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Solution 243.7 – Circuit
Behold a simple circuit containing two capacitors and two re-
sistors. (Typical values might be something like C1 = 0.7µF,
C2 = 0.3µF and R1 = R2 = 5 MΩ.) The diagram represents
the initial state, with 150 volts across C1. What happens when
switch S2 is closed? In particular, what are the voltages on each
side of C2 as functions of time?

���p p

C1 0 volts

150 volts

C2 0 volts

0 volts

R1

R2

S2

p p
S1 pp

∗∗∗∗j
∩ S3

X

Mike Lewis
The circuit (redrawn using the ISO symbol for the resistors [and with some
extra bits added on the left and right—TF]) is as above. The capacitor
C1 initially holds a charge of V volts at the moment that the switch S2

is closed. The problem is to find the functions of time that describe the
voltages on the two plates of C2.

Solution as a differential equation

Some fundamental definitions. Capacity: C = Q/V , C = capacity in farads,
Q = charge in coulombs, V = voltage across the capacitor plates in volts;
resistance: R = V/I, R = resistance in ohms, I = current in amperes;
current: I = dQ/dt; that is, current is the rate of flow of charge around the
circuit.

Using lower case letters to denote functions of time, at the moment of
switch closure, t0, the initial current flow, i0, is governed by the resistors,
since capacitor C2 is initially uncharged, and is

i0 =
V

R1 +R2
.
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From the above relationships, the voltage across a capacitor, in terms of the
current flow into or out of it is

v(t) =
q(t)

C
=

1

C

∫ t

0

i(τ) dτ.

Using Kirchoff’s Voltage Law that the sum of the directed EMFs around a
loop is zero:

0 = v(t) + i(t)R1 +
1

C2

∫ t

0

i(τ) dτ + i(t)R2.

Substituting for v(t) to give an equation in terms of current and charge:

0 =
1

C1

∫ t

0

i(τ) dτ + i(t)R1 +
1

C2

∫ t

0

i(τ) dτ + i(t)R2.

Differentiating to give a differential equation in terms of current:

0 =
1

C1
i(t) +R1

d

dt
i(t) +

1

C2
i(t) +R2

d

dt
i(t).

Rearranging and grouping terms:

0 = (R1 +R2)
C1C2

C1 + C2

d

dt
i(t) + i(t).

This is a first order homogeneous differential equation the solution of which
is i(t) = Aeλt, where A is a constant and, by inspection,

λ = − C1 + C2

(R1 +R2)C1C2
.

We express the current as i(t) = Ae−t/T , where T = −1/λ, which would
commonly be referred to as the ‘time constant’ of the RC circuit.

The solution has to satisfy the initial conditions, and from earlier work,
i0 = i(0) = V/(R1 +R2), from which it follows that

i(t) =
V

R1 +R2
e−t/T , T =

(R1 +R2)C1C2

C1 + C2
.

To complete the solution to the problem as posed, the voltage on the lower
plate of capacitor C2 will be

vL(t) =
V R2

R1 +R2
e−t/T .
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For the upper plate, the voltage will be

vU (t) = vL(t) +
1

C2

∫ t

0

i(τ) dτ =
V R2 e

−t/T

R1 +R2
+

1

C2

∫ t

0

V e−τ/T

R1 +R2
dτ

=
V

R1 +R2

((
R2 −

T

C2

)
e−t/T +

T

C2

)
.

Note that at t = 0 the voltage on both plates will be equal since there will
be no charge on C2 and is

vU (0) = vL(0) =
R2

R1 +R2
V.

In a similar way, as t→∞,

vL(∞) = 0, vU (∞) =
V

R1 +R2

T

C2
=

C1

C1 + C2
V.

Since the current flow approaches zero as t→∞, and thus the voltage drops
across the resistors approach zero, the voltage across C1 approaches that
across C2.

Solution by means of the Laplace Transform

In electrical, electronic and control engineering, where linear differential
equations are common the process can be speeded up considerably. The
Laplace Transform was applied by Hendrik Bode to problems in electronics,
in particular the problems associated with failures in amplifier repeaters in
long distance telephone circuits. His book Network Analysis and Feedback
Amplifier Design (van Nostrand, Princeton, New Jersey, 1945) contains the
series of ‘after hours’ lectures he gave whilst at Bell Telephone Labs.

The Laplace Transform is based on the fact that the exponential func-
tion is the eigenfunction of differentiation. This has been seen in the first
part of this article and is illustrated by:

d

dt
eλt = λeλt.

