
* ISSN 1350-8539

M500 248



The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends of the
Open University. By publishing M500 and by organizing residential weekends, the
Society aims to promote a better understanding of mathematics, its applications
and its teaching. Web address: www.m500.org.uk.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

The September Weekend is a residential Friday to Sunday event held each
September for revision and exam preparation. Details available from March on-
wards. Send s.a.e. to Jeremy Humphries, below.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. For details, send a stamped, addressed envelope to
Diana Maxwell, below.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to Tony Forbes, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation.



M500 248 Page 1

Integer partitions via differential equations
Tommy Moorhouse
Introduction As discussed in previous articles, the product of two integer-
valued functions f and g, on the set {1, 2, 3, . . . }, given by

f ∗ g(n) =
∑
jk=n

f(j)g(k)

is commutative, associative and distributive over addition, very much like
ordinary multiplication. We would like to deal with derivatives acting on
such functions satisfying Leibniz’s rule:

∇(f ∗ g) = (∇f) ∗ g + f ∗ (∇g) .

The key motivation for this is that we can then deduce the solutions to
differential equations by analogy. We find that the derivative given by

∇f(n) = L(n)f(n), i.e. ∇f = L · f,

where L (intended to bring to mind the word ‘log’) has the properties L(n) >
0 for n > 1 and L(mn) = L(m) +L(n), is linear and satisfies Leibniz’s rule.
There are many integer-valued functions L satisfying this condition (see for
example Section 5 of my article in M500 218), and here f · g is the function
given by f · g(n) = f(n)g(n).

‘Differential equations’ can be defined in this context. The simplest
such equation, introduced in M500 236 and included here for convenience,
is ∇f = z where z(n) = 0 for all n (in other words ∇f(n) = 0 for all n).
Since L(1) = 0 and L(n) > 0 for n > 1, we must have f(n) = 0 for n > 0
with f(1) undetermined. Then f is just a multiple of I, the identity function
I(1) = 1, I(n) = 0, n > 1. This is analogous to the constant functions in
ordinary calculus having vanishing derivatives. Readers who investigated
the functions E[n] defined by ∇E[n] = nE[n] and intended to be analogous
to enx, will have found that the desirable requirement E[n]∗E[m] = E[m+n]
is difficult to enforce consistently (contrary to my assertion in M500 236).
The reasons for this, and the ways around it, would take us too far afield,
but we will continue to look to analogies for useful results.

The main equation In standard calculus the equation

df

dx
= a(x)f(x)
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may be solved to give

f(x) = A exp

(∫
a(x)dx

)
.

This can be deduced using only linearity and Leibniz’s rule. Thus in com-
plete analogy we can write down a solution to the equation

∇f = a ∗ f,

namely
f = A exp ∗ã

if we can find a function ã such that ∇ã = a. The function ã is in some
sense the analogue of the integral of a(x). Here exp ∗ is the formal sum

exp ∗ã = I + ã+
1

2!
ã ∗ ã+ · · ·+ 1

k!
ã ∗ ã ∗ · · · ∗ ã+ · · · .

It is a simple check (using Leibniz’s rule) to find that this is indeed a solu-
tion.

One key equation we want to examine is actually an identity (as we
will see shortly): L = u ∗ K where L is our log function, K is a related
function and u(n) = 1 for all n > 0. To make progress we need to be more
specific about L. Given any integer expressed as a product of primes, say
n = pk11 p

k2
2 · · · pkrr , and an integer-valued function L, let K(pn) = L(p) if p is

prime and n ≥ 1, K(n) = 0 otherwise. Let L(n) = u∗K(n) =
∑
d|nK(d) =∑r

i=1 kiL(pi). This defines the integer logarithm L which in turn defines our
derivative operator ∇.

Now we observe that, since u(n) = 1 for all n, L = L · u = ∇u. The
identity L = L therefore becomes the differential equation ∇u = K ∗u, with
the solution u = exp ∗K̃, but what is K̃? Considering the definition of the
derivative it is easy to see that

K̃ =
K

L
where

K

L
(n) =

K(n)

L(n)

for n > 1 and K̃(1) = 0. Thus

u = exp ∗K
L

= I +
K

L
+

1

2!

K

L
∗ K
L

+ · · · .

There are a few things to note about this result, which the reader might like
to explore further. First, it is independent of the choice of L used to define
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K and L. It is not hard to arrive at the interesting result (see T. Apostol,
Introduction to Analytic Number Theory, p. 239)

ζ(s) =

∞∑
n=1

1

Ns
· exp ∗K

L
(n) =

∞∑
n=1

exp ∗ K

Ns · L
(n)

where ζ is Riemann’s zeta function. Second, the expression for exp ∗K/L(n)
has a finite number of terms for any n. Finally, the expression on the right
is typically extremely complicated when written out in full for any given n,
while the left hand (that is, u(n)) is of course extremely simple.

