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Solution 244.5 – Ten primes
1 1 1 7
1 1 5 3
2 2 7 3
9 3 1 1

The numbers in each row, each column and
each diagonal are prime. And no two are the
same. Is it possible to find a square with the
same properties but with all the digits odd?

Mike Lewis
Scope of the Problem

The number of primes satisfying the condition is 125. If four individual
primes are selected to form the rows of a potential square the resulting
columns and diagonals will be random odd numbers which must be tested
for primality. The total number of squares to be tested using this approach
would be

N = 125× 124× 123× 122 = 232593000.

This number and the number of comparisons to be made can be reduced
if the number of initial prime rows, columns and diagonals in the potential
square can be increased. A method based on a set of rules for the construc-
tion of such squares rather than a search through all possible squares is as
follows.

Generate three tables

• A list of the primes.

• An array of vectors of primes with common 1st and 4th digits
indexed on the 1st and 4th digits of the primes; call these outers.

• A similar array of vectors of primes with common 2nd and 3rd
digits, the inners.

Loop through the following sequence

1 Select a pair of diagonals from the list of primes to form the skeletons
of two squares. This ensures that the squares generated are unique.

1 1 1 1
1 5 5 1
9 1 1 9

7 7 7 7

Any potential square in which the top right hand cell contains 5 can be
rejected.

2 Concentrating on the first skeleton, select a set of columns from the
inners that will fit with the central digits of each column and similarly for
the outer digits of the outer columns. Eliminate the diagonals from the sets,
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should they be present. If any set is empty then go to step 7. This gives
Col1 ∈ {1777, 1997},
Col2 ∈ {1193, 3191, 5197, 7193, 9199},
Col3 ∈ {1193, 3191, 5197, 7193, 9199},
Col4 ∈ {1777, 1997}.

These four sets can be applied to the second skeleton by interchanging them,
equivalent to interchanging the diagonals.

3 Form a set of rows from the outers in the same way as for the columns:

Row2 ∈ {1151, 1153, 5153, 7151, 7159, 9151, 9157},
Row3 ∈ {1913, 3911, 3917, 3919, 7919}.

4 Run through the combinations of Row2, Row3, Col1 and Col4 elements
to find those that fit the skeleton. The result is a single partial skeleton
square: below, left.

1 1
7 1 5 9
7 9 1 9
7 7

1 5 3 1 1 5 1 1
1 5 1 5
9 1 9 1

7 7 1 7 7 7 1 7

5 Repeat the procedure for columns 2 and 3 and rows 1 and 4. The result
is two skeleton squares: above, right. The right hand skeleton is eliminated
since it contains a repeated prime.

6 Generate the final square(s) by running through the combinations of
skeletons rejecting any that contain common primes. In this example, only
one square has been generated and is

1 5 3 1
7 1 5 9
7 9 1 9
7 7 1 7

7 Repeat from step 3 for the second skeleton interchanging the diagonals
and columns used for the first skeleton appropriately.

Results and conclusion

A program based on the algorithm was written in Scilab, an open source
package similar to MatLab. The program generated 18750 squares in 51
min, 40 secs on a 3GHz, four Pentium machine with each processor running
at 100%. A speed-up could have been achieved by the use of two machines
running steps 4 to 7 for the interchanged diagonals concurrently.



M500 249 Page 3

Dave Wild
When I tried finding solutions which only used odd digits I found over 18,000
solutions. I then looked for the solutions which contained the most primes
when the columns, rows and diagonals are also read in reverse order. Twelve
of these contained 18 distinct primes. Ignoring the ones which contain the
same set of primes one is left with the 6 examples shown below. The primes
which cannot be reversed are highlighted.