The Laplace Transform of a function of time, f(t), is defined as

L
(
f(t)

)
= F (s) =

∫ ∞
0

f(t)e−st dt.

In practice the transforms of many functions are ‘well known’ and can be
found from tables. Thus it is not usual to perform the integration. Two
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important transforms are those of the derivative and integral of a function
of time:

L
(
d

dt
f(t)

)
= sF (s) and L

(∫
f(t) dt

)
=

1

s
F (s).

The earlier equation,

0 =
1

C1

∫ t

0

i(τ) dτ + i(t)R1 +
1

C2

∫ t

0

i(τ) dτ + i(t)R2,

can be rewritten in Laplace Transform form by treating the charged capac-
itor C1 as an uncharged capacitor in series with a battery of voltage V , the
combination of battery and capacitor is treated as one unit and not as two
separable components:

V (s) =
1

sC1
I(s) +R1I(s) +

1

sC2
I(s) +R2I(s).

The Laplace Transform V (s) encompasses the closing of the switch and is
V (s) = V/s. The equation now becomes

V

s
=

1

sC1
I(s) +R1I(s) +

1

sC2
I(s) +R2I(s).

Multiplying through by s, equivalent to differentiation, gives

V =

(
C1 + C2

C1C2
+ s(R1 +R2)

)
I(s)

and in final form

I(s) =
V

C1 + C2

C1C2
+ s(R1 +R2)

.

The final stage is to invert the transform to obtain i(t). In Bode’s
book this done by means of integration around the Bromwich Contour.
In engineering problems the aforementioned tables are used. The relevant
standard form is

1

s− a
→ eat.

A little rearrangement gives

I(s) =
V

R1 +R2

1
C1 + C2

C1C2(R1 +R2)
+ s
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and applying the relationship gives the previous result,

i(t) =
V

R1 +R2
e−t/T , T =

(R1 +R2)C1C2

C1 + C2
,

where T is the previously found time constant. The various voltages can be
found in a similar manner.

Solved in a similar manner (using differential equations)
by Edward Stansfield — To deduce the current in the
circuit, an equivalent circuit (right) is obtained by not-
ing that the resistors and capacitors operate in series. The
equivalent resistance is R = R1+R2 and the equivalent ca-
pacitance is C = C1C2/(C1+C2). Hence the time constant
for the circuit is T = CR = C1C2(R1 +R2)/(C1 + C2).

C

R

Tony Forbes — The values stated in the problem were used in typical
Luftwaffe bomb fuze circuits during the Second World War. Initially in
our somewhat simplified diagram switches S1, S2 and S3 are open. When
the bomb leaves the aircraft S1 momentarily closes to charge the storage
capacitor, C1, with 150 volts, and then S2 is (permanently) closed. As the
seconds tick away while the bomb is falling the charge on C1 leaks on to
the firing capacitor, C2. The bomb becomes armed when C2 accumulates
sufficient charge to operate the igniter, X. On impact the trembler switch,
S3, closes the firing circuit to initiate detonation by delivering the charge
on C2 to X. For dive bombing a shorter arming time is desirable and this
is achieved with a higher voltage, 240 instead of 150.

vU (t)− vL(t)

vL(t)

vU (t)

0 1 2 3 4 5 6 7 8 9 10 seconds
0

20

40

60

80

100

volts
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Solution 232.4 – Gradients

For each real number
α in the range (0,∞),
draw the graph of the
function

x 7→ xα,

0 ≤ x ≤ 1, and
mark the point where
the gradient is 1.

What is the func-
tion traced out by
these points (assuming
that a suitable choice is
made when α = 1)?

ss s s s s s s s s
Steve Moon
Let y = xα, 0 ≤ x ≤ 1, α > 0. Then

dy

dx
= 1 ⇒ x =

(
1

α

) 1
α−1

, y =

(
1

α

) α
α−1

to give the x and y coordinates of the points on the curves y = xα where

the gradient is 1. Now if y = xα, then α =
log y

log x
and we can eliminate α to

yield

x =

(
1

α

) 1
α−1

=

(
log x

log y

)1− log y
log x

.

Hence

x
log y
log x−1 =

log x

log y
.

Recalling that xlog y/ log x = y, this expression can be simplified to

y log y = x log x, (1)

as defining the function for the points where the gradient of y = xα is 1,
α > 0, 0 ≤ x ≤ 1. This has two ‘parts’.

