Sn+1 + Sn).

Thus Sn+1 = Sn for all n > 0 and, since S1 = 1/2, the lemma is proved. 2

Now we prove the result

n∑
r=1

(
2n− r − 1

n− r

)
2r = 22n−1.

This follows by renumbering (k = n− r) to get

n−1∑
k=0

(
n+ k − 1

k

)
2n−k.

Now take 2n outside the sum and let l = n+ k. The sum becomes

2n
n−1∑
k=0

2−k
(
n− 1 + k

k

)
= 2n

2n−1∑
l=n

(
l − 1

l − n

)
2n−l = 22n

2n−1∑
l=n

(
l − 1

l − n

)
2−l.

By Lemma 1 we have

n∑
r=1

(
2n− r − 1

n− r

)
2r = 22n−1.

The second identity can be proved along similar lines. First we prove
another lemma.

Lemma 2 If

Tn =

2n−1∑
k=n

2−kk

(
k − 1

k − n

)
then

Tn+1 = Tn + 1− 2−(2n+1)

(
2n

n

)
.

Proof

Tn+1 =

2n+1∑
k=n+1

(
k − 1

k − (n+ 1)

)
2−kk

(
=

2n+1∑
k=n+1

(
k − 1

n

)
2−kk

)

=

2n∑
l=n

2−(l+1)(l + 1)

{(
l − 1

n− 1

)
+

(
l − 1

n

)}
.
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The first group of terms can be rewritten by expanding and renumbering

1

2

2n∑
l=n

2−ll

(
l − 1

n− 1

)
+

1

2

2n∑
l=n

2−l
(
l − 1

n− 1

)
.

As before, we notice that this can be expressed in familiar terms using the
result of the first part:

1

2

(
Tn + 2−2n · 2n

(
2n− 1

n− 1

))
+

1

2

(
1

2
+ 2−2n

(
2n− 1

n− 1

))
.

Similarly, the second group of terms is

1

2

2n∑
l=n

2−ll

(
l − 1

n

)
+

1

2

2n∑
l=n

2−l
(
l − 1

n

)
and treating this as we did the first group we find it to be

1

2

(
Tn+1 − 2−(2n+1)(2n+ 1)

(
2n

n

))
+

1

2

(
1

2
− 2−(2n+1)

(
2n

n

))
.

Adding the groups of terms together and rearranging to get Tn+1 on the
left, we find a lot of cancellations and

Tn+1 = Tn + 1− 2−(2n+1)

(
2n

n

)
,

which proves the lemma. 2

Now we let Ln denote the sum we are interested in:

Ln =

n∑
r=1

(
2n− r − 1

n− r

)
2rr

=

2n−1∑
l=n

(2n− l)22n−l
(
l − 1

l − n

)
= 22n · 2n · 1

2
− 22nTn.

Here we have renumbered (as will be becoming familiar!) and used the
result of the first part. Now we prove the result by induction. First, L1 =
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4(1− T1) = 2 which agrees with the formula for n = 1. Now

Ln+1 = (n+ 1)22(n+1) − 22(n+1)Tn+1

= (n+ 1)22(n+1) − 4 · 22nTn − 22(n+1) + 2

(
2n

n

)
(4)

= (n+ 1)22(n+1) − 4(n · 22n − Ln)− 22(n+1) + 2

(
2n

n

)
(5)

= 4Ln + 2

(
2n

n

)
= 4 · 2n

(
2n− 1

n

)
+ 4

(
2n− 1

n

)
= 4(2n+ 1)

(2n− 1)!

n!(n− 1)!
.

Line (5) follows from (4) by assuming the result to hold for Ln. The final
expression is just

2(n+ 1)

(
2n+ 1

n+ 1

)
and so the induction step is established, proving that

n∑
r=1

(
2n− r − 1

n− r

)
2rr = 2n

(
2n− 1

n

)
.

Problem 245.2 – Intersecting cylinders
Determine the volume of the intersection of the cylinders

x2 + y2 ≤ 1 and x2 + z2 ≤ 1.