The payoff Given our previous remark one could reasonably ask what
has been gained? To explain this we need one more result, a transform
from functions on the positive (i.e. non-zero) integers to functions on the
non-negative integers (including zero). Given L as above it may be that,
given m, L(ni) = m for a set of integers ni. We call this set L−1(m). We
define the transform

f → Ef : Ef (m) =
∑

n∈L−1(m)

f(n).

This transform has some very useful properties, which the reader may wish
to check (or see my article in M500 220);

Ef∗g = Ef ◦ Eg,
E∇f = N · Ef ≡ ∇̂Ef

where N(n) = n for all n ≥ 0 and F ◦G(n) =
∑
k+l=n F (k)G(l).

Note that whichever L we use to define the derivative matched with
the ∗ product, we always get the derivative ∇̂F ≡ N · F matched with
the transformed ◦-product. It is simple to check that this derivative and
product combination satisfies Leibniz’s rule.

Now under this transform we find that Eu is the partition function
associated with L. For example, if the prime numbers are ordered 2 = p1,
3 = p2 and so on we can define L(pi) = i. In this case Eu is the unrestricted
partition function and Eu(n) is the number of ways of writing n as a sum of
integers. If instead L(p) = p then Eu(n) is the number of prime partitions
of n.

The transformed differential equation is ∇̂Eu = c◦Eu where c(n) is the
sum of all the divisors of n of the form L(p) counted once. Thus if L(p) = p
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then c(n) is the sum of the prime divisors of n. The solution (introducing
the notation exp ◦ and the function δ(0) = 1, δ(n) = 0 for n > 0) is

Eu = exp ◦ c
N

= δ +
c

N
+

1

2!

c

N
◦ c

N
+ · · · .

Concluding comments If we define Z(s) =
∑∞
n=1 e

−sL(n), we find that
we can also write Z(s) =

∑∞
m=0Eu(m)e−sm. That is, Z(s) is a generating

function for the partition function associated with L. Substituting the result
Eu = exp ◦ cN and summing we find that

Z(s) = exp

(
−
∑
p

log
(

1− e−sL(p)
))

and that

−
∑
p

log
(

1− e−sL(p)
)

=

∞∑
n=1

c

N
(n)e−sn.

This gives a common framework for exploring a wide range of partition
types, and in particular the asymptotic expansions of Eu.

Problem 248.1 – Two theorems
What’s wrong with the following?

Theorem 1 lim
x→0

sinx

x
= 1.

Proof Since sin 0 = 0 we use l’Hôpital’s rule:

lim
x→0

sinx

x
= lim

x→0

d
dx (sinx)
d
dx (x)

= lim
x→0

cosx

1
= 1.

Theorem 2
d(sinx)

dx
= cosx.

Proof Using the definition of the derivative we have

d(sinx)

dx
= lim

h→0

sin(x+ h)− sinx

h

= lim
h→0

(sinx)(cosh) + (cosx)(sinh)− sinx

h

= lim
h→0

(cosx)(sinh)

h
= (cosx) lim

h→0

sinh

h
= cosx.



M500 248 Page 5

Polynacci sequences
Ron Potkin
The Fibonacci sequence begins with the numbers 0 and 1, and subsequent
numbers are the sum of the preceding two. The first few numbers are 0, 1, 1,
2, 3, 5, 8, 13, 21, . . . . We usually express the sequence as Sn = Sn−1+Sn−2.

But we can elaborate on this by introducing the variables a and b and
expressing it as Sn = aSn−1 + bSn−2. So if a = 1 and b = 1 we obtain the
Fibonacci sequence and by changing the values of a and b we can generate
an infinite number of Fibonacci-like (polynacci) sequences. For example, if
a = 1 and b = 2 then Sn = Sn−1 + 2Sn−2 and we obtain the sequence 0, 1,
1, 3, 5, 11, 21, . . . .

We are not limited to adding two numbers together: we can go further
and beginning with 0, 0, 1, add the last three numbers together or using 0,
0, 0, 1 add the last four and so on. This is referred to as the order of the
sequence.

The expressions are related to polynomials. Thus Sn = aSn−1 + bSn−2
is equivalent to a + bx = x2 and Sn divided by Sn−1 approaches one of
its roots (provided of course that they are not complex!). There was an
explanation of this in my article (M500 200) entitled ‘Fibonacci and all
that.’

Reciprocal of 89

It is well known that the reciprocal of 89 is the sum of the Fibonacci sequence
where each number is moved one decimal point to the right. I examined
this . . .

