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The Ancient Egyptian number system
Sebastian Hayes
The Egyptian Number System and Egyptian mathematics in general have
traditionally held a ‘poor cousin’ status compared to the more celebrated
Babylonian and Greek systems1. The Egyptian system is, like ours, a base
ten system but arranged in ascending, rather than descending, order of size
by our reckoning since the Egyptians, like the Arabs still do, wrote from
right to left. It does not use positional notation but instead has a different
picture-sign for each power: an upright stick for the unit, a bent stick for
ten, a coiled rope for a hundred, a lotus for a thousand, a snake for ten
thousand, a tadpole for a hundred thousand and a seated man holding up
his hands in amazement for a million. There was no sign for zero and, since
the system, like the Greek, did not depend on place value, none was needed.

Numerals less than ten are repeated upright strokes, as many strokes
as there are objects; i.e. | | | is our ‘3’ and if we have ‘three hundreds’ the
hundred sign will be repeated2. This means a simple glance will show the
approximate size of the quantity being represented, since a collection in the
thousands will have thousand ideograms which are readily distinguishable
from hundred or ten thousand ideograms. With our positional notation,
one has to look closely to distinguish between say 10000 and 1000 especially
since it has become the fashion to leave out the comma for the thousand.
Admittedly, Egyptian notation does make it difficult to distinguish between
quantities less than ten but some Egyptian texts get round this by arranging
the units or other repeated signs in two rows with a maximum of five in
the top row, e.g. writing ‘seven’ as | | | | | with | | in the row below. This
makes instantaneous assessment much easier and in effect means having a
sub-base of five.

Multiplication is incredibly easy using Egyptian methods since it de-
pends wholly on doubling and then adding rather like Russian multiplication
(see my earlier article in M500 243).

Division for the Egyptians was simply multiplication in reverse. Instead
of dividing our 134 by 7 the Egyptian scribe would lay out his powers of
two on one side and 7 repeatedly doubled on the other.

1 7
2 14
4 28
8 56

16 112
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He would stop here because he would see that the next doubling would take
him well beyond his goal 134. He would then get as close as he could to 134
using the entries on the right-hand side, namely 112, 14 and 7. He would
then add the corresponding powers of two, namely 16, 2 and 1 giving as
quotient 19 with remainder 1 since the nearest combination of 7s fell one
short.

Such a procedure is, once you have got the hang of it, no lengthier than
our ‘long division’ which children at school (and beyond) often have a lot of
difficulty with. In the Egyptian system the powers of 2 form a framework
within which every number can be situated, and with practice one can juggle
them around to pin down any number in one’s head, at least to a fair degree
of accuracy. The method works, of course, only because every number can
be expressed as a combination of powers of 2. The Egyptian scribes must
have realized this though they do not say so specifically3.

What of fractions? Here the Egyptians ran into difficulties because they
did not have our stroke notation 1/4, 5/6 &c. They got round the problem
by using reciprocals of numbers, noting this by a bar placed over the top.
One advantage of this was that it was not necessary to invent any new signs
for quantities less than the unit, and this seems to have been an important
consideration. However, it meant reducing every proper fraction to a sum
of unit fractions—with the important exception of 2/3, which had a special
sign of its own. For some reason, a scribe performing a calculation would
not write down a reciprocal more than once in succession: he would not for
example put a bar over the sign for our 7 and repeat this twice to express
our 3/7 but transform it into a series of unit fractions. It is not clear why
the Egyptian scribes did this.

Conceptually, the Egyptian scribes were apparently unable to make the
giant leap in thought involved in extending the base-10 system backwards
to represent quantities smaller than 1. This said, the scribes showed quite
remarkable ingenuity and fluency in reducing proper fractions to brief lists
of unit fractions, never, according to Gilling, Mathematics in the Time of
the Pharaohs, using more than four terms. This implies that every proper
fraction can be reduced to at most four unit fractions. I have been unable
to prove this or test the claim extensively with the very limited computer
power I have at my disposal. (Proving this could be an interesting problem
for M500 readers.)

Suppose a rational number a/b with a, b positive integers, a < b and
a 6= 1 (since otherwise we already have a ‘series’ of unit fractions). We can
also assume without loss of generality that gcd(a, b) = 1, i.e. a and b do not
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have a common divisor other than unity. Now,

a

b
=

1

n
+
na− b
nb

; e.g.
7

24
=

1

5
+

35− 24

5 · 24
=

1

5
+

11

120
.

This leaves 11/120 to be reduced and it might seem that the series would
carry on indefinitely with smaller and smaller terms. However, if we take
n = 4 we obtain

7

24
=

1

4
+

28− 24

4 · 24
=

1

4
+

1

24
.