Problem 245.3 – Power residues
Paul Barnett
Let q be a prime and let m be a positive integer. For which pairs (q,m) is
it the case that nq ≡ n (mod m) for all n?
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Solution 242.1 – Interesting integrals
Show that ∫ ∞

−∞

cosx

x2 + 1
dx =

∫ ∞
−∞

x sinx

x2 + 1
dx =

π

e
.

Bryan Orman
There are many ways of evaluating these but the one I like uses the Residue
Theorem (what else!) with the closed contour taken as the usual semicircle
in the upper half plane and the two simple functions

eiz

z − i
and

eiz

z + i
.

Their residues are simply e−1 and 0. They give, respectively, the sum of
the two integrals to be 2π/e and the difference to be 0.

Tony Forbes
The following argument also works. We have seen that∫ ∞

−∞

eiz

z − i
dx =

2πi

e
and

∫ ∞
−∞

eiz

z + i
dx = 0.

Adding gives∫ ∞
−∞

zeiz

z2 + 1
dx =

∫ ∞
−∞

z(cos z + i sin z)

z2 + 1
dx =

πi

e

and subtracting gives∫ ∞
−∞

ieiz

z2 + 1
dx =

∫ ∞
−∞

(i cos z + sin z)

z2 + 1
dx =

πi

e
.

In each case we take the imaginary part to yield the second and first integrals
respectively. Incidentally we have shown that∫ ∞

−∞

z cos z

z2 + 1
dx =

∫ ∞
−∞

sin z

z2 + 1
dx = 0.
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Vincent Lynch
I did the M337 exam last month so this is right up my street. Let

I =

∫ ∞
−∞

cosx

x2 + 1
dx.

There is a very useful theorem in the handbook of M337 on page 29
which I quote.

Let p and q be polynomial functions such that:
1. The degree of q exceeds that of p by at least one;
2. Any poles of p/q on the real axis are simple.

Then, if k > 0, ∫ ∞
−∞

p(t)

q(t)
eikt dt = 2πiS + πiT,

where S is the sum of the residues of the function z 7→(
p(z)/q(z)

)
eikz at those poles in the upper half plane and T

is the sum of the residues of the same function at those poles on
the real axis.

All conditions are satisfied with p(x) = 1, q(x) = x2 + 1 and k = 1; S is the

residue of
eiz

z2 + 1
at the point z = i. Using the g/h rule, S is the value of

g

h′
=
eiz

2z
at z = i, which is

e−1

2i
, and 2πiS =

π

e
. Then, since there are no

poles on the real axis, I = Re(2πiS + πiT ) = π/e.

For the second integral, we require

Im

∫ ∞
−∞

z cos z

z2 + 1
dz,

and using the same rules it is

Im

(
2πi

(
value of

zeiz

2z
at z = i

))
= Im

(
2πi · 1

2e

)
=

π

e
.

I have n marbles. All but six are red. Similarly for orange, yellow, green,
blue, indigo and violet. What is n?
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Two discs
Recall that in M500 228 under the title ‘Mathematics in the
kitchen – VI’ we discussed the construction of a remarkable ob-
ject made from two orthogonal unit discs fixed together such
that their centres are

√
2 radius units apart. We asserted that

the thing will roll around on a perfectly flat kitchen worktop,
with no unique stable position. In other words, the centre of
gravity is always at the same height above the surface.

Dick Boardman
Consider a solid made up of two unit discs at right angles, with their centres√

2 apart. Choose the x-axis to be the line joining the centres and the origin
to be halfway between the centres. Let disc 1 be in the (x, y)-plane and let
disc 2 be in the (x, z)-plane. Let s =

√
2/2 be half the distance between the

centres. Then O1, the centre of disc 1, will have coordinates (s, 0, 0) and
O2, the centre of disc 2, will have coordinates (−s, 0, 0).