0 0.0
1 0.01
1 0.001
2 0.0002
3 0.00003
5 0.000005
8 0.0000008

13 0.00000013
subtotal 0.01123593

. . . and sure enough even with just a few terms we find that the reciprocal
of 0.01123593 is closing in on 89.
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Order of 2

This raises the obvious question: does the same apply to any polynacci
sequence? We can immediately see that if a = 1 and b = 0 then we obtain
0.011111, which is the reciprocal of 90. And if a = b = 0 we obtain 0.01,
the reciprocal of 100.

Let’s set a = 4 and b = 7, so that Sn = 4Sn−1 + 7Sn−2.

0 0.0
1 0.01
4 0.004

23 0.0023
120 0.00120
641 0.000641

3404 0.0003404
18103 0.00018103

subtotal 0.01866243

The subtotal is approaching the recurring decimal 0.0188679245283 the re-
ciprocal of 53 showing that the reciprocal of 89 is not unique; in fact, it
would have been surprising if it had been.

Table A below shows some of the 100 integers that occur for a = 0 to 9
and b = 0 to 9. Every integer from 100 to 1 appears and is represented by
100− 10a− b.

Table A
b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9

a = 0 100 99 98 97 96 95 94 93 92 91
a = 1 90 89 88 87 86 85 84 83 82 81
etc.
a = 8 20 19 18 17 16 15 14 13 12 11
a = 9 10 9 8 7 6 5 4 3 2 1

Order of 3

What happens if we introduce a third variable, c? Remember that this time
we start the sequence with 0, 0, 1 so we can see that the decimal will be
approximately one-tenth and its reciprocal will be ten times higher than
the integers in Table A. So lets look at a sequence where a = 1, b = 2 and
c = 3. This time the expression is Sn = Sn−1 + 2Sn−2 + 3Sn−3.

0 0.0
0 0.00
1 0.001
1 0.0001
3 0.00003

8 0.000008
17 0.0000017
42 0.00000042

100 0.000000100
subtotal 0.001140220

This is approaching 0.001140250855. . . , the reciprocal of 877.
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This next table shows a further 100 integers; all slightly less than ten
times Table A, as expected. The integer is given by 1000− 100a− 10b− c.
This format is true if more variables are included.

Table B variable c = 3
b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9

a = 0 997 987 977 967 957 947 937 927 917 907
a = 1 897 887 877 867 857 847 837 827 817 807
etc.
a = 8 197 187 177 167 157 147 137 127 117 107
a = 9 97 87 77 67 57 47 37 27 17 7

So, let’s suppose that we need the reciprocal of, say, 2447. (You’d have
to be pretty desperate to use this method!) The number lies between 103

and 104 so it will be derived from a 4th order sequence. Deducting 2447
from 10000 gives us its complement 7553 and we have the expression Sn =
7Sn−1 + 5Sn−2 + 5Sn−3 + 3Sn−4.

Notice that the numbers go in pairs. So, for example, Sn = 2Sn−1 +
4Sn−2 + 4Sn−3 + 7Sn−4 will result in the reciprocal of 7553. Every number
has its complement: 11 and 89, 47 and 53, 123 and 877, and so on, but
examine the reciprocal of 9911. The complement should be 89 but we must
express it as 0089 so that Sn = 0Sn−1 + 0Sn−2 + 8Sn−3 + 9Sn−4.

So far I have only shown examples with integers, but we must not forget
that the sequences apply to all rational numbers. For example, if a = 1 and
b = 1.5 we will obtain 88.5.

Finally, why do some sequences close in on their target much faster that
others? There is a proof of 1/89 and a more general proof at the web site
www.mathpages.com/home/kmath108.htm entitled ‘Fibonacci, 1/89 and all
that’ but, somehow, in view of its simplicity, I feel that there must be a
more elementary explanation.

Problem 248.2 – Necklaces
A necklace is a piece of string on to which red and green gemstones indis-
tinguishable except for colour are threaded, together with a mechanism for
temporarily bringing the ends together to form a closed loop. Let N(n, r)
denote the number of necklaces made from n gemstones of which r are red
and n − r are green. What is N(n, r)? Assume the usual symmetries, so
that for example N(5, 3) = 6, the same as the number of isomers of TNT.
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Solution 243.3 – Odd sequence
Alexander Sharkovsky defined an ordering on the positive inte-
gers by virtue of the fact that each may be uniquely specified in
the form 2rp where r is a non-negative integer and p is a posi-
tive odd number. Sharkovsky’s famous theorem on limit cycles
in iterated functions is based on this ordering, which is usually
specified informally thus:

3, 5, 7, . . . , 2·3, 2·5, 2·7, . . . , 22·3, 22·5, 22·7, . . . , . . . , 23, 22, 21, 20.

Give a precise definition of this ordering.

Reinhardt Messerschmidt
Let < denote the standard order on the positive integers, and let ≺ denote
Sharkovsky’s order. A precise definition of ≺ is: 2r1p1 ≺ 2r2p2 if and only
if one of the following is true:

(i) r1 < r2 and p1 > 1 and p2 > 1;

(ii) r1 = r2 and 1 < p1 < p2;

(iii) r1 > r2 and p1 = p2 = 1.