One solution is y = x for which dy/dx = 1 for all x, and α = 1.
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The other is the more interesting curve, which clearly intersects y = x
at some point to be determined. If we differentiate (1) implicitly, we obtain

dy

dx
log y +

dy

dx
= log x+ 1,

and thus
dy

dx
=

1 + log x

1 + log y
. (2)

Since 0 ≤ x, y ≤ 1, log x ≤ 0, log y ≤ 0, and we could infer that as x → 0,
dy/dx → −∞ and as y → 0, dy/dx → 0. But this argument might lack
rigour as it ignores the behaviour of the other variable, y or x. However,
having the y and x axes as asymptotes seems consistent with the points
(0, 1) and (1, 0) being the limits as α→ 0 and α→∞ respectively.

What happens when y = x (α = 1)?

If y log y = x log x, then x log x = c for 0 ≤ x ≤ 1. If we sketch
c = x log x, we see that the curve has a minimum, and when 0 ≥ c ≥ cmin,
there are two distinct solutions for 0 ≤ x ≤ 1 except when c = cmin.

If we call these β and γ, then β log β = γ log γ and we see that the plot of
x log x = y log y passes through (β, γ) and (γ, β). The curve is symmetric
on reflection in y = x.

At the minimum, β = γ and a simple calculation shows that x = y = 1/e
and cmin = −1/e. So the point on y log y = x log x where y = x is crossed
by the curve is (1/e, 1/e) and we can see why the expression (2) for dy/dx
is unhelpful since it reduces to 0/0 here.

Problem 246.1 – Euler’s function
Recall that Euler’s function φ(n) is the number of integers k such that
1 ≤ k < n and gcd(k, n) = 1. Show that φ(n) > 0.37n0.9.
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Problem 246.2 – Cake
Tony Forbes
A slice of cake, a sector of a cylinder of radius r, height h and subtending
an angle of θ, has total surface area 1. Determine r, h and θ to maximize
its volume.

The diagram actually represents what I believe to be the optimum volume.
However, because of the three-dimensional nature of the drawing and in
contrast to the coffee cup problem (M500 242), I’m pretty sure that making
accurate measurements with a ruler and a protractor would not provide an
easier alternative to solving the problem by a proper mathematical analysis.

Problem 246.3 – Calculus assortment
Some traditional A-level calculus problems to try.

(i) Let S be the shape bounded by ± cosx, x ∈ [−π/2, π/2]. Let T be
S rotated by 90 degrees about the origin. What is the area of S ∪ T?

(ii) Let S be as in (i). Does the ellipse with axes −π/2 ≤ x ≤ π/2, y = 0
and x = 0, −1 ≤ y ≤ 1 enclose S?

(iii) Let U = S ∪ T with S and T as in (i). Let V be U rotated by 45
degrees about the origin. What is the area of U ∪ V ?

(iv) Find the distance of closest approach between the curves y = ex and
y = log x.

(v) Compute lim
n→∞

(
n∑
k=2

1

log k
−
∫ n

2

dx

log x

)
.
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Problem 246.4 – Stack sort
Prove that a sequence of distinct positive integers can be stack sorted if and
only if it does not contain a subsequence b ∗ c ∗ a with a < b < c and where
the asterisks indicate the possible presence of intervening numbers.

This came up in a lecture by Einar Steingŕımsson at the Open University
Winter Combinatorics Colloquium on 25 January this year. The problem
was solved by Donald Knuth in 1968. In particular, (2, 3, 1) is the only
exception out of the six permutations of (1, 2, 3).

To understand stack sorting one can imagine the sequence represented
by a pile of numbered dinner plates, I, with the first number at the top.
There are two further piles, initially empty: the output sequence, O, and a
temporary storage facility called the stack. You transfer a plate from the
top of the stack to O if its number is less than the number at the top of I,
or if I is empty. If this is not possible, you transfer the plate at the top of
I to the stack. You stop when both I and the stack are empty.

Here is an example with the sequence (3, 2, 1, 4).

3 4
2 2 1 3 3 3
1 1 1 2 2 2 2 2 2 2
4 - - 4 3 - 4 3 - 4 3 - 4 3 1 4 3 1 4 - 1 - 4 1 - - 1

And you can try (1, 8, 3, 2, 4, 5, 6, 7, 15, 9, 14, 12, 10, 11, 13) for a more sub-
stantial sequence where the b ∗ c ∗ a pattern is absent. On the other hand,
sorting (2, 3, 1) in this manner doesn’t work.