This turns out to be a lucky fluke but it enables us to deduce the rule

a

b
=

1

n
+

1

b
if an− b = n, or

b

a− 1
= n.

i.e. b is an exact multiple of a− 1. By looking out for such cases and ones
where the numerator can be split to provide such a case, we can often spot
ways to rapidly reduce a fraction. For example,

7

15
=

2 + 5

15
=

1

3
+

2

15
.

Here, we can use the fact that 16 = 2 · 8 i.e. b+ 1 = ma, which means that
an− b = 1 or m = (b+ 1)/a. So

2

15
=

1

8
+

1

120
.

Using these two cases, b = n(a−1) and ma = (b+1) we can reduce a certain
percentage of fractions immediately. For example, if we have a numerator
of 2 and an odd denominator, the fraction will reduce at once.

An extension of these two rules enables us to at least reduce the number
of terms in the expansion. With n = (b+ r)/a we have

a

(b+ r)− r
=

1

n
+

r

bn
; e.g.

7

17
=

1

3
+

4

51
.

Leonardo of Pisa mentions these methods in his Liber Abaci though I stum-
bled on them myself messing around with unit fractions. He also cites the
artifice of splitting the numerator into a sum of divisors of the denominator
where this is possible. Thus

7

12
=

1

3
+

1

4
.
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There is, as a last resort, one foolproof general method (also mentioned by
Fibonacci), which consists in setting n = db/ae, i.e. the first integer > b/a.
Since b/a is situated between db/ae − 1 and db/ae,

1 >

⌈
b

a

⌉
− b

a
=

r

a
, or a >

⌈
b

a

⌉
a− b = r.

Thus, the numerator of the non-unit fraction in an expansion is always
less than the numerator of the original fraction. Continuing in this way, we
choose m = dnb/re:

r

nb
=

1

m
+
mr − nb
mnb

.

We see that the denominators rapidly increase since

b < nb < mnb < tmnb < . . . .

Also, setting mr − nb = c, and so on, a > r > c > d > . . . .

Since all numerators are positive integers (or zero) this means that we
will eventually arrive at either a numerator of 1 or 0 (in the case where b =
na) This method, also mentioned by Leonardo of Pisa, does not, however,
always provide us with the shortest expansion.

In the problems dealt with in the Rhind papyrus we find that the Egyp-
tian scribes used somewhat arcane criteria for selecting their expansions.
Brevity is one consideration but it is not the only or always the princi-
pal one. The scribe showed a marked preference for smaller numbers (i.e.
smaller denominators) though he would accept ‘a slightly larger first num-
ber, if it will greatly reduce the last number’ (Gillings). Also, according to
Gillings, even numbers are always preferred to odd numbers.

A computer has been put to work evaluating a range of possible unit-
fraction expressions and the scribe’s choice of expansions, according to his
criteria, has been shown to be, at least in the vast majority of cases, op-
timal. Fractions were probably first invented by the Egyptians in order to
equitably divide up portions of bread and beer since temple personnel were
remunerated in kind, gold and silver being reserved for large-scale State
expenditure. However, many of the complicated unit fraction expansions
could not possibly have had any practical use: the Egyptian scribes, like
Leonardo of Pisa (Fibonacci), seem to have become fascinated by unit frac-
tions for their own sake as indeed I am in danger of becoming myself to
judge by the time I have spent on them!
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Notes

1. But McLeish in his book, Number, rightly praises it highly. Egyptian
mathematics is a good deal simpler than Greek or Babylonian and this is
precisely what makes it more user-friendly. The whole of Egyptian calcula-
tion was essentially based on only three elementary procedures: doubling,
distinguishing between odd and even, adding. One would only need to know
the two-times table and become fluent in unit fractions (partly doubtless
through using tables) to carry out quite complicated calculations. This
simplicity strikes me as a plus rather than a minus.

2. This is the so-called hieroglyphic numeral system used for State docu-
ments and tomb paintings. For everyday calculations, scribes used the much
faster ‘hieratic’ system which, because signs were run together in freehand
script, they often got modified in the process. The hieratic numerals may
thus be described as ‘semi-ciphered’. For example, 6 in hieratic remains
as two rows of three ‘sticks’ | | | but ‘7’ has become a single character. I
have experimented with hieratic Egyptian numerals and, with one or two
natural simplifications (natural to me) I find that writing down numbers
and performing calculations the Egyptian way is hardly more cumbersome
than with our present system.