Suppose the solid is resting on a flat table with disc 1 touching the table
at point A and disc 2 touching the table at B. Let Q be the point where
the x-axis meets the table and let the coordinates of Q be (q, 0, 0), where
q is a parameter to be varied. In the (x, y)-plane, the points O1, A and Q
form a right-angled triangle with side O1A of length 1 and hypotenuse O1Q
of length q − s. Similarly, in the (x, z)-plane the points O2, Q and B form
a right-angled triangle with side O2B of length 1 and hypotenuse O2Q of
length q + s.
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Let φ = ∠O1QA and θ = ∠O2QB. Then the coordinates of A and B
are

A : (s+ sinφ, cosφ, 0) =

(
1

q − s
+ s,

√
(q − s)2 − 1

q − s
, 0

)

and

B : (−s+ sin θ, 0, cos θ) =

(
1

q + s
− s, 0,

√
(q + s)2 − 1

q + s

)
.

Let the equation of the plane containing A, B and Q be fx+ gy + hz = 1.
We find f , g and h by substituting the coordinates of A, B and Q into
this equation and solving the three simultaneous equations obtained. The
distance of the plane from the origin is 1/

√
f2 + g2 + h2. Thus

f =
1

q
,

g =
q − s− sinφ

q cosφ
=

√
(q − s)2 − 1

q
,

h =
q + s− sin θ

q cos θ
=

√
(q + s)2 − 1

q
.

It is easily verified that (f, g, h) ·A = (f, g, h) ·B = (f, g, h) ·Q = 1 and

f2 + g2 + h2 =
2q2 + 2s2 − 1

q2
,

which is equal to 2 on substituting s =
√

2/2. Therefore the centre of
gravity, O, is always at distance

√
2/2 from the table top, the plane defined

by A, B and Q. For this method to work, A, B and Q must be distinct and
not collinear. There are two orientations of the discs where this test fails.
But then the calculations are much easier and can be left to the reader.

Problem 245.4 – GCSE question
Compute

n∑
k=1

1√
k +
√
k − 1

and

n∑
k=1

(−1)k√
k −
√
k − 1

.
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Solution 242.6 – Three cylinders

Start with a 1 m3 cube. Take out three mu-
tually orthogonal cylinders of length 1 m
and diameter 1 m. What is the volume that
remains? The cylinders should of course fit
snugly inside the cube along its main axes,
as suggested by the picture on the right.

Tamsin Forbes
Let the cube’s vertices have coordinates (±1,±1,±1). So my cube is 2×2×2
and I must remember to divide by eight to answer the actual problem.

Let the cylinders be

x2 + y2 ≤ 1, x2 + z2 ≤ 1, y2 + z2 ≤ 1.

From the diagram it can be seen that the volume of the material left behind
is of two types.

First consider the little cube in the corner. If its outer vertex has co-
ordinates (1, 1, 1), then its inner vertex, as a root of x2 + y2 = x2 + z2 =
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y2 + z2 = 1, must have coordinates (
√

2/2,
√

2/2,
√

2/2). Hence the volume
of the cube is (1−

√
2/2)3.

The other contribution comes from the 24 squiggly bits in the half-edges
of the main cube. Consider the square cross-section at distance x from the
mid-point of the edge. Its outer vertex is at (x, 1, 1) and we want to find
the coordinates of the innermost vertex, which lies on the indicated curve
that goes from (0, 1, 1) to (

√
2/2,
√

2/2,
√

2/2). But the coordinates of this
vertex are (x, y, z), where y and z are given by x2 + y2 = x2 + z2 = 1.
Hence y = z =

√
1− x2 and the length of the side of the little square is

1−
√

1− x2. We can now compute the volume of one of the half-edge pieces
by integrating the area of the square from x = 1 to x =

√
2/2:∫ √2/2

1

(
1−

√
1− x2

)2
dx =

11
√

2

12
− 1

2
− π

4
.

Multiplying by 24, adding the contribution from the eight little cubes, and
finally dividing by eight gives

3

(
11
√

2

12
− 1

2
− π

4

)
+

(
1−
√

2

2

)3

= 1 +
√

2− 3π

4
≈ 0.0580191.