The order ≺ is not a well-ordering; i.e. there is at least one nonempty
set of positive integers that does not have a least element, for example
{2rp | p = 1}. Neither does it have the least upper bound property, i.e.
there is at least one nonempty set of positive integers that has an upper
bound but does not have a least upper bound. For example, the set of all
upper bounds of {2rp | p > 1} is {2rp | p = 1}, which does not have a least
element.

Solution 242.2 – Quintic
Show that the real root of the cubic x3 − x− 1 is also a root of
the quintic x5 − x4 − 1.

Tommy Moorhouse
Suppose α is a solution of x3−x− 1 = 0. Then α3 = 1 +α. Now substitute
α into x5 − x4 − 1 = 0. We find

α5 − α4 − 1 = α3(α2 − α)− 1 = α(1 + α)(α− 1)− 1 = α3 − α− 1 = 0.
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Further observations on 242.2 Quintic
Tommy Moorhouse
I was curious about how one arrived at the expression for the real solution
of the cubic x3 − x − 1 = 0 in Problem 242.2 and realized that this is an
interesting example of trading a cubic equation (which we might not be able
to solve easily) for two quadratic equations which, with luck, we can deal
with. The method below can be adapted for other cubic equations.

Suppose α is a solution of x3−x−1 = 0. Write α = γ+ ζ, where γ and
ζ are positive real numbers, and substitute into x3 − x− 1 = 0. Expanding
we have

γ3 + 3γ2ζ + 3γζ2 + ζ3 − γ − ζ − 1 = 0.

If we can choose γ3 + ζ3 = 1 we can reduce the equation to a quadratic,
in γ, say. A little trial confirms that we can satisfy this condition, and we
have

3ζγ2 + (3ζ2 − 1)γ − ζ = 0.

The solutions, using the quadratic formula, are γ = 1/3ζ and γ = −ζ. We
reject the latter and substitute into γ3 + ζ3 = 1 to find

1

27ζ3
+ ζ3 = 1.

This gives us a quadratic in ζ3 which we solve by the usual formula to get
(noting that ζ and γ can be interchanged without changing the conclusion)

ζ3 =
1

2
+

1

18

√
69

and

γ3 =
1

2
− 1

18

√
69.

The complex roots can be expressed in terms of α. Let w = α+ ε be a
complex solution of x3−x−1 = 0. The conjugate of w is the other solution.
Substitute into x3 − x− 1 = 0 to find

α3 + 3α2ε+ 3αε2 + ε3 − α− ε− 1 = 0.

We can eliminate α using the original equation, and a factor of ε can be
extracted from the remainder (because α is a solution of the cubic), giving

ε2 + 3αε+ (3α2 − 1) = 0.

Solving for ε and substituting back into w gives the two complex solutions
in terms of the real solution.
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Solution 244.2 – A quick number wonder
Show that √

1× 2× 3× 4 + 1 = 2× 3− 1,√
2× 3× 4× 5 + 1 = 3× 4− 1,√
3× 4× 5× 6 + 1 = 4× 5− 1, . . . .

Stewart Robertson
The pattern will continue to hold. We can prove this by showing that√

n(n+ 1)(n+ 2)(n+ 3) + 1 = (n+ 1)(n+ 2)− 1 for all n ∈ N.

We can do this directly with a little manipulation as follows:(
(n+ 1)(n+ 2)− 1

)2
=

(
(n+ 1)(n+ 2)

)2 − 2(n+ 1)(n+ 2) + 1

= (n+ 1)(n+ 2)
(
(n+ 1)(n+ 2)− 2

)
+ 1

= (n+ 1)(n+ 2)(n2 + 3n) + 1

= n(n+ 1)(n+ 2)(n+ 3) + 1.

Mike Lewis
Is this the extent of the answer? Nothing in the solution suggests that n
must be a non-negative integer. For example let n = 1/2:√

1

2
· 3

2
· 5

2
· 7

2
+

2

2
=

3

2
· 5

2
− 2

2

and get rid of the denominators:
√

1 · 3 · 5 · 7 + 16 = 3 · 5− 4. By inspection
a more general set of sequences can be produced for fractions:√( n

m
− 1
) n

m

( n
m

+ 1
)( n

m
+ 2
)

+ 1 =
n

m

( n
m

+ 1
)
− 1.

And a general set of sequences for integers that follows from the above is√
(n−m)n(n+m)(n+ 2m) + 1 = n(n+m)− 1.

Can the last sequence be used for irrationals? The answer must be yes since
nothing in the manipulation requires either n or m to be integers or rational
fractions.
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A popular problem! We also had contributions similar to that of Stew-
art Robertson from Reinhardt Messerschmidt, Patrick Walker, Basil
Thompson, Edward Stansfield, and finally Ken Greatrix, who has a
little more to say . . . .