3. Had we Europeans taken the Egyptian system as our starting point
rather than the Greek, we would have realized much sooner that all numbers
could be written in base 2 using just two signs. Leibnitz seems to have been
the first to see this but we had to wait until the mid-twentieth century and
the advent of computers before this insight was put to any practical use.

Problem 247.1 – 39/163
Applying the ‘last resort’ method as explained in Sebastian Hayes’s article
(see page 4) gives

39

163
=

1

5
+

1

26
+

1

1247
+

1

2935993

+
1

11082924787499
+

1

286606184305828343790787504

+
1

123214657323519667859049566141092194172466586933037520
.

Find a simpler expression for 39/163 as a sum of distinct unit-numerator
fractions.
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Solution 241.3 – Four integrals
For brevity, write α = log(1 +

√
2) and β = log(2 +

√
3). Let r

be a real number. Show that∫ α

0

coshr x dx =

∫ π/4

0

dx

cosr+1 x
.

Let s be a non-negative real number. Show that∫ β

0

sinhs x dx =

∫ π/3

0

sins x

coss+1 x
dx.

Basil Thompson
We have∫ α

0

coshr x dx =

[
1

r
sinhx coshr−1 x

]α
0

+
r − 1

r

∫ α

0

coshr−2 x dx

=
(
√

2)r−1

r
+
r − 1

r

∫ α

0

coshr−2 x dx.

Also ∫ π/4

0

dx

cosr+1 x
=

[
sinx

r cosr x

]π/4
0

+
r − 1

r

∫ π/4

0

dx

cosr−1 x

=
(
√

2)r−1

r
+
r − 1

r

∫ π/4

0

dx

cosr−1 x
.

Both integrals are of the same form; hence we can conclude that∫ α

0

coshr x dx =

∫ π/4

0

dx

cosr+1 x
(1)

for all integers if we can show that (1) is true for r = 0 and r = 1. For
r = 0, we have∫ α

0

dx−
∫ π/4

0

dx

cosx
= log(1 +

√
2)− 2 arctanh

(
tan

π

8

)
= 0,

and when r = 1 the previous analysis shows that both integrals are obviously
equal to 1.
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For the other equality,∫ β

0

sinhs x dx =

[
sinhs−1 x coshx

s

]β
0

− s− 1

s

∫ β

0

sinhs−2 x dx

=
2(
√

3)s−1

s
− s− 1

s

∫ β

0

sinhs−2 x dx

and ∫ π/3

0

sinhs x

coss+1
dx =

[
sins−1 x

s coss x

]π/3
0

− s− 1

s

∫ π/3

0

sinhs−2 x

coss−1 x
dx

=
2(
√

3)s−1

s
− s− 1

s

∫ π/3

0

sinhs−2 x

coss−1 x
dx

when s is non-negative. The same observation as before applies;∫ β

0

sinhs xdx =

∫ π/3

0

sinhs x

coss+1
dx

for integer s ≥ 0 since it obviously holds for s = 1, and when s = 0 we have∫ β

0

dx−
∫ π/3

0

dx

cosx
= log(2 +

√
3)− 2 arctanh

(
tan

π

6

)
= 0.

Steve Moon
For the first inequality, make the substitution coshx = 1/(cos y), which is
easily checked to be ‘allowable’. When x = 0, y = arccos(1/(cosh 0)) = 0
and when x = α, we have

cosh log(1 +
√

2) =
1

2

(
1 +
√

2 +
1

1 +
√

2

)
=
√

2

and hence y = arccos(1/
√

2) = π/4.

Differentiating coshx = 1/(cos y) implicitly gives

sinhx =
sin y

cos2 y

dy

dx

and hence

dx =
sin y

cos2 y

dy

sinhx
=

sin y

cos2 y

dy√
cosh2 x− 1

=
sin y

cos y

dy√
1− cos y

=
dy

cos y
.
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Now substituting for coshr xdx in the original integral gives∫ α

0

coshr x dx =

∫ π/4

0

1

cosr y

dy

cos y
=

∫ π/4

0

dy

cosr+1 y
.

For the second equality, we use the substitution sinhx = tan y. But
x = 0⇒ sinhx = 0⇒ tan y = 0 and so y = 0. When x = β,

sinhx =
1

2

(
2 +
√

3 +
1

2 +
√

3

)
=
√

3.

So x = β ⇒ y = arctan
√

3 = π/3. Again, it is easily checked that the
substitition is valid.

Differentiating sinhx = tan y with respect to x gives coshx =
sec2 y dy/dx. Therefore

dx =
sec2 y

coshx
dy =

sec2 y√
1 + sinh2 x

dy =
sec2 y√

1 + tan2 y
dy = sec y dy

and ∫ β

0

sinhs x dx =

∫ π/3

0

(tans y)(sec y) dy =

∫ π/3

0

sins y

coss+1 y
dy.