1 7 3 3
3 5 7 1
9 7 1 9
9 7 9 1

1 9 7 9
9 1 7 3
3 3 5 9
3 3 7 1

3 1 9 1
3 5 1 1
7 5 7 7
1 9 3 1

3 3 1 9
5 3 5 1
7 5 7 7
1 9 1 3

3 3 3 1
3 3 5 9
7 1 7 7
1 9 1 3

9 1 3 3
3 7 3 3
1 5 9 7
9 3 1 1

Ten solutions contain 19 primes and use either 15 or 17 distinct primes.
One example of each is shown below.

1 9 7 9
7 1 7 7
3 3 5 9
3 3 7 1

1 9 1 3
9 1 7 3
3 3 5 9
3 3 3 1

Tony Forbes
What about a 5× 5 square? The search space is enormous but we expect a
large number of solutions. One way of attack is to make the problem more
difficult by imposing further conditions on the twelve primes.

I have difficulty making up my mind whether to read the antidiagonal
top-to-bottom or left-to-right. But I can get around this by insisting on
the number being prime in both directions. As there is nothing special
about the antidiagonal let’s make all of the primes reversible. Now 5 (as
well as even digits) must be absent from the border of the square. So to
make things balanced I think the middle of the square should be 5-free as
well. Finally, I want all 24 primes to be distinct, and consequently none of
them can be palindromic. Therefore we shall construct our square subject
to the following conditions on the numbers that form the rows, columns and
diagonals.

(i) All numbers as well as their reverses must be prime.

(ii) Only digits 1, 3, 7, 9 are allowed.

(iii) All primes must be distinct.
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With the severity of these restrictions a complete search is feasible but
unfortunately it turns out that unless my computer has misbehaved there
are no solutions. So I shall relax condition (iii) slightly to allow one or both
of the diagonals to be palindromic. Now there is a solution! Moreover, I
claim this solution (below, left) is essentially unique, meaning that the only
other possible arrays are the seven obtained by hitting this one with the
symmetries of the square.

3 1 7 9 9
1 1 9 3 9
1 7 1 1 7
3 3 1 9 9
9 1 1 9 3

1 1 7 3 3 1
1 9 3 1 3 3
7 3 3 7 9 3
7 9 9 3 1 3
7 9 3 3 3 3
3 3 7 3 9 7

1 1 1 1 7 1 1
1 1 1 1 3 3 9
1 1 3 9 7 7 1
3 7 9 7 1 1 7
3 9 7 7 9 7 7
7 9 7 9 1 7 3
3 3 9 9 3 9 7

7 3 9 1 1 3 9 1
9 3 3 7 9 7 1 7
9 7 3 7 1 1 3 3
3 7 1 1 3 9 9 1
7 7 1 7 3 9 3 7
1 3 7 7 7 1 9 9
1 9 3 7 9 1 1 9
9 7 1 9 7 7 9 7

Well, 6 comes after 5. This time we find a genuine solution (above,
middle-left), where conditions (i)–(iii) are satisfied without exception. So
now we have a full complement of 28 distinct primes. It was not reasonable
to do a complete search and therefore I am no longer claiming uniqueness.

Having succeeded with 6, one is tempted to continue until one’s com-
puter runs out of energy. For now I shall be content to go just six steps
further: 7 × 7 (above, middle-right), 8 × 8 (above, right), 9 × 9 (below,
left), 10× 10 (below, middle), 11× 11 (below, right) and 12× 12 solutions
exist, again with (i)–(iii) satisfied, yielding 32, 36, 40, 44, 48 and 52 distinct
primes respectively. Being quite pleased with the last discovery I decided
to put the 12× 12 square on the front cover of this magazine.