Ken Greatrix
What about negative numbers? Let’s see what happens when we plot

f(x) =
√
x(x+ 1)(x+ 2)(x+ 3) + 1−

(
(x+ 1)(x+ 2)− 1

)
.

−5 −4 −3 −2 −1 0 1 2

0.5

1.0

1.5

2.0

2.5

What’s going on? The problem is that the quadratic (x + 1)(x + 2) − 1 is
negative in the interval (α, β), where α and β are its roots:

α =
−3−

√
5

2
≈ − 2.61803, β =

−3 +
√

5

2
≈ − 0.381966.

So to get an equality between the two main terms of f(x) we should take
the negative square root. Thus

−
√
x(x+ 1)(x+ 2)(x+ 3) + 1 = (x+ 1)(x+ 2)− 1, x ∈ (α, β).

Outside (α, β) we have f(x) = 0, as expected.

Problem 248.3 – Integer triangles
Tony Forbes
A triangle has integer area and consecutive integer sides. Apart from
(3, 4, 5), is it the case that exactly one height must also be an integer?

Even Hypotenuse would have trouble working out these angles.
Sid Waddell (1940–2012), darts commentator
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Solution 245.2 – Intersecting cylinders
Determine the the volume of the intersection of the cylinders
x2 + y2 ≤ 1 and x2 + z2 ≤ 1.

Richard Gould
I was not around M500 at the time of Problem 192 (the 3-cylinder problem)
but it was one that my son brought home from boarding school one Easter,
claiming that his physics teacher was fascinated by it and was saving it for
his approaching retirement. I hadn’t thought about the 2-cylinder problem
until now but my approach is similar and avoids multiple integrals.
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Figure 1 Figure 2

In Figure 1 the volume of interest is made up of eight copies of the shaded
region v8. This, together with the region immediately below it, is shaped
rather like the segment of an orange but with the curved surface cylindrical
rather than spherical. The region v8 is bounded by the planes z = 0 and
y = z and the surface x2 + y2 = r2, with −r ≤ x ≤ r, z ≥ 0 and y ≤ 0.
This is shown in larger scale in Figure 2.

We see that triangle ABC is a right-angled isosceles triangle so that
AC = BC = r sin θ and the area of ABC is 1

2r
2 sin2 θ. Since OB = r cos θ,

the element of volume is a prism of thickness δ(r cos θ) = −r sin θδθ. The
minus sign arises because increasing θ corresponds to decreasing OB, but
since we are integrating in this direction we can safely ignore it. The element
of volume is thus given by δv = 1

2r
3 sin3 θ δθ and

v8 =
r3

2

∫ π

0

sin3 θ dθ =
r3

2

∫ π

0

(1− cos2 θ) sin θ dθ =
2r3

3
.

So the volume of intersection of the two cylinders is 16r3/3.
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In case it may be of inter-
est I will also include my solu-
tion to the 3-cylinder problem
here. The most difficult part
of this was envisaging the shape
of the resulting solid, but some
preliminary appeals to symmetry
greatly simplify matters. Let V
be the volume of the solid of in-
terest, and let v8 be the volume
of the octant defined by x, y, z ≥
0. By symmetry, V = 8v8. Now
consider the part of this octant
for which

x ≥ y ≥ z. (1)

Let the volume of this region be
v6. For this region, x2 + y2 ≤ r2

and inequality (1) ensure
that y2 + z2 ≤ r2 and
z2 + x2 ≤ r2; so this
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Figure 3

solid is bounded by the cylindrical surface x2 + y2 = r2, and the planes
z = 0, x = y, and y = z, as shown in Figure 3. Since there are six ways to
set up inequality (1), we have, again by symmetry, v8 = 6v6, and V = 48v6.

In Figure 3 (greatly exaggerated in the z-direction for clarity) CAB is
part of the surface x2 + y2 = r2, COA is part of the plane y = z and BOA
is part of the plane x = y. Consider the pyramidal element of volume δv
defined by Onmm′n′. Since n′ lies in the plane y = z, we have nn′=r sin θ.
Thus

δv =
1

3
× r sin θ × rδθ × r =

1

3
r3 sin θ δθ.

Therefore

v6 =
r3

3

∫ π
4

0

sin θ dθ =
r3

3

[
− cos θ

]π
4

0

=
r3

3

(
1−
√

2

2

)
.

So

V = 48v6 = 16r3

(
1−
√

2

2

)
.

I wonder if that physics master ever found out that the solution to his
problem boiled down to just the integral of sinx!
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Solution 245.6 – Quintic
Solve x4 + x5 = e6.