2 3
3 3 3 1 1 1
1 - - 1 2 - 1 - 2 1 3 2 - 3 2 - 3 2 - - 2

Student: “What’s this backslash sign between A and B mean?”

Tutor: “It’s the set difference; A \B is all elements of A not in B.”

Student: “I understand. Thanks.”

Tutor: “I expect you are familiar with the use of the minus sign for
this operation, A−B, as used by some authors.”

Student: “Yes . . . of course.”

Tutor: “Anything else?”

Student: “What’s this cup sign between C and D?”
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Two times five equals ten
Bryan Orman
It is clear that all three integers in the title are of the form n2+1, where n is
a non-zero integer, and that the product can be written as (12+1)(22+1) =
32+1. This multiplicative structure can be examined in general terms; given
a positive integer x, is it possible to determine positive integers y and z such
that (x2 + k)(y2 + k) = z2 + k, where k is a fixed non-zero integer?

The left-hand side can be rewritten to give

(xy + k)2 + k(y − x)2 = z2 + k

so that xy + k = z and y − x = 1. Thus, given x, it follows that y = x+ 1
and z = x2 + x+ k, and the multiplicative identity becomes

(x2 + k)
(
(x+ 1)2 + k

)
= (x2 + x+ k)2 + k.

This will generate iterations in a straightforward manner, as illustrated by
the further development of 2×5 = 10. Since 2×5 = 10 is (12 +1)(22 +1) =
32 + 1 and

(32 + 1)(42 + 1) = (32 + 3 + 1)2 + 1 = 132 + 1,

10 × 17 = 170. It follows that 2 × 5 × 17 = 170, although this disguises
the underlying structure given by (12 + 1)(22 + 1)(42 + 1) = 132 + 1. This
process can be continued indefinitely, as will be shown later.

There is an alternative method of generating the product. Suppose that
the representation Pn = N1N2N3 . . . Nn is known, where Pn = z2n + k and
Nn = x2n+k, with xn+1 = zn+1 and zn+1 = z2n+zn+k. The next product
Pn+1 is given by Pn+1 = PnNn+1 and if Pn is known in its product form
then only Nn+1 is required to determine Pn+1. The following calculations
should be self evident:

Nn+1 = x2n+1 + k = (zn + 1)2 + k = z2n + 2zn + k + 1

= (z2n + k) + 2zn + 1 = Pn + 2zn + 1.

Now

Pn−1 +Nn = (z2n−1 + k) + (x2n + k) = z2n−1 + k + (zn−1 + 1)2 + k

= 2(z2n−1 + zn−1 + k) + 1 = 2zn + 1

and the working formula for Nn+1 is then Nn+1 = Pn + Pn−1 +Nn.
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In the example, N1 = 2, P1 = 2, N2 = 5 and P2 = 10. Applying the
formula with n = 2 gives N3 = P2 + P1 +N2 so that N3 = 10 + 2 + 5 = 17,
and therefore P3 = P2N3 = 10× 17 = 170, as before. Continuing,

N4 = P3 + P2 +N3 = 170 + 10 + 17 = 197

and so
P4 = P3N4 = 170× 197 = 33490;

N5 = P4 + P3 +N4 = 33490 + 170 + 197 = 33857

and so
P5 = P4N5 = 33490× 33857 = 1133870930.

Putting these together gives the factorization

2× 5× 17× 197× 33857 = 1133870930.

All these numbers are of the form n2 + 1; explicitly,

(12 + 1)(22 + 1)(42 + 1)(142 + 1)(1842 + 1) = 336732 + 1,

as are the intermediate P s, which can be checked.

This iterative procedure has bypassed the original multiplicative identity
and it is useful to recalculate the products from the repeated use of this
identity. To this end it is convenient to introduce the notation,

{x} = x2 + k,

so that the identity becomes

{x}{x+ 1} = {x2 + x+ k}.

With k = 1, so that {x} = x2 + 1, and taking x = 1, the identity gives
{1}{2} = {12 +1+1} = {3}, which is just 2×5 = 10. The next choice for x
is 3, and it gives {3}{4} = {32 + 3 + 1} = {13}. Multiplying {1}{2} = {3}
on the right by {4} gives {1}{2}{4} = {3}{4} = {13}.