9 9 9 7 1 7 3 1 1
3 3 7 3 7 7 9 7 7
9 9 1 3 9 1 7 7 3
9 3 7 9 9 3 1 9 3
7 9 7 9 3 1 9 3 1
1 3 9 7 9 9 9 1 7
3 9 3 1 3 9 1 9 9
3 9 7 7 1 9 1 9 3
9 7 3 9 7 9 1 1 9

1 3 3 9 7 1 9 1 9 3
9 9 9 3 9 3 7 9 1 3
3 7 1 3 7 3 3 9 7 1
7 3 1 9 7 9 3 9 1 7
7 7 1 7 7 9 1 9 9 7
1 1 9 3 9 1 7 7 1 7
9 1 3 9 9 7 9 7 3 1
3 3 7 9 1 9 1 1 9 1
3 7 9 9 1 1 3 9 7 1
1 3 9 1 1 9 9 7 3 1

1 7 9 7 9 3 3 9 3 7 7
1 9 1 3 7 9 7 7 7 1 1
3 1 9 1 9 7 7 3 3 3 9
1 7 1 1 9 7 1 7 7 1 7
7 7 1 1 7 9 3 7 9 1 7
1 1 9 1 9 3 3 9 3 9 1
1 3 7 3 7 1 9 9 3 3 1
3 3 7 9 9 9 3 3 7 9 9
9 1 1 1 1 9 7 1 9 1 9
3 7 1 1 9 1 1 7 3 9 1
1 7 7 3 7 1 3 3 7 9 7

My technique for finding these things is similar to Mike Lewis’s method
except that I start with columns. Call numbers that satisfy (i)–(iii) special
primes and denote by s(d) the number of d-digit special primes.
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d 1 2 3 4 5 6 7 8 9 10 11 12 13

s(d) 0 8 10 22 84 264 716 2210 6742 22086 72296 238230 821120

For d ≥ 6, s(d) seems to be large enough for a d×d square of special primes
to exist. Since I am interested only in producing a single example, I find
that a method which works quite well is to choose the first d − 3 columns
at random and then try to fill in the rows by a systematic search using a
table that maps a (d−3)-digit number n to the set of d-digit special primes
of the form 1000n+m. The last three columns are checked when the rows
have been completed successfully.

I have included an entry for d = 13 in the s(d) table to remind me that
a search for a 13× 13 square of special primes should be feasible. However,
I shall leave it for someone else to try.

Problem 249.1 – Hypersphere
Tony Forbes
Show that the volume of the unit n-dimensional hypersphere is given by∫ ∞

−∞

∫ ∞
−∞

. . .

∫ ∞
−∞

e−(x2
1+x

2
2+···+x

2
n)

n/2

dx1dx2 . . . dxn.

For instance, we see that the area of the 2-dimensional disc is π, the same
as the volume under the bell-shaped surface e−x

2−y2 . See Problem 248.4
for the 3-dimensional case.

Problem 249.2 – Estimate
Tony Forbes
For positive integer q and real x > 1, let

Qq(x) =
log q

qx − 1
and Tq(x) =

∞∑
n=q+1

Qq(x).

Show that
Qq(q) ∼ (e− 1)Tq(q) as q →∞.

Hence or otherwise prove that Qq(q) > Tq(q) for q ≥ 6.
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Solution 246.2 – (It’s a piece of) Cake
A slice of cake, a sector of a cylinder of radius r, height h and
subtending an angle of θ, has total surface area 1. Determine r,
h and θ to maximize its volume.

Ken Greatrix
The total surface area is A = θr2 + 2rh + rhθ = 1 and the volume is
V = θr2h/2. Determine h from A, h = (1− θr2)/(r(2 + θ)), and substitute
this value into V :

V =
θr2

2
· 1− θr2

r(2 + θ)
=

θr

2
· 1− θr2

2 + θ
=

θr − θ2r3

4 + 2θ
. (∗)

Partial differentiation of V with respect to r and equating to 0 for a
maximum, minimum or a point of inflexion gives

∂V

∂r
=
θ − 3θ2r2

4 + 2θ
= 0 ⇒ 1− 3θr2 = 0 ⇒ r =

√
1

3θ
,

and if r =
√

1/3θ, the second derivative ∂2V/∂r2 is negative (indicating a
maximum) when θ > 1/12. Partial differentiation of V gives

∂V

∂θ
=

(4 + 2θ)(r − 2θr3)− 2(θr − θ2r3)

(4 + 2θ)2
.