Vincent Lynch
What a superb problem for April. It is M500’s tribute to Martin Gardner.
I used to take Scientific American in the 70s, and when his six hoaxes
were published in April 1975, I was taken in by them, though I certainly
didn’t believe the disproof of the four colour theorem. This could have been
’Vermont schoolboy [my grandson] discovers identity connecting π and e.’

I used Newton’s method to solve the equation. Taking logs to base e,
the equation to be solved is

f(x) = 4 ln(x) + ln(1 + x)− 6 = 0.

And

xn+1 = xn −
f(xn)

f ′(xn)
, f ′(x) =

4

x
+

1

1 + x
.

So into my calculator I put 3 ENTER (the value of x0). Then

ANS - (4ln(ANS) + ln(1+ANS)-6)/(4/ANS + 1/(1+ANS)) ENTER.

The output: 3.13847. . . . Pressing ENTER again: 3.14159. . . . Could it be π?

Pressing ENTER again:

3.141592683 . . . .

Pressing ENTER again gave no
change. Groan. It’s not π;
π = 3.141592653 . . . . So π4 +
π5 is not equal to e6 after all.

My son and grandson
both came over from Vermont
for my graduation ceremony
in Harrogate. Here is a photo
taken at the venue.

Problem 248.4 – Integral
Compute ∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2+z2)3/2dx dy dz.
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Problem 248.5 – Handicapped coin tossing
Tony Forbes
Toss a coin 100 times, score +1 for a head and −1 for a tail and add them
up. As is well known the final score has approximately normal distribution
with mean 0 and standard deviation

√
100 = 10.

Do it again but this time with a special ‘variable probability’ coin. We
start as usual with Pr(head) = 1/2 for the first trial but thereafter the
probability of getting a head is the proportion of tails appearing in the
previous trials. Presumably some kind of handicapping process is operating.
How is the distribution of the score affected?

To see how it works, let pn = Pr(nth result is a head). We start with
p1 = 1/2; and p2 = 0 if the first result was a head, 1 if it was a tail. Then
p3 = 1/2 unconditionally but p4 will be 1/3 if the third result was a head,
2/3 otherwise. Thereafter things get more complicated.

In an experiment I collected the scores from performing the 100 coin
tossings 100000 times and they do in fact appear to be normally distributed.
The standard deviation is somewhat smaller, 5.76 approximately, and it
would be nice to see what the exact figure should be.

Solution 245.4 – GCSE question

Compute

n∑
k=1

1√
k +
√
k − 1

and
n∑
k=1

(−1)k√
k −
√
k − 1

.

Basil Thompson
Multiply top and bottom by

√
k −
√
k − 1,

n∑
k=1

1√
k +
√
k − 1

=

n∑
k=1

√
k −
√
k − 1

k − (k − 1)
=

n∑
k=1

(
√
k −
√
k − 1) =

√
n,

and for the other one, multiply top and bottom by
√
k +
√
k − 1,

n∑
k=1

(−1)k√
k −
√
k − 1

=

n∑
k=1

(−1)k(
√
k +
√
k − 1)

1
=

{ √
n n even,
−
√
n n odd.
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Solution 245.5 – Numbers
You and your opponent play a game. You start by choosing
a positive integer X0. Thereafter your opponent and you take
turns to choose positive integers X1, X2, . . . , such that X0,X1,
X2, . . . are distinct and Xn+1 = Xn − 2, Xn − 1 or Xn + 1. If
not possible, the player whose turn it is loses. Assuming you
both play perfectly, classify the starting numbers X0 as either
(i) you win, (ii) you lose, or (iii) draw (infinitely long game).

Reinhardt Messerschmidt
We will use the following two lemmas:

Lemma 1 If, at any stage of the game, I play 2n for some positive integer
n, and no smaller integer has been played, then my opponent wins.

Proof We will use induction on n. The base case is clear: if I play 2 and
1 has not been played, then my opponent plays 1 and wins.

For the inductive case, suppose m > 1 is such that Lemma 1 holds for
all n < m. We have to show that it holds for m, so suppose that at some
stage of the game I play 2m and that no smaller integer has been played.
My opponent then plays 2m− 1.

If I respond with 2m − 2, then my opponent wins by the inductive
hypothesis.

If I respond with 2m − 3, then my opponent plays 2m − 2. If m = 2,
then I have run out of plays. If m > 2, then I can only play 2m − 4, and
my opponent wins by the inductive hypothesis. �

Lemma 2 If X0 is odd, then the game is a draw.

Proof If X0 = 1, then the only admissible continuation of the game is
2, 3, 4, . . . .

Suppose X0 = 2m+ 1 for some positive integer m.

If X1 = 2m, then I win by Lemma 1.

If X1 = 2m− 1, then I respond with 2m. If m = 1, then my opponent
has run out of plays. If m > 1, then he can only play 2m− 2, and I win by
Lemma 1.