Tony Forbes
The problem actually originated from an observation of my daughter Tam-

sin. Suppose you want to compute

∫ 1

0

(x2+1)t dx by substitution. You seem

to have have a choice. You can put x = sinh y, in which case the integral

becomes

∫ α

0

cosh2t+1 y dy, or you can put x = tan y to get

∫ π/4

0

sec2t+2 dy.

The second equality came from a similar integral,

∫ 2

1

(x2− 1)t dx. Here

there is a choice between x = cosh y and x = sec y to get

∫ β

0

sinh2t+1 y dy

and

∫ π/3

0

tan2t+1 y sec y dy respectively.
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Solution 243.8 – Pentadecagon
Devise a nice ruler-and-compasses construction for the regular
15-gon.

Tony Forbes
No (valid) examples were submitted but I have had a small amount of
feedback, which I shall attempt to answer.

Firstly, the regular pentadecagon is constructable with ruler and com-
passes. In Section VII of Disquisitiones Arithmeticae (or at least in the
English translation thereof by A. A. Clarke), Gauss proved that for prime

p, a regular p-gon is constructible if p = 22
k

+ 1 for some integer k; that
is, if p is a Fermat prime. Also he claimed to have a rigorous proof that a
construction is impossible for any n divisible by an odd non-Fermat prime
or by the square of any odd prime. Moreover, one has the fact (surely
known to Euclid) that if an a-gon and a b-gon are constructible, then so is
an lcm(a, b)-gon. In particular, 3, 5, 15 = lcm(3, 5) and 17 are possible but
7, 9, 11 and 13 are not.

Secondly, the only attempt I received used the edge of a regular 16-gon
inscribed in a circle of radius 16 to inscribe a regular 15-gon in a circle of
radius 15. Unfortunately this works only when 16 sin 11.25◦ = 15 sin 12◦.

Thirdly, I’m sorry, I don’t know what ‘nice’ means. After a bit of
doodling I came up with this construction. See if you can find a nicer one.

Draw a circle with centre O and
radius OA of length 1. The other
points are constructed in alphabetical
order with |CD| = |OC| = |OB| =
|AB| = 1/2, ∠AOC = 90◦, |AE| = 1
and |AF | = |AD|. The required edge
is EF .

Clearly |AC| =
√

5/2. So |AF | =
|AD| = (

√
5 − 1)/2 = 2 sinπ/10, and

therefore ∠AOF = 2π/10 = 36◦.
Obviously ∠AOE = 60◦. Hence
∠EOF = 24◦.

Dog: I heard you’d lost your voice.

Cat: No—I’ve just got a ν µ.
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Solution 242.1 – Interesting integrals
Show that ∫ ∞

−∞

cosx

x2 + 1
dx =

∫ ∞
−∞

x sinx

x2 + 1
dx =

π

e
,

two interesting integrals both of which evaluate to that possibly
rational number π/e.

Basil Thompson
The solution I found involves integrating from 0 to∞ and the more general
case: ∫ ∞

0

cos rx

x2 + a2
dx =

π

2a
e−ar, a > 0, r ≥ 0. (1)

The result is due to Laplace, published in 1811.

Let

I =

∫ ∞
0

cos rx

x2 + a2
dx

and introduce the variable z by replacing 1/(x2 + a2) thus:

1

x2 + a2
=

∫ ∞
0

2z e−(a
2+x2)z2 dz.

Then

I =

∫ ∞
0

∫ ∞
0

(cos rx) 2z e−(a
2+x2)z2 dx dz

=

∫ ∞
0

2z e−a
2z2
∫ ∞
0

e−x
2z2(cos rx) dx dz

=

∫ ∞
0

2z e−a
2z2
(√

π

2z
e−r

2/(4z2)

)
dz

=
√
π

∫ ∞
0

e−(a
2z2+r2/(4z2))dz =

√
π ·
√
π

2a
e−ar =

π

2a
e−ar,

thus proving (1). Putting a = r = 1 gives∫ ∞
0

cosx

x2 + 1
dx =

π

2e
; hence

∫ ∞
∞

cosx

x2 + 1
dx =

π

e

as (cosx)/(1 + x2) is symmetrical about the y axis.
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To find

∫ ∞
−∞

x sinx

x2 + 1
dx we go back to the general case. Differentiating

(1) under the integral sign and the right-hand side with respect to r,∫ ∞
0

−x sin rx

x2 + a2
dx = − π

2
e−ar.