At a maximum point the numerator of this expression equates to 0:

(4 + 2θ)(r − 2θr3)− 2(θr − θ2r3) = 0,

which simplifies to 4− 8θr2 − 2θ2r2 = 0. From above, r2 = 1/(3θ); hence

4− 8θ

3θ
− 2θ2

3θ
= 0 ⇒ θ = 2 radians.
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Since this value of θ is greater than the above value of 1/12, this corresponds
to a maximum volume. Thus

θ = 2 radians, r = h =

√
1

6
and V =

1

6
√

6
.

Given these calculated values, the moral of the story is in two parts. First,
measure your cake’s unit in feet so that you get a decent piece. Secondly,
don’t be the fourth person sharing this cake.

(∗) A while after completing the above, I realized that from this stage,
I could have referred to MST204 (Open University, 1982), unit 25, section
4 and used the AC−B2 criterion to decide where a maximum point occurs.

I also had similar solutions by Steve Moon, myself and everyone to whom
I have personally shown this problem. The value of θ is very surprising, es-
pecially to someone who has been conditioned into believing that radians
always come in rational multiples of π. Even more surprising is Vincent
Lynch’s contribution, below, and the avoidance of all that messy differenti-
ation. I am now wondering whether the same kind of trickery can be used
to attack other problems that have appeared in M500. — TF

Vincent Lynch
I always enjoy a maximization problem which can be solved without calcu-
lus.

The surface area is rθh+ 2rh+ r2θ = 1.

And the volume is V =
1

2
r2θh.

Now consider the three quantities rθh, 2rh and r2θ. Their arithmetic
mean is 1/3. Hence their geometric mean is at most 1/3, with equality when
rθh = 2rh = r2θ. So (

2r4h2θ2
)1/3

=
1

3

when the maximum occurs. Thus 8V 2
max = 2r4h2θ2 = 1/27, giving

Vmax =

√
6

36
when θ = 2 and r = h =

√
6

6
.
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Solution 244.3 – Two sums
Show that

∞∑
n=1

1

(n2 + 2n)2
=

4π2 − 33

48
and

∞∑
n=1

1

(n3 + 3n2 + 2n)2
=

4π2 − 39

16
.

Steve Moon
First, express the sum in terms of its partial fraction decomposition:

∞∑
n=1

1

(n2 + 2n)2
=

∞∑
n=1

1

n2(n+ 2)2
=

1

4

∞∑
n=1

(
1

n2
+

1

(n+ 2)2
+

1

n+ 2
− 1

n

)
.

Recalling the properties of the Riemann zeta-function, we have

∞∑
n=1

1

n2
= ζ(2) =

π2

6
;

so
∞∑
n=1

1

(n+ 2)2
= ζ(2)− 1− 1

4
=

π2

6
− 5

4
.

Also

∞∑
n=1

(
1

n+ 2
− 1

n

)
=

(
1

3
− 1

)
+

(
1

4
− 1

2

)
+

(
1

5
− 1

3

)
+ . . . = − 3

2
.

Putting these results together:

∞∑
n=1

1

(n2 + 2n)2
=

1

4

(
π2

3
− 5

4
− 3

2

)
=

4π2 − 33

48
.

Using the same method, accepting that the decomposition into partial
fractions is much more laborious,

∞∑
n=1

1

(n3 + 3n2 + 2n)2
=

∞∑
n=1

1

n2(n+ 1)2(n+ 2)2

=

∞∑
n=1

(
A

n
+
B

n2
+

C

n+ 1
+

D

(n+ 1)2
+

E

n+ 2
+

F

(n+ 2)2

)
.
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Multiplying out the numerator after adding these six terms and equating
coefficients yields

A = −3

4
, B =

1

4
, C = 0, D = 1, E =

3

4
, F =

1

4
,

and hence
∞∑
n=1

1

(n3 + 3n2 + 2n)2
=

1

4

∞∑
n=1

((
−3

n
+

3

n+ 2

)
+

1

n2
+

4

(n+ 1)2
+

1

(n+ 2)2

)
.