Tony Forbes
Working with a cube of volume 8, let V1 = 2π be the volume of a single
cylinder. For i = 2, 3, let Vi be the volume of the intersection of i mutually
orthogonal cylinders. In M500 192 Dick Boardman and David Kerr cal-
culated V3 = 8(2 −

√
2). To get the other volume, V2, we can perform an

analysis similar to Dick’s solution in M500 192 to obtain

V2 = 8

∫ 1

0

∫ √1−z2

0

√
1− u2 du dz =

16

3
.

But from the rational nature of 16/3 I cannot help wondering if there is an
easier way to get this result; so I shall set it as a problem. Applying the
inclusion–exclusion principle gives

V = 8− 3V1 + 3V2 − V3 = 8− 6π + 16− 8(2−
√

2) = 8 + 8
√

2− 6π

for the volume of remaining material—in agreement with Tamsin’s solution.
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Tracks
Ralph Hancock

Tony’s question in ‘Tracks’ on page 13
[M500 242] is rather vaguely expressed.
To get the first bit out of the way, if you
are on the ground looking at the tank go-
ing past at 20 mph, you see the bottom
of the track as stationary and the top as
going forwards at 40 mph. Hardly worth
asking.

But what does ‘the best place to put the driving wheels’ mean? Drive
from either end will move the tracks, and the total friction acting over the
whole length of the tracks will be the same. However, the Achilles heel of
tanks is track breakage, and I assume that this is caused mostly by fatigue
fractures in the links or link pins by repeated tension and release, and that
fatigue breaks more tracks than sudden high stress does.

In this case, it’s better to have the driving wheels at the back. The
friction between undriven wheels and tracks is much greater at the bottom
of the track where the ground is pressing the tracks against the wheels. Rear
driving wheels pull the lower part of the tracks along steadily in an almost
straight line, and the tracks return over the idler wheels at the top with
relatively little friction or stress. This minimizes the stress on the tracks at
the vulnerable point where they go around the front undriven wheels.

If the driving wheels are at the front, they are not actually pushing the
tracks, since these are flexible and can’t transmit a compressive force. They
are pulling the tracks along the top edge, round the undriven rear wheels,
and along the high-friction bottom run. The stress on the tracks will be
highest where they go around the undriven rear wheels, much higher than
anywhere in the other arrangement, and will cause a fatigue failure sooner.

All this assumes that the tank is travelling on a relatively flat surface.
However, front drive has an advantage when the tank encounters an obstacle
that brings the front edge of the tracks into contact with the ground and
the tank has to lift its front over the obstacle, so that stress on the tracks is
briefly at its highest level. Here, having a positive drive to the front of the
tracks will reduce the stress at the front, where at that moment the tension
is very high. But presumably this doesn’t happen all that often, as opposed
to the constant punishment that the tracks get when travelling from place
to place.
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Problem 245.5 – Numbers
Tony Forbes
You and your opponent play a game. You start by choosing a positive integer
X0. Thereafter your opponent and you take turns to choose positive integers
X1, X2, . . . , such thatX0,X1, X2, . . . are distinct andXn+1 = Xn−2, Xn−1
or Xn + 1. If not possible, the player whose turn it is loses.

Assuming you both play with perfect intelligence, classify the starting
numbers X0 as either (i) you win, (ii) you lose, or (iii) draw (infinitely long
game).

Here is an example. You choose 3. If he chooses 2 or 1, you respond
with 1 or 2 respectively and win. So he chooses 4. But then you lose if you
choose 2; so you go for 5 and force a draw. Hence X0 = 3 is a draw.

Solution 241.2 – Irrational numbers
If πe is irrational, prove that at most one of π+e, π−e, π2 +e2,
π2 − e2 is rational.

Ian Adamson
The number e2 is irrational since otherwise x2 − e2 is a polynomial with
rational coefficients so e is algebraic, a contradiction.