Putting a = r = 1 then gives∫ ∞
0

x sinx

x2 + 1
dx =

π

2e
; hence

∫ ∞
−∞

x sinx

x2 + 1
dx =

π

e

since, as before, the integrand is symmetric about the y axis.

Tommy Moorhouse
One approach to this problem is to integrate over a suitable contour in the
complex plane and deduce the value of the real integral. In this case we
integrate ∫

C

eitzdz

1 + z2
.

The contour C runs along the real axis from −R to R, where R > 1, then
back to −R along the semicircle of radius R in the upper half plane. The
integral is 2πi times the residue at z = i which, by the cover-up rule, is
πe−t. Taking t = 1 gives πe−1. To get∫ ∞

−∞

x(sinx)dx

1 + x2

we can differentiate the expression above with respect to t. The details (and
questions about interchanging the order of differentiation and integration)
are left to the reader.

The next stage is to estimate the integral over the semicircular arc. On
the arc take z = Reiθ so that |eiztdz| = Re−Rt sin θ < R for suitably large R.
Hence the integral over the semicircle of radius R tends to zero as R→∞.

Problem 247.2 – Integral
For n > 1, show that ∫ ∞

0

dx

xn + 1
=

π

n (sinπ/n)
.
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Solution 244.4 – Another product

Show that
∞∏
k=1

k2

k2 + 1
= Γ(1− i)Γ(1 + i) = |i!|2 =

π

sinhπ
.

Tommy Moorhouse
The infinite product can be expressed as

P∞ =

∞∏
k=1

k

k + i
.
k

k − i

and in this form we see that it can be written (see for example Whittaker
and Watson, Modern Analysis, section 12.13)

P∞ = Γ(i)Γ(−i) =
−π

i sin iπ
=

π

sinhπ
.

So far this is just an exercise in looking up function definitions and proper-
ties, but we can find another expression that can be extended to the finite
sum. Consider the product written as

∞∏
k=1

1

1 + 1/k2
.

Taking logarithms we find

logP∞ = −
∞∑
k=1

log

(
1 +

1

k2

)
.

Expanding the logarithms in the sum using

log(1 + x) = x− x2

2
+
x3

3
+ · · ·+ (−1)n+1x

n

n
+ · · ·

we find

logP∞ =

∞∑
k=1

(
− 1

k2
+

1

2k4
− 1

3k6
+ · · ·+ (−1)n

nk2n
+ · · ·

)
.

The sum (not considering issues of convergence) can be expressed as a sum
of zeta functions, and we have

P∞ = exp

( ∞∑
n=1

(−1)nζ(2n)

n

)
.
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This hints at how we might explore the sums Pm formed by taking the
range of k from 1 to m. These sums are twice those denoted g(n) in M500
244. Now

m∑
k=1

k−s = ζ(s)− ζ(s,m+ 1),

where

ζ(s,N) =

∞∑
k=0

(N + k)−s

is the Hurwitz zeta function (note the limits in the sum). We can now write

Pm = exp

( ∞∑
n=1

(−1)n(ζ(2n)− ζ(2n,m+ 1))

n

)
.

The series converges very slowly but it gives the correct values (although
the rational expressions cannot be readily obtained this way).

We have also shown in a roundabout way that

∞∑
n=1

(−1)nζ(2n)

n
= log

( π

sinhπ

)
.

Solution 241.7 – Multiplicative function
Let f be an increasing, multiplicative function that maps posi-
tive integers to positive integers. Suppose also f(2) = 2. Show
that f must be the identity function.

David Marchant
Since f is multiplicative, f(1) = 1, and we are given f(2) = 2. Assume that
f is not the identity function, so let n be the first integer such that f(n) 6= n.
Since f(n − 1) = n − 1, we must have f(n) > n. As f is multiplicative,
n must be prime, and since f(2) = 2, n must also be odd. Now consider
f(n+ 1); n+ 1 must be even, and hence composite, and so by multiplicity
f(n+ 1) = n+ 1. But now we have f(n) > n and f(n) < f(n+ 1) = n+ 1,
which is a contradiction, hence f must be the identity function.

That’s six sentences. We previously printed proofs by David Wild (11 sen-
tences, M500 246) and myself (14 sentences, M500 243). — TF
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Solution 242.5 – Coffee cup
A coffee cup in the form of a truncated cone closed at its thin end
is made from plastic sheeting. There are two parts. A section
of an annulus of radii r and R, R > r, subtending an angle of
θ, and a disc of radius rθ/(2π). Assuming that the total surface
area is 1 unit, choose the parameters to maximize the volume of
the cup.