The next choice for x is 13 and {13}{14} = {132 + 13 + 1} = {183}.
Continuing the right multiplication, {1}{2}{4}{14} = {13}{14} = {183}.
Now {183}{184} = {1832 + 183 + 1} = {33673}; so, finally,

{1}{2}{4}{14}{184} = {33673},

which converts to the 2 × 5 × 17 × 197 × 33857 = 1133870930, obtained
previously.
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Two observations can be made concerning this result. The first is to
note that all the factors on the left hand side are prime numbers. Will the
next iteration produce a further prime factor? That is, is N6 = {33674} a
prime number? Now N6 = 336742 + 1 = 1133938277 = 373× 3040049, and
is therefore not a prime number.

The next thing to note is that the four numbers 17, 197, 33857 and
1133938277 all end with a 7, as will all the other factors if this product is
continued. The reason for this is clear from the examination of the multi-
plicative identity, {x}{x + 1} = {x2 + x + 1}. If x ends in a 3 then x + 1
ends in a 4 and x2 + x + 1 ends in a 3. This is cyclic and all the above
factors correspond to the {. . . 4} term, which is just (. . . 4)2 + 1 = . . . 7.

Since it has been conjectured that there are an infinite number of primes
of the form n2−2, it might be fruitful to derive a product formula for these
numbers (with k = −2), as it might generate more than just five primes in
the product. The iteration formula in this case is {x}{x+1} = {x2 +x−2}
with {x} = x2−2, and the first product is 2×7 = 14, that is, {2}{3} = {4}
and it generates the following sets:

{4}{5} = {18},
{18}{19} = {340},
{340}{341} = {115938},

{115938}{115939} = {13441735780}.

Combining the above produces

{2}{3}{5}{19}{341}{115939} = {13441735780}

and the first five factors on the left hand side are

{2} = 2, {3} = 7, {5} = 23, {19} = 359, {341} = 116279.

All these are primes but the remaining factor is not, since

{115939} = 1159392 − 2 = 13441851719 = 23831× 564049.

The two examples examined here produced a product of five primes,
namely, 2× 5× 17× 197× 33857 for k = 1 and 2× 7× 23× 359× 116279
for k = −2. The number of primes depends on both the value of k and
the starting prime, which was taken to be the smallest prime allowed, that
is, 2. All other starting primes are odd but, if {x} is odd then {x + 1} is
even, so no further prime factors would then occur. Furthermore, all the
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many other values of k examined, but not recorded here, did not produce
as many as five prime factors, so a fortuitous choice of the two k values for
the illustrative examples!

This is where this particular investigation ends since it is known that
there is no non-constant polynomial f(n) with integral coefficients which
takes on just prime values for integral n. The iterative process considered
would produce polynomials of increasing degrees, with the ones of lower
degree generating products of primes, but all too soon the iteration would
fail.

And now a novelty. Suppose that the three non negative integers in the
multiplicative identity are Pythagorean triples, that is,

(a2 − k)(b2 − k) = c2 − k

with a2 + b2 = c2. This leads to b = a + 1 and c = a2 + a − k, and so
k = a2 + a− c. The first triple is (3, 4, 5) and this requires k to be 7, giving
(32 − 7)(42 − 7) = 52 − 7. Other triples can be generated from the result
that if (x, x+ 1, z) is a Pythagorean triple then so is (3x+ 2z+ 1, 3x+ 2z+
2, 4x+ 3z+ 2). The next three results concerning these Pythagorean triples
are

(202 − 391)(212 − 391) = 292 − 391,

(1192 − 14111)(1202 − 14111) = 1692 − 14111,

(6962 − 484127)(6972 − 484127) = 9852 − 484127.

Further results would involve quite large numbers!

M500 Society Committee – call for applications
The M500 Society invites applications from M500 members for posts as Of-
ficers of the Society, that is, Secretary, Membership Secretary, Treasurer,
Publisher, Week-end Organizer and two others who form the Editorial
Board. The Officers who currently hold these posts are willing to stand
again for another year. Anyone interested in an Officer’s post should apply
to the Secretary by 1st October. It should be noted that we are particularly
seeking someone to manage Publicity. Applications should include name of
applicant, address, telephone no., e-mail address, applicant’s statement of
aims and qualifications and signature.

Applications should be sent to the Secretary.
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Letters

Coins, ships and docks
Hello Tony,

My copy of the mag came this morning and I was pleased to see the
three coins article.

Problem 243.6 [There are 10 piles of 10 coins each. Nine piles are good
and one pile is counterfeit. Good coins weigh 10 and dud coins weigh 9.
You have a kitchen scale which tells you the weight in the pan, and you
need to identify the dud pile in as few weighings as possible. How many
weighings?] is very easy. You put the piles in a line. Take one coin from the
first pile, 2 from the second, k from the kth up to k = 10. You put them all
on the scale. Then you only have to subtract the weight from 550 to find
the number of the pile.