If X1 = 2m + 2 and I respond with 2m, then my opponent wins by
Lemma 1. However, if I respond with 2m + 3, then the only admissible
continuation of the game is 2m + 4, 2m + 5, 2m + 6, . . . . This is the path
that my opponent and I will follow. �

It follows from these two lemmas that I lose if X0 is even, and the game
is a draw if X0 is odd.
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Solution 245.1 – Birthday dinner
Four people dine out four times a year, each time to celebrate the
birthday of one of their number. At these events the birthday
person’s meal is free, the entire cost being met equitably by the
other three members of the group. This year the third and fourth
meals are combined into one. How should the bill be settled?

We had essentially similar answers from Tamsin Forbes, Carrie Rutherford
and Basil Thompson. Suppose the three meals costs the same, £1, say.
Let diners be X1, X2, Y1 and Y2, where Xi are the two that have already
enjoyed their birthday dinners. Suppose Xi and Yi are to pay £x each and
£y each respectively for the third meal. Then 2x + 2y = 1 and for overall
fairness, 1/3 + x = 2/3 + y. Hence x = 5/12, y = 1/12. I (TF) believe this
is what actually happened.

But this is one of those problems where any answer can be wrong. In
the above settlement Yi are complaining that they didn’t get free meals.
One answer is to drop the assumption that the third meal should cost the
same as the other two. If the diners go to a slightly cheaper restaurant and
spend only 662

3p, the equations become 2x+2y = 2/3 and 1/3+x = 2/3+y
with solution x = 1/3, y = 0.

However, Yi are still complaining because their free meals were inferior
to those of Xi. So they go instead to an establishment that charges £2.
The equations are now 2x + 2y = 2 and 1/3 + x = 2/3 + y with solution
x = 2/3, y = 1/3. Everyone is happy, which is hardly surprising because
the situation is equivalent to two separate £1 meals.

If on the other hand £2 is too dear, they might, as Carrie suggests, agree
that economy overrides fairness and go to the same restaurant as before but
simply treat the £1 meal as two separate 50p meals. Then it’s half the
previous solution: x = 1/3, y = 1/6.

Problem 248.6 – Bus stop
Tony Forbes
Buses arrive at a bus stop according to the Poisson process with arrival rate
β. People arrive at the same bus stop also according to the Poisson process
but with arrival rate α. You arrive at the same bus stop and see n people
(other than yourself) waiting. How long would you expect to wait for the
bus. Assume for simplicity that only one bus route is served by the stop.
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Solution 242.6 – Three cylinders

Start with a 1 m3 cube. Take out three mu-
tually orthogonal cylinders of length 1 m
and diameter 1 m. What is the volume that
remains? The cylinders should of course fit
snugly inside the cube along its main axes,
as suggested by the picture on the right.

Steve Moon

Let one of the cube vertices be at the origin, O. The curves AB, BE and
EA are cross-section quadrants of circles through the cylinders in the xz,
xy and yz planes respectively, with centres ( 1

2 , 0,
1
2 ), ( 1

2 ,
1
2 , 0) and (0, 12 ,

1
2 )

respectively. Also we see that the coordinates of C and F are respectively
(α, α, 0) and (α, 0, 0), where α = (2−

√
2)/4.

By the symmetry of the cube, the residue volume we seek is V = 16
times the volume of OABCD. Let V1 be the volume of OAGFCD and let

V2 be the volume of BGFCD. Writing β(x) = 1
2 −

√
1
4 − (x− 1

2 )2, we have

V1 =

∫ α

0

∫ x

0

∫ β(x)

0

dz dy dx =
12− 5

√
2

96
− π

64
,

V2 =

∫ 1
2

α

∫ β(x)

0

∫ β(x)

0

dz dy dx =
11
√

2− 6

96
− π

32

and therefore V = 16(V1 + V2) = 1 +
√

2− 3π/4.
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Appeal to former OU mathematics students
Daniel Weinbren
I’m writing the history of the Open University and I’d like to learn more
about the learning of students and former students from those people them-
selves. Personal accounts of how you create and maintain projects and learn
from one another will help me to get to grips with how a higher education
institution can engage with self-directed, informal learning.

To take part in this project please email me at the below address with
your phone number. An interviewer, Ronald McIntyre, will ring you to
establish a mutually convenient time when you can both be undisturbed
for about 60 minutes. They will then ring back and record your answers
to questions. There will be a few questions about your background to give
us some context. It will be useful to know, or example, what qualifications
you had prior to starting at the OU. You will then be asked about what
you’ve done in regard to maths since you completed your OU maths courses
(modules). You will be asked what you feel you gained from having studied
through the OU and about how you benefit by remaining in contact with
former students. If you helped administer M500 I’d be pleased to hear from
you. A third section of questions will be about your connections to other
organisations and people (e.g. have you ever served as an active member of
another group or charity?). You will also be asked if there is anybody who
you think we should also interview.