-

Steve Moon
With the parameters as in the statement of the problem, the volume of the
cup is the volume of a cone of radius b = Rθ/(2π) and height H =

√
R2 − b2

minus the volume of a cone of radius a = rθ/(2π) and height h =
√
r2 − a2.

Thus

V =
π

3
b2H − π

3
a2h =

θ2(R3 − r3)

12π

√
1− θ2

4π2
. (1)

And for the surface area we have

A = π(R2 − r2)
θ

2π
+ πa2 =

R2θ

2
+
r2θ2

4π
− r2θ

2
= 1. (2)

We need to maximize V given by (1) subject to the constraint on A given
by (2). The method is Lagrange’s undetermined multipliers (λ).

Differentiate (1) and (2) with respect to r, R and θ and combine using
λ. Differentiating with respect to R:

θ2R2

4π

√
1− θ2

4π2
− λRθ = 0

and hence
θR

4π

√
1− θ2

4π2
= λ. (3)
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Differentiating with respect to r:

θr

4π

√
1− θ2

4π2
+ λ

(
θ

2π
− 1

)
= 0. (4)

Differentiating with respect to θ:

R3 − r3

12π
·

2θ

(
1− θ2

4π2

)
− θ3

4π2√
1− θ2

4π2

− λ
(
R2

2
− r2

2
+
r2θ

2π

)
= 0. (5)

Eliminating λ between (3) and (4),

θr

4π

√
1− θ2

4π2
+
θR

4π

√
1− θ2

4π2

(
θ

2π
− 1

)
r = 0,

and simplifying gives

r +R

(
θ

2π
− 1

)
= 0, or

r

R
= 1− θ

2π
, or R− r =

Rθ

2π
. (6)

Now eliminate λ between (3) and (5) to obtain

R3 − r3

12π

(
2θ − θ3

2π2
− θ3

4π2

)
− θR

4π

(
1− θ2

4π2

)(
R2 − r2

2
+
r2θ

2π

)
= 0,

and after a bit of work during which we make use of Rθ/(2π) = R− r from
(6) this simplifies to

2
( r
R

)2
+

(
3θ2

4π2
− 1

)
r

R
+

3θ2

4π2
− 1 = 0.

Solve the quadratic and take the positive root to get

r

R
=

1

4

(
1− 3θ2

4π2

)1 +

√
36π2 − 3θ2

4π2 − 3θ2


and recall from (6) that r/R = 1− θ/(2π). Therefore

1− θ

2π
=

1

4

(
1− 3θ2

4π2

)1 +

√
36π2 − 3θ2

4π2 − 3θ2

 .
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Put k = θ/π and simplify to get

12− 8k + 3k2 =
√

(36− 3k2)(4− 3k2).

Therefore
(12− 8k + 3k2)2 = (36− 3k2)(4− 3k2),

and luckily this apparent quartic in k actually reduces to a quadratic:

3k2 − 16k + 12 = 0

with solution k =
(
8 ± 2

√
7
)
/3. But θ < 2π ⇒ k < 2; so we take the

negative root. Hence

θ =
2π

3

(
4−
√

7
)
.

So now we have from (6)

r

R
=

√
7− 1

3
.

Using the constraint equation (2) in the form

R2θ

2

(
1 +

r2

R2
· θ

2π
− r2

R2

)
= 1,

and substituting for r/R and θ we have

R2

2
·
(
8− 2

√
7
)
π

3

1 +

(√
7− 1

3

)2(
8− 2

√
7

6

)
−

(√
7− 1

3

)2
 = 1.

Multiplying by 81/π and cancelling the 2 on the left-hand side gives

R2
(
4−
√

7
) (

27 +
(√

7− 1
)2(

4−
√

7
)
− 3
(√

7− 1
)2)

=
81

π
,

and after simplification,

R2
(
4−
√

7
)(

49− 10
√

7
)

=
81

π
.

Therefore

R2 =
81(

4−
√

7
)(

49− 10
√

7
)
π

=
81(

266− 89
√

7
)
π

=
266 + 89

√
7

189π
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and

R =
1

3

√
266 + 89

√
7

21π
.

So for surface area A = 1, the volume of the coffee cup is maximized for

θ =
2π

3
(4−

√
7) ≈ 2.8363 ≈ 162.51◦,

R =
1

3

√
266 + 89

√
7

21π
≈ 0.91900,

r =

√
7− 1

9

√
266 + 89

√
7

21π
≈ 0.50415,

giving r/R ≈ 0.54858. As a check, you can plug the expressions for θ, R and
r into equation (2) to confirm that they yield A = 1 exactly. The values
for θ and r/R which I measured from the diagram lead me to conclude
that they are in the right area. It’s harder to check r and R individually
without determining the scaling for A. Finally we have this expression for
the maximum volume:

Vmax =
4−
√

7

81

√
60 + 42

√
7

π
≈ 0.12339.