So only one weighing is needed.

My solution for SHIP to DOCK: SHIP, SLIP, SLAP, SLAY, SPAY
(neuter), SPRY, SARY (a fruit native to Cambodia), SARK (a shirt or
chemise), SACK, SOCK, DOCK.

The only one not in Chambers Concise is SARY, but Wikipedia gives
this definition.

Regards,

Vincent Lynch

Dear Tony,

This problem [Problem 243.6 – Piles of coins] can be solved with one
weighing. Take one coin from pile 1, [. . . see above]. I suspect that this was
adapted from an old Arabic problem known as the riddle of the gold bars.

Looking through old copies of M500 I got the impression we had more
pages and variety in the past. When contributions are low could you con-
sider printing some of the old material again for the benefit of new mem-
bers. After you have thought about that for a few minutes try the following
tongue-twisters.

A bloke’s back brake-block broke.

The sixth sick sheik’s sixth sheep’s sick.

Barbara Lee
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Dear Tony,

SHIP, SHIN, THIN, THEN, THEY, TREY, TROY, TROD, PROD,
PROS, PRYS, PAYS, RAYS, RATS, RATE, RACE, RACK, ROCK,
DOCK. These are all words in my edition of Chambers Dictionary.

Best wishes,

Francis McDonnell

Dear Eddie,

Just thought of a solution to the thing at the foot of page 9. Y is not
a vowel. ‘Skys’ is a verb, as in ‘to sky a ball’. SHIP, SKIP, SKIS, SKYS,
SAYS, SACS, SACK, SOCK, DOCK.

Ralph Hancock

Now try again assuming Y is a vowel, or prove that it can’t be done. Don’t
forget that words with two consecutive vowels are forbidden. — TF

Minimal Sudoku
Hi Tony,

A couple of years ago, I seem to remember you published a question
about what is the minimum population of a Sudoku puzzle that it’s solvable
without repeats. I saw this recently:

http://www.nature.com/news/mathematician-claims-
breakthrough-in-sudoku-puzzle-1.9751

[in which Gary McGuire of University College, Dublin offers a proof that
17 starter digits are necessary to create a valid Sudoku puzzle] and was
wondering whether you received an answer back then and if so what was it?

Best regards,

Martin Orman

The issue in question was M500 206 in which we also
asked readers for a puzzle with 9 empty regions (rows,
columns, 3 × 3 boxes). That, too, has been solved
(right, or look up ‘Mathematics of Sudoku’ in Wiki).
With McGuire’s result it is easy to see that 11 empty
regions cannot be achieved. So we now ask: Is there
a Sudoku puzzle with 10 empty regions? — TF

1 2
3 4

3 4
8 5

5 8

6 1

1 3

4 2

7 5
8 6

2 6
9 1
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Solution 184.4 – Three real numbers
Find three real numbers, a, b, c such that

a+ b+ c = ab =
70 + 26

√
13

27
and

a

b
=

b

c
.

A similar problem appeared in IEE News; the only difference
was that they had a+ b+ c = ab = 25. However, I (TF) found
it too difficult; so I ‘simplified’ the problem by changing 25 to
(70 + 26

√
13)/27. But that was a long time ago and we did

actually publish a solution in issue 186. Nevertheless, we now
think the original IEE News problem is not without interest and
therefore we are pleased to offer an exact solution here.

Steve Moon
We are given these criteria for a, b and c:

a+ b+ c = ab = 25,
a

b
=

b

c
.

But a, b and c are in geometric progression; so let b = ar and c = ar2. But
then a2r = 25, suggesting that we put r = k2. Hence the conditions reduce
to

(k2 + 1)2 = 5k + k2.

Now introduce a new variable z and add 2(k2 + 1)z + z2 to each side:

(k2 + 1 + z)2 = k2(1 + 2z) + 5k + z2 + 2z. (1)

We need to determine z so that the right side of (1) is a perfect square. The
right of (1) is a quadratic in k2; so it must have a repeated root for it to be
a square. So form the discriminant and set it equal to zero. Hence

25− 4(1 + 2z)(z2 + 2z) = 0 ⇒ 8z3 + 20z2 + 8z − 25 = 0.