As before,

∞∑
n=1

1

n2
=

π2

6
,

∞∑
n=1

4

(n+ 1)2
= 4

(
π2

6
− 1

)
,

∞∑
n=1

1

(n+ 2)2
=

π2

6
− 5

4
,

∞∑
n=1

3

(
−1

n
+

1

n+ 2

)
= − 3

(
1 +

1

2

)
= − 9

2
,

and so
∞∑
n=1

1

(n3 + 3n2 + 2n)2
=

1

4

(
π2

6
+

4π2

6
− 4 +

π2

6
− 5

4
− 9

2

)
=

4π2 − 39

16
.

Coconut
A scientist and a mathematician are each required to perform a simple task:
retrieve a coconut, extract the milk and enjoy a refreshing drink.

The scientist goes first. His coconut is attached to the top of the trunk
of a very tall palm tree. Watched by the mathematician the scientist thinks
for a few seconds and then climbs the tree. After a bit of a struggle (with
some risk of a catastrophic fall) he breaks the coconut off and climbs down
with it. He searches around the area and eventually finds some rocks. He
bashes the coconut against them to remove the outer husk and then with a
particularly jagged rock he pierces the inner shell to release the milk.

Next it’s the mathematician’s turn. But his coconut is sitting on the
table in front of him together with a large machete. The mathematician
ponders for several minutes. A difficult problem. Suddenly he smiles to
indicate illumination and understanding. He takes the coconut, climbs up
the scientist’s tree, attaches the coconut to the top of the trunk and climbs
down. The solution is now obvious.
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Letters

Jos Leys
Dear Tony,

I would like to draw the attention of M500 readers to the work of Jos
Leys, which can be seen on the internet. Jos uses mathematics to draw
pictures. Whether it is art or not is arguable; however, the choice of objects
and the use of lighting and colour give me pleasure in a way that a visit
to the National Gallery does not. There is also a series of articles which I
intend to study. These are difficult. (For example, create an object in four
dimensions, use a stereographic projection to produce a 3-dimensional image
and then ray-trace to produce a 2-dimensional image.) The articles are in
French, but Google Chrome translates them. He also creates some very
strange objects (a Menger sponge football, based on a Sierpinski triangle,
which has zero volume). I really do think that anyone interested in maths
will get enjoyment from a visit to his web site.

Regards,

Dick Boardman

Postman probability
Yesterday at my sister’s house I came across a book called What Are the
Odds by Tim Glynne–Jones. It’s a book on probability aimed at the masses.
Most of what he says is OK. But in his ‘Postman’ page he says:

Statistics from the Royal Mail in the UK show that 5,000 post-
men are bitten by dogs each year—that’s 1 in 10. So any post-
man spending 10 or more years in the job can expect to be bitten
at least once.

That seems a bit naughty. It would suggest to the layman that the 1 in
10 chance implies that if you do it 10 times you get one result. Which of
course is not the case. It is the case that if the postman serves 10 years
then his chance of no bites is down to about one-third, and it goes under
50 per cent around year 7. So he’s probably expecting a bite after that if
he hasn’t already got one. So Glynne-Jones is sort of right in what he says.
But it’s not the way to say it.

Jeremy Humphries
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Arabic numbers
Dear Eddie,

Many thanks for M500 247. I was surprised to hear that my attempt at
a solution to 243.8 – Pentadecagon was the only one submitted, although it
only works when the Moon is in the seventh house and Jupiter aligns with
Mars.