This project has been funded by the Society for Research into Higher
Education which exists to stimulate and co-ordinate research into all as-
pects of Higher Education. For more about the Project, or me, see my
blog at http://www.open.ac.uk/blogs/History-of-the-OU/ and the website
http://www8.open.ac.uk/researchprojects/historyofou/.

I hope that you are able to take part because listening to those who
have built, maintained and developed groups such as M500 could help me
gain a sense of why such groups have succeeded. I will of course share my
conclusions with you at the end of the project and, if you request, your
contribution can be anonymous.

If you would like to be part of this project please contact me, Dr Daniel
Weinbren, by post, via the Faculty of Arts, Wilson A, The Open University,
Walton Hall, MK7 6AA or by email: d.weinbren@open.ac.uk. I am really
looking forward to hearing from you.
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Letters

Tongue-twisters and cakes
Dear Eddie,

Many thanks for M500 246. Another pretty tough issue, and I sympa-
thized with the person who wrote and said that she missed the fun in the
old ones, such as tongue-twisters. Mind you, English tongue-twisters pale
into insignificance beside Polish ones, such as W Szczebrzeszynie chrzaszcz
brzmi w trzcinie. In Szczebrzeszyn a beetle buzzes in the reeds.

It has been made into a brief but impenetrable poem, which you can
hear pronounced at http://en.wikipedia.org/wiki/Chrz%C4%85szcz – click on
the loudspeaker icon next to ‘Polish original’.

But even ordinary Polish words are taxing enough. I was idly glancing
at a dictionary, in which the first headword on the page was powietrze, and
the example of its use was rozrzedzone górskie powietrze, meaning ‘rarefied
mountain air’. The first word was so simply unbelievable that I had to
put the phrase into the Google translator to find out how on earth it is
pronounced. Having listened several times to a sound like that of someone
using an insufficiently damp chamois leather to clean a car windscreen, I
am little the wiser.

An odd thing struck me about the cake problem, 246.2. [Find the
parameters to maximize the volume of a slice of cake (a sector of a cylinder)
of given surface area.] Cake goes stale because moisture evaporates from
its surface. So a piece of cake that has a small surface area in relation to
its volume will go stale more slowly than one with a large surface area in
relation to its volume. Tony’s slice of cake has the maximum volume for its
surface area. Therefore it will go stale more slowly than the whole unsliced
cake. But this is clearly nonsense.

Best wishes,

Ralph Hancock

Finland, too, has its fair share of these things. For instance, there is

Käki söi keksiä keskellä keskioksaa.

The cuckoo ate to come up in the middle of the average branch. And one
is reminded of a contribution from Colin Davies in M500 148:

Kokoo kokoon koko kokko. Koko kokkoko? Koko kokko.

Gather together all the bonfire. All the bonfire? All the bonfire. — TF



M500 248 Page 21

Flour
Yesterday Rose was ordering some eco-friendly laundry bleach from an on-
line ethical supermarket. She asked me if I wanted anything, so I thought
of some bread flour, and had a look. They had Doves Farm Organic Whole-
wheat Strong Flour 1.5kg. Prices offered were:

List price £1.90 Our price £1.65 You save £0.25 (13%)

Case price £10.97 (List price £9.03) (5 packs) £2.19 per pack, you save −15%.

I was tempted to go for the case of five, saving minus 15%, but in the end
I decided to add flour to my ASDA online list, where Allinson Very Strong
Wholemeal is £1.50.

Jeremy Humphries

M500 Winter Weekend 2013
Join with fellow mathematicians for a weekend of fun. If you want a fantastic
weekend and are interested in things mathematical, then this is for you,
accessible to anyone who has studied mathematics—even if you are just
starting. The thirty-second M500 Society Winter Weekend will be
held at

Florence Boot Hall, Nottingham University

Friday 4th – Sunday 6th January 2013.

The theme is to be decided. Cost: £195 to M500 members, £200 to non-
members. You can obtain a booking form from the M500 site.

http://www.m500.org.uk/winter/booking.pdf

If you have no access to the internet, send a stamped addressed envelope to

Diana Maxwell

Please note that the address has changed from last year.

We will have the usual extras. On Friday we will be running a pub quiz
with Valuable Prizes, and for the ceilidh on Saturday night we urge you to
bring your favourite musical instrument (and your voice). Hope to see you
there.

Perfection is achieved not when there is nothing more to add, but when
there is nothing left to take away.

Antoine de Saint-Exupery (Terre des Hommes, 1939)
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Front cover: the Editor’s 5 × 5 × 5 Rubik cube. And here is a 50-move
sequence which produces that pattern.
d2u2(L, [R′BR, bf ′])(B, [lr′, F ′LF ])ud′lr′ud′rl′(FBU2R2, [d, l∗][d∗, l])