We put this in ‘depressed cubic’ form with no quadratic term by the sub-
stitution z = y − 5/6:

y3 − 13

12
y − 605

216
= 0. (2)

Now for a depressed cubic in the form y3 + 3Hy + G = 0, one root is real
and two non-real if G2 + 4H3 > 0. But (−605/216)2 + 4(−13/12)3 > 0; so
(2) has one real solution and we can find it as follows. We have

y3 − 13

12
y =

605

216
.
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Now find s and t such that

3st = − 13

12
and s3 − t3 =

605

216
. (3)

The required solution is then given by y = s − t. From (3) we obtain
s = −13/(36t) and hence

46656t6 + 130680t3 + 2197 = 0.

Solving the quadratic in t3 and simplifying gives

t3 = − 605

432
± 1

144

√
39693.

taking the positive sign (actually it doesn’t matter which),

t =
3

√
−605

432
+

1

144

√
39693, s =

3

√
605

432
+

1

144

√
39693.

Let

u =
3

√
605 + 3

√
39693

2
, v =

3

√
605− 3

√
39693

2
.

Then

z = s− t− 5

6
=

u+ v − 5

6

and we substitute this into (1):(
k2 + 1 +

u+ v − 5

6

)2

= k2
(
u+ v − 2

3

)
+5k+

(
u+ v − 5

6

)(
u+ v + 7

6

)

=

(
k√
3

√
u+ v − 2 +

1

6

√
(u+ v + 1)2 − 36

)2

.

We can now take the square root of both sides, which are perfect squares:

k2 +
u+ v + 1

6
=

k√
3

√
u+ v − 2 +

1

6

√
(u+ v + 1)2 − 36

and hence

k =
1

2
√

3

(√
u+ v − 2±

√
2
√

(u+ v + 1)2 − 36− u− v − 4

)
,

giving (a, b, c) ≈ (3.51641, 7.10951, 14.3741) or (23.9086, 1.04565, 0.0457316).
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A card trick
Tommy Moorhouse
Sebastian Hayes’s article about Russian peasant multiplication (M500 243)
reminded me of an old ‘magic’ trick that I once found in a Christmas cracker.
As with the Russian peasant multiplication, the binary expansion of an
integer (that is, its expansion as a sum of powers of 2) is the key to the
trick, as the reader may wish to investigate.

The person performing the trick (the ‘magician’) has a set of cards on
which integers are written. The number in the top left corner is a power of
2 (that is, 1 on the first card, 2 on the second, 4 on the third, 2k−1 on the
kth). We will call this power of 2 the ‘value’ of the card. The rest of the
numbers appear as set out below for the example of a highest value card
of 16. There is no limit to the number of cards or the number of integers
on each card, except that all the cards must go up to the highest number
appearing on the card of highest value (i.e. showing the highest power of 2
in the top left), and a card of each value (power of 2) from 1 to the highest
must be present.

1 3 5 7 9 11 13 15
17 19 21 23 25 27 29 31

2 3 6 7 10 11 14 15
18 19 22 23 26 27 30 31

4 5 6 7 12 13 14 15
20 21 22 23 28 29 30 31

8 9 10 11 12 13 14 15
24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

The magician invites the subject to silently choose a number between
1 and the largest number on the cards, and not to reveal what the chosen
number is. The magician then shows the subject the cards and asks him
to set aside all those cards showing the chosen number. Taking up the
cards that have been set aside the magician tells the subject at once what
his chosen number was. The astonished subject wonders how the magician
could have checked through all the cards so quickly.

Of course, all the magician did was add up the powers of 2 in the top
left of each card. To see how it works, first deduce the pattern of integers
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on each card and then relate this to the binary expansion of an integer
appearing on the card. What is the largest number that should appear on
the highest value card?

This trick can be generalized to any prime modulus, but the numbers
on the card have to be marked (‘coloured’) in some way. For example, using
the modulus 3 we have to mark some integers on each card, say with bold
faced type as below. The interested reader will be able to build up the other
cards without too much trouble.

1 2 4 5 7 8 10 11 13 14
16 17 19 20 22 23 25 26

As before, the subject chooses a number in a given range and sets aside
those cards showing this number into two piles. On one pile go the cards
showing the number in pale type, on the other go those on which the number
appears in bold. Taking up the selected cards the magician adds up the
values of the ‘pale’ pile and adds this to twice the sum of the values of the
‘bold’ pile, announcing the mystery number. Clearly the poor magician has
a tougher task, while the subject may have a longer wait for the result than
is conducive to astonishment, and it seems little wonder that the former
version is the only one I’ve ever seen in use!