I read Sebastian Hayes’s article on the ancient Egyptian number system
with interest until my tiny brain gave out in the middle of page 3. He
remarks, ‘The Egyptian system is . . . arranged in ascending, rather than
descending, order of size by our reckoning since the Egyptians, like the
Arabs still do, write from left to right.’ This oversimplifies things, since
Arabs write numerals just as we do, highest on the left, and also speak
their numbers beginning at the top. This apparent clash is due to their
having borrowed their numbering system from the Indians, who write from
left to right. Later, we re-borrowed it from the Arabs, and thus removed
the directional mismatch. For example, we say ‘one thousand five hundred
and six’, and write it as 1506. Arabs write it the same way, using their
forms of the numerals, . And they say, using the same order as we do

(but, of course, writing it from right to left), , which
can be transliterated as ‘alif wa-khamsamān’a wa-sita’ and means ‘thousand
and-fivehundred and-six’.

Best wishes,

Ralph Hancock

Problem 249.3 – Continued fraction
S. Ramanujan
For |q| < 1, let R(q) denote the continued fraction defined by

R(q) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + . . .

.

Then one has the familiar result R(e−2πi) = 1/φ, where φ = (
√

5 + 1)/2 =
1.618033988 . . . is the golden ratio. Now show that

R(e−2π) = 51/4
√
φ− φ ≈ 0.2840790438.
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The CDF of the Standard Normal Distribution
Ken Greatrix
The formula for the PDF of the Standard Normal Distribution is given by

φ(x) =
1√
2π
e−

1
2x

2

.

During one of my computer projects, I needed to calculate the CDF on
a continual basis, meaning that it wasn’t convenient to keep stopping the
program to input values from the tables. Simple, or so I thought! I just need
to expand the above formula, integrate and then write it into my program
with sufficient terms to provide the required accuracy. Expanding the above
formula, we get

φ(x) =
1√
2π

(
1+
−x2

2
+

(
−x2

2

)2
1

2!
+

(
−x2

2

)3
1

3!
+· · ·+

(
−x2

2

)k
1

k!
+. . .

)
.

So that when integrated, it becomes

Φ(x) =
1

2
+

1√
2π

(
x+
−x2

2
·x
3

+

(
−x2

2

)2
1

2!
·x
5

+· · ·+
(
−x2

2

)k
1

k!
· x

2k + 1
+. . .

)
.

(The term 1
2 is a constant of integration so that the CDF ranges from 0 to

1 for values −∞ < x <∞.)

Unfortunately, it didn’t work. No matter how I presented it to the
program, it kept crashing because values were somehow being overloaded.
Even more unfortunate is that I never found out why (or rather, I didn’t
try to find out why!).

I wondered if it was possible to rewrite the integral to make a more
robust format. Perhaps it could be expressed as a series of terms, each
term being an exponential series in itself. So I continued thus. Since x is a
common factor in all the terms of the series in the brackets,

Φ(x) =
1

2
+

x√
2π

(
1+
−x2

2
·1
3

+

(
−x2

2

)2
1

2!
·1
5

+· · ·+
(
−x2

2

)k
1

k!
· 1

2k + 1
+. . .

)
.

I then separated the single series in the larger brackets into a sum of two
other series—these are(

1 +
−x2

2
+

(
−x2

2

)2
1

2!
+

(
−x2

2

)3
1

3!
+ · · ·+

(
−x2

2

)k
1

k!
+ . . .

)
,
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which is merely e−
1
2x

2

, and(
−−x

2

2
· 2
3
−
(
−x2

2

)2
1

2!
· 4
5
−
(
−x2

2

)3
1

3!
· 6
7
−· · ·−

(
−x2

2

)k
1

k!
· 2k

2k + 1
− . . .

)
.

In this second bracket −(−x2/2) · 2/3 = x2/3 is then removed as a common
factor:

x2

3

(
1 +

3

5
· −x

2

2
+

3

7

(
−x2

2

)2
1

2!
+ · · ·+ 3

2k + 1

(
−x2

2

)k−1
1

(k − 1)!
+ . . .

)
.

If we now only consider the right-hand bracket, this again can be ex-
pressed as the sum of two separate series:(

1 +
−x2

2
+

(
−x2

2

)2
1

2!
+

(
−x2

2

)3
1

3!
+ · · ·+

(
−x2

2

)k
1

k!
+ . . .