Tony Forbes
I might as well use the rest of this page for a brief explanation of the method
in case you haven’t seen it before. The problem is to maximize V (θ, r, R)
subject to the constraint A(θ, r, R) = 1. We introduce a new variable λ, the
Lagrangian multiplier, and consider the Lagrangian function

Λ(θ, r, R) = V (θ, r, R)− λ (A(θ, r, R)− 1).

The theory says that if V (θ, r, R) is a maximum subject to A(θ, r, R) = 1,
then there exists a λ such that (θ, r, R) is a stationary point of Λ(θ, r, R).
We find the stationary points in the usual way by setting

∂Λ

∂θ
=

∂Λ

∂r
=

∂Λ

∂R
= 0

being careful to select the one that is relevant to the problem.

Observe, by the way, that the length of the cup’s side is the same as the
radius of the open end.
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Two times five equals ten revisited
Tony Forbes
Let n and x be positive integers and let k = n− x2. Define positive integer
sequences Xi and Ni by

X1 = x,

X2 = x+ 1,

Ni = X2
i + k, i = 1, 2, . . . ,

Xj+1 = Nj −Xj + 1, j = 2, 3, . . . .

As explained in Bryan Orman’s article [1], the numbers Ni have the remark-
able property that not only does each one satisfy Ni = X2

i + k but for any
positive integer r the product N1N2 . . . Nr has the same form: square + k.

Take for instance n = 2 and x = 1. Then k = 1 and after computing
the first few elements of the sequence Ni,

2, 5, 17, 197, 33857, 1133938277, 1285739650972396817, . . . ,

we see (as in [1]) that 2 × 5 = 10 = 32 + 1, 2 × 5 × 17 = 170 = 132 + 1,
2× 5× 17× 197 = 33490 = 1832 + 1, . . . . If we put x = 2 (with n still equal
to 2), then k = −2 and we obtain the other sequence in [1],

2, 7, 23, 359, 116279, 13441851719, 180680260806215679959, . . . ,

with a similar property: 2 × 7 = 14 = 42 − 2, 2 × 7 × 23 = 322 = 182 − 2,
etc. Furthermore, the first five numbers in each sequence are prime but not
the sixth. Bryan’s challenge to readers (at least to this particular reader)
implicit in the concluding remarks of [1] was to find n and x such that the
sequence Ni generated by these parameters begins with at least six primes.

Let us fix n = 2 from now on (otherwise at least one of N1 and N2 will
be non-prime). We can now regard the Ni as functions of just the variable
x, and it makes sense to write them as Ni(x). Clearly N1(x) = 2 and from
the defining recursion we obtain these polynomials:

N2(x) = 2x+ 3,

N3(x) = 6x+ 11,

N4(x) = 24x2 + 90x+ 83,

N5(x) = 576x4 + 4080x3 + 10824x2 + 12750x+ 5627,

but thereafter they get horribly complicated with the degree doubling at
each further step.
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Our task is to find a positive integer x which makes Ni(x) prime for
i = 1, 2, . . . , r, say. As we have seen, we obtain five primes with x = 1 or
x = 2. To get six primes we can write a fairly crude program that checks
the polynomials Ni(1), Ni(2), . . . , i = 2, 3, . . . , 6. Unless my computer has
made a mistake the first occurrence is at x = 16850, k = −2839 22498, and
you can verify that the first six numbers in the sequence Ni(16850), namely
2, 33703, 101111, 68156 56583, 46452 02611 70219 83127 and 21577 90729
74329 81321 20726 73807 93111 82311, are prime. For seven primes, we
have to go a little further, to x = 4 67453 (k = −21 85123 07207).

The crude program doesn’t work very well for eight primes. So instead
we go for a more sophisticated approach. We make a long list, L, of values of
x to test. We notice that N2(3t) is divisible by 3; so we remove all multiples
of 3 from L. Similarly, N2(5t+ 1) and N3(5t+ 4) are divisible by 5; so we
remove numbers congruent to 1 or 4 (mod 5) from L. In general, for each
prime q up to some limit, qmax, we determine those residue classes r (mod q)
such that N2(r)N3(r) . . . N8(r) ≡ 0 (mod q) and remove them from L. We
are sieving L by the primes q = 3, 5, . . . , qmax. The survivors from the sieve
are checked using a standard test: if 2N ≡ 2 (mod N), then N is probably
prime. The test is not watertight—for example, composite Mersenne and
Fermat numbers are probably prime—but it is good enough for our purpose
so long as it is backed up by some rigorous primality proof.