Problem 246.5 – Binary sequences
Let S be a finite sequence of the symbols 0 and 1. Imagine generating a
random sequence of 0s and 1s, chosen with equal probability (by tossing a
coin, say), stopping as soon as S appears. Let L(S) denote the expected
length of such a sequence. It is actually possible to compute L(S), and
when one does so one obtains these results for various short sequences.

S 0 1 00 01 10 11 000 001 010 011 100 101 110 111
L(S) 2 2 6 4 4 6 14 8 10 8 8 10 8 14

S 0000 0001 0010 0011 0100 0101 0110 0111
L(S) 30 16 18 16 18 20 18 16

Like me (TF), you have probably noticed that the L(S) presented above
have a common property. You might even venture a guess as to how the
values are calculated, and it would be very nice if you could prove it. But
all we want you to do for the problem is this. Explain in a very simple
manner why L(S) must be an even integer.
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Solution 224.4 – Integers
Given that u = (p + 1)(p + 2n)/2, where p and n are positive
integers, show that values of p and n can be chosen to produce
every positive integer except for those that take the form 2m−1

where m is a positive integer.

Steve Moon
(i) Consider first the generation of odd integers. If we set p = 1 then
u = 2n + 1 and we can put n = (u − 1)/2, which is a positive integer
provided that u ≥ 3.

(ii) Now consider even number generation. Let u = 2ab with a ≥ 1 and
odd b ≥ 3. If we let p = 2a+1 − 1, then p is a positive integer, b = p + 2n
and we can set n = (b− 2a+1 + 1)/2, which works provided that b > 2a+1.

On the other hand, if b < 2a+1, we set p = b− 1, which is positive since
b ≥ 3. Then p+ 2n = 2a+1 and hence n = (2a+1 − b+ 1)/2 > 0.

(iii) Consider numbers of the form u = 2a, a ≥ 0, precisely those positive
integers not covered by (i) and (ii). We require (p+1)(p+2n) = 2a+1, which
is easily seen to be impossible with positive integers p and n.

Solution 241.7 – Multiplicative function
Let f be an increasing, multiplicative function that maps posi-
tive integers to positive integers. Suppose also f(2) = 2. Show
that f must be the identity function.

Dave Wild
This an alternative method to that published in M500 243. We will write
f(p) as p∗. We are told that 2∗ = 2 and, when gcd(m,n) = 1, (mn)∗ =
m∗n∗. Also we can deduce that (m + n)∗ ≥ m∗ + n, and (4n + 2)∗ =
2∗(2n+ 1)∗ = 2(2n+ 1)∗. So

5∗ = 10∗/2∗ = 10∗/2 ≥ (9∗ + 1)/2 = (18∗/2 + 1)/2

≥ ((15∗ + 3)/2 + 1)/2 = ((3∗5∗ + 3)/2 + 1)/2 = (3∗5∗ + 5)/4.

If 3∗ > 3 then 3∗ ≥ 4 and the above inequality becomes 5∗ ≥ 5∗ + 5/4.
Therefore 3∗ = 3. If n > 1 and n∗ = n then m∗ = m for all integers
m ≤ n. So as 6∗ = 2∗3∗ = 6 then 5∗ = 5. Proceeding in a similar manner
we see 9∗ = 9, 17∗ = 17, . . . . In general we have (2n + 1)∗ = 2n + 1,
for n = 1, 2, 3, . . . . Therefore f(n) = n for all n and so f is the identity
function.
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Problem 246.6 – Loop
Tony Forbes
The picture shows the curve

(
(sin t)(tan t), (log t)/t

)
as t goes from 1.4 to

2π. What is the area enclosed by the little loop?

Thanks to Robin Whitty for the idea behind this problem.

M500 Mathematics Revision Weekend 2012
The thirty-eighth M500 Society Mathematics Revision Weekend will
be held at

Aston University, Birmingham

over

Friday 14th – Sunday 16th September 2012.

The cost, including accommodation (with en suite facilities) and all meals
from bed and breakfast Friday night to lunch Sunday is £265 (Aston Student
Village) or £316 (Aston Business School), The cost for non-residents is £123
(includes Saturday and Sunday lunch). M500 members get a discount of
£10. For full details and an application form, see the Society’s web site at
www.m500.org.uk, or send a stamped, addressed envelope to

Jeremy Humphries

The Weekend is open to all Open University students, and is designed to
help with revision and exam preparation. We expect to offer tutorials for
most mathematics-based OU courses, subject to sufficient numbers.
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