)
,

(which is again e−
1
2x

2

), and(
−−x

2

2
· 2
5
−
(
−x2

2

)2
1

2!
· 4
7
−
(
−x2

2

)3
1

3!
· 6
9
−· · ·−

(
−x2

2

)k
1

k!
· 2k

2k + 3
−. . .

)
,

where similarly −(−x2/2) · 2/5 is removed as a common factor.

The above process is then continued and finally the CDF is expressed
as (with a few further rearrangements done for convenience):

Φ(x) =
1

2
+

x√
2π

(
e−

1
2x

2

+
x2

3

(
e−

1
2x

2

+
x2

5

(
e−

1
2x

2

+
x2

7

(
e−

1
2x

2

+
x2

9

(
e−

1
2x

2

+ · · ·+ x2

2k + 1

(
e−

1
2x

2

+
x2

2k + 3

(
e−

1
2x

2

+ . . .

)))))))
.

(Although stated without proof, I am certain that this expression can be
proven by induction.)

For purposes of convenience within my program, I started counting k =
0 from the term x2/3 in the first bracket, so that the denominator in this
term and similar terms throughout the series is the value 2k + 3 for k =
0, 1, 2, . . . . For most practical purposes −4 < x < +4 (i.e. x has a limiting
value), so that x2/(2k + 3) → 0 as k → ∞. So for a high value of k, the



Page 14 M500 249

multiplying term x2/(2k + 3) reduces the remainder of the series to almost
0. This means that in my computer program, I can start with a high value
of k and use an iterative formula, decreasing k until k = 0. Then I finally
add e−

1
2x

2

, multiply by x/
√

2π and then add 1
2 to evaluate the required

CDF.

Having done this, I next needed to find out how robust it is under
extreme conditions. I wanted to know how big a starting value of k I should
choose for extreme values of x without a significant error. To do this I
called the subroutine twice with different k-values for a range of x-values
from −20 to +20 and compared the results. I used a starting index-value
of k = 200, 000 as a basis for comparison and I didn’t notice any significant
errors until the second index-value was below k = 300. To display the error,
I multiplied the difference by 109 before showing this on a graph.

My results can be seen on this graph. The grey dotted line is the CDF,
the black dots showing the error. For this display, I used a value of k = 280
to indicate that an error just creeps in.

I find this second start-value of k somewhat surprising, I expected a
much higher value before errors would be noted in the comparisons. Since
±20 would never be used in practice, I decided to use a value of k = 500 in
my program. This choice was nominal, but it ensures a reasonable accuracy
without undue processing time.

The resulting series is not what I expected at the outset, but it is a more
robust version. All in all I’d say I’m extremely satisfied with the outcome—
I don’t have any program-crash with this version. However this creates
a dilemma. Can anyone explain why this rewritten version doesn’t cause
errors (i.e. crashes in the program) whereas the simply integrated version
does?
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Problem 249.4 – Radium
Tony Forbes
Imagine you have constructed a sphere, 10 cm radius, of pure radium-226.
You then leave it alone and return to it about 1600 years later. What would
you expect to see?

Recall that Ra-226 is radioactive, decaying to radon-222 with half-life
1601 years, and Rn-222 decays to polonium-218 with half-life 3.8235 days.
There are further steps, with Po-218 decaying to lead-214 and astatine-218,
Pb-214 to bismuth-214, At-218 to Bi-214 and more radon, this time Rn-
218, half-life 0.036 seconds, and so on until the stable element Pb-206 is
reached. As a bonus the process also creates five helium-4 atoms. After the
stated time the sphere will have lost about half of its radium, but amongst
the decay products are noble gases. Will they work their way out and
escape gracefully from the surface of the sphere, or will there be sufficient
accumulation in the centre to build up pressure and blow the thing apart?

For goodness sake, do not try this at home. One curie of radioactivity
is sufficient to cause health problems. But with a specific gravity of 5.5 the
sphere will weigh over 23 kg. That’s 23 kCi.