The amazing thing is that we succeed; x = 2891 01265 (giving k =
−83 57954 14246 00223) produces 8 primes. But when x = 724 03653 63628
(k = −5 24228 90598 82402 06653 22382) we get nine primes. Obviously you
want to see them written out in full, so I have put the primes on the cover
of this magazine. Proving the primality of N9(x) was not a trivial exercise.

[1] Bryan Orman, Two times five equals ten, M500 246, 10–13.

Problem 247.3 – Balls
Cannon balls are stacked in the usual square pyramid structure, which is
stable so long as there is some device to prevent the bottom layer from
dispersing. What is remarkable about this arrangement is that the number
of balls in each layer is a square. What is even more remarkable is that when
there are 24 layers the total number of balls is also a square. Furthermore,
the total can sometimes be a square even if the pyramid is truncated. This
suggests a problem. When is it possible to stack a square number of cannon
balls to make a truncated square pyramid?
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Letters

Biscuits
This problem [Problem 240.1 – two tins of biscuits. There are two tins,
each containing n > 0 biscuits. Take a biscuit from a tin chosen at random.
Keep doing this until one tin is empty. What is the expected number of
biscuits that remain in the other tin?] is a variant of one that is quite well
known under the name ‘Banach’s matchbox problem’ — there is an article
in Wikipedia. Banach’s problem is to find the probability that there are
exactly r biscuits in the other tin (or rather matches in the other box).

Ken Greatrix’s solution does not take account of the tins being chosen
at random, which would mean that his solution could be simplified slightly
by taking p = q = 0.5.

In my favourite book, An Introduction to Probability Theory and Its
Applications, William Feller gives a numerical example. He also generalizes
the problem to p 6= q and applies this to the game of table tennis. Feller
also pours cold water on the assumption that Banach was responsible for
the problem. He says that Banach inspired the problem only to the extent
that he smoked and kept a box of matches in his right pocket and another
in his left pocket.

Roger Dennis

How strange that Ken Greatrix [M500 245] should suppose that one would
use a Poisson process to calculate the number of biscuits remaining in the
tin. Anyone can see that that would only work for tins of sardines.

Of course numbers of biscuits do not have to be integers, on account
of crumbs. And I am sure that some kinds, such as Bourbons, can exist in
irrational quantities because of the squidgy nature of the filling.

Ralph Hancock

Problem 247.4 – Modular equation
Suppose 0 < q < 1 and let

u =
(1 + q)(1 + q3)(1 + q5) . . .

24
√

64q
, v =

(1 + q5)(1 + q15)(1 + q25) . . .
24
√

64q5
.

Show that (u
v

)3
+
( v
u

)3
= 2

(
u2v2 − 1

u2v2

)
.
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Problem 247.5 – Sums of powers
Tony Forbes
One of the exciting things you can do in elementary arithmetic is discover
a pair of nth powers of non-integer rationals that add up to an integer.

For instance if you were to add
(
1 8
17

)4
and

(
8 12
17

)4
, you not unexpectedly

get a fraction with a large denominator, 480175841/83521. But change the

second term slightly and the surprising result is
(
1 8
17

)4
+
(
8 13
17

)4
= 5906, an

integer. Even more surprising is the pair
(
15288 3

5

)14
and

(
3224 4

5

)14
found

by Seiji Tomita in 2009. However, after a bit of experimentation one realizes
that there is a simple method for generating infinitely many examples. A
problem is suggested.

Let a and b be integers greater than 1. Determine those integers n ≥ b
for which (

ab +
1

a

)n
+

(
ab − 1 +

a− 1

a

)n
∈ Z.

M500 Winter Weekend 2013
Join with fellow mathematicians for a weekend of fun. If you want a fantastic
weekend and are interested in things mathematical, then this is for you,
accessible to anyone who has studied mathematics—even if you are just
starting. The thirty-second M500 Society Winter Weekend will be
held at

Florence Boot Hall, Nottingham University

Friday 4th – Sunday 6th January 2013.

The theme is to be decided. Cost: £195 to M500 members, £200 to non-
members. You can obtain a booking form from the M500 site.

http://www.m500.org.uk/winter/booking.pdf

If you have no access to the internet, send a stamped addressed envelope to

Diana Maxwell

Please note that the address has changed from last year.

We will have the usual extras. On Friday we will be running a pub quiz
with Valuable Prizes, and for the ceilidh on Saturday night we urge you to
bring your favourite musical instrument (and your voice). Hope to see you
there.
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