At most one of {π + e, π − e} and at most one of {π2 + e2, π2 − e2}
are rational by irrationality of e and e2. (1)

Assume π+ e to be rational; then π− e is irrational by (1) and π2 + e2

is irrational by the irrationality of πe. Also (π + e)(π − e) is irrational; so
π2 − e2 is irrational. Assume π − e to be rational; then π + e is irrational
by (1), π2 + e2 is irrational by the irrationality of πe, and π2 − e2 is again
irrational.

Assume π2 + e2 rational; then π + e and π − e are irrational since
otherwise their squares are rational which contradicts irrationality of πe,
and π2 − e2 is irrational by (1). Assume π2 − e2 rational; then π+ e, π− e
are both rational or irrational, so are both irrational by (1), and π2 + e2 is
irrational by (1).

Problem 245.6 – Quintic
Solve x4 + x5 = e6.

Is piphobia just an irrational fear?
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Problem 245.7 – Triangle division
Dick Boardman
Divide an equilateral triangle into three parts of the same shape such that

(i) the three pieces have the same size, or

(ii) the three pieces have different sizes, or

(iii) two pieces have the same size and one has a different size.

There are three problems to attack; one is easy, one moderately difficult
and one fiendish.

Problem 245.8 – Four cylinders
Tony Forbes
Having seen how to compute the volume left behind when you remove three
mutually orthogonal unit-diameter cylinders from a unit cube, I am now
wondering what the solution is for the other four Platonic solids. There
is no corresponding problem for the tetrahedron because it does not have
sets of parallel faces. However, the octahedron, the dodecahedron and the
icosahedron do. But let’s do one at a time. So for this problem we tackle
the next one up from the cube.

Take a solid regular octahedron of side length 1. For each pair (f1, f2)
of opposite faces of the octahedron, remove all material from the finite solid
cylinder bounded by the in-circles of the equilateral triangles f1 and f2.
What is the volume that remains?

Problem 245.9 – Transcendental numbers
Tony Forbes
Suppose π+e is rational. Let r and s be rational numbers with (r, s) 6= (0, 0),
(1, 0), (0,−1). Prove that

πr

es
+
er

πs

is transcendental. This is like Problem 241.2 – Irrational numbers, except
that a different number is hypothetically rational. Observe that problems
241.2 and 245.9 are inconsistent—at least one of π + e and πe must be
transcendental.
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The bank job
Jeremy Humphries
This is a money game show, the first edition of which ran for six consecutive
nights in January on C4. You can look up general details on line. Essentially
each of the first five nights produces a winner, who brings a bag of winnings
to the pool for the final night. The pool was nearly half a million pounds.
I watched a couple of the shows, including the last one.

On the final night the five played the standard game until three were
eliminated. Then the final two were given a kind of ‘prisoner’s dilemma’
scenario. Each had two suitcases, one of half the money and the other of
trash. Each knew which was which of his own cases. The deal was that
each would give one case to the opponent. If they both give money, then
they share the pool equally (quarter of a million pounds each). If one gives
trash and one gives money, then the scoundrel who has now got all the
money keeps it all. If they both give trash then they both get nothing and
the pool is shared without further ado among the three eliminated players
(∼£160,000 each in this case).

Each finalist made a convincing and emotional statement to the other
about how he was trusting the other to give money, and he himself would
give money, so they would get half each. Then both gave the other trash, so
that they ended up with nothing, and the three ‘losers’ got £160,000 each.

It seems to me that the two finalists are always likely to trash each
other, so the best strategy is to lose deliberately on the final night, and
hope consequently to get a one-third share of the pool. It was clear, or
seemed to be, that nobody employed that strategy, but this was the first
run of the show. Maybe that strategy was employed in future shows. Or
something else. Tricky business, this game theory. We would be interested
in readers’ thoughts on the matter.

Problem 245.10 – Every other day
Tony Forbes
Can anyone come up with a really simple function F , say, that maps a date
to either 0 or 1 such that F (today) = 1− F (yesterday).

This is not just an academic exercise. Such a function will be very useful
in those situations where the label on the packet says, ‘Take 1 tablet every
2 days.’
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