Problem 249.5 – Three circles
Dick Boardman
Given a triangle, construct three circles inside it which touch each other and
each circle touches two sides. Can this be done with ruler and compasses?

Problem 249.6 – Polynomial sum
Let P (x) be a polynomial in x of degree at least 2. Show that

∞∑
n=0

1

P (n)
= −

∑
{x:P (x)=0}

Γ′(−x)

Γ(−x)P ′(x)
,

assuming you can devise some imaginative scheme for dealing with the case
where P (x) has a multiple root.

Find Russian phrases (or even whole sentences) that make sense in English
when viewed in a mirror. For example, MA� TOT TON NO (may one ton
but)⇒ OH HOT TOT RAM (addressing the sheep that is partial to mulled
wine).
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Solution 244.4 – Another product

Show that

∞∏
k=1

k2

k2 + 1
= Γ(1− i)Γ(1 + i) = |i!|2 =

π

sinhπ
≈ 0.272029.

Steve Moon
First consider the expression of (sinx)/x as an infinite product of factors,
each generating a zero of (sinx)/x:

sinx

x
=

(
1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)
· · ·

=

∞∏
k=1

(
1− x2

k2π2

)
=

∞∏
k=1

k2π2 − x2

k2π2
.

Substitute x = iz and take the reciprocals of both sides and recall that
sin iz = i sin z:

∞∏
k=1

k2

k2 + (z/π)2
=

∞∏
k=1

k2π2

k2π2 + z2
=

iz

sin iz
=

z

sinh z
. (1)

Now set z = π:

∞∏
k=1

k2

k2 + 12
=

π

sinhπ
≈ 0.272029.

Equation (1) provides a way to calculate any infinite product of the form∏∞
k=1 k

2/(k2 + a2), where a = z/π, giving aπ/(sinh aπ).

The remaining elements of the problem can be derived using the func-
tional equations of the Gamma function, which are

(a) Γ(z + 1) = zΓ(z), and (b) Γ(z)Γ(1− z) =
π

sinπz
.

Starting from
∞∏
k=1

k2

k2 + 1
=

π

sinhπ
=

iπ

sinh iπ
,

and using (b) and (a) with z = i, we obtain

∞∏
k=1

k2

k2 + 1
= iΓ(i)Γ(1− i) = Γ(1 + i)Γ(1− i) = Γ(1 + i)Γ(1 + i) = |i!|2

on interpreting i! as Γ(i+ 1) and remembering that Γ(z) = Γ(z).
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M500 Mathematics Revision/MSc Weekend 2013

The M500 Revision Weekend / MSc Study Weekend 2013 will be
held at

Yarnfield Park Training and Conference Centre,

Yarnfield, Staffordshire ST15 0NL

between

17th and 19th May 2013.

The standard cost, including accommodation (with en suite facilities) and
all meals from dinner on Friday evening to lunch on Sunday is £290, with an
early booking discount of £25 if booked and paid in full before 1st March
or £310 after 16th April. The standard cost for non-residents, including
Saturday and Sunday lunch, is £155, with the same early booking discount
/ late booking fee applied. For full details and an application form see
the Society’s web site at www.m500.org.uk or send a stamped, addressed
envelope to:

M500 Society

The Weekend is open to all Open University students, and is designed to
help with revision and exam preparation. We expect to offer tutorials for
most mathematics-based OU modules plus a limited number of science mod-
ules, subject to the availability of tutors and sufficient applications.

Problem 249.7 – Syllables
Tony Forbes
A long time ago I offered M500 readers a rather complicated algorithm that
converts a positive integer n to its English representation, E(n), say, as in,
for example, E(1203) = ‘one thousand, two hundred and three’ [M500 177,
26–27]. Here we are asking for something that should in theory be a lot
easier. Construct a simple algorithm for computing the number of syllables
in E(n). If that’s too difficult, then try doing it in the andless system, as
used by Americans, so that the above becomes A(1203) = ‘one thousand,
two hundred, three.’
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