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Solution 246.6 – Loop
The picture shows the curve

(
(sin t)(tan t), (log t)/t

)
as t goes

from 1.4 to 2π. What is the area enclosed by the little loop?

Dick Boardman
Write x(t) = (sin t)(tan t) and y(t) = (log t)/t. From the graph it is clear
that the loop touches the y-axis when t = π, since at this point we have
x(π) = 0 and y(π) ≈ 0.36. The interval we are interested in is therefore
π/2 ≤ t ≤ 3π/2.

To find the crossover point we require two values of t, t1 and t2, such
that x(t1) = x(t2) and y(t1) = y(t2). From the symmetry of x(t) we know
that π − t1 = t2 − π. Therefore the values we want are t1 = π − z and
t2 = π+ z, where z is a solution of y(π− τ) = y(π+ τ). We expect x(π− z)
to be approximately −3. After some experimentation we find that the root
we want is in the vicinity of τ = 1.25, the point at which x(π − τ) ≈ −2.9.
Exact evaluation of z seems to be hopeless. Numerical computation gives
z ≈ 1.250488957983.

For the area inside the loop, we integrate y(t)dx/dt over the intervals
[π − z, π] and [π + z, π] and subtract. Numerical integration gives

I1 =

∫ π

π−z

log t

t
sin t

(
1 + sec2 t

)
dt ≈ 1.012279341542,

I2 =

∫ π

π+z

log t

t
sin t

(
1 + sec2 t

)
dt ≈ 0.985162038076,

and the area inside the loop is I1 − I2 ≈ 0.027117303466.

Solved in a similar manner by Steve Moon.
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Solution 247.1 – 39/163
Applying the ‘last resort’ method—that is, write α = 1/d1/αe+
β and repeat with β if necessary—as in Sebastian Hayes’s article,
The Ancient Egyptian number system [M500 247, 1–5], gives
39

163
=

1

5
+

1

26
+

1

1247
+

1

2935993

+
1

11082924787499
+

1

286606184305828343790787504

+
1

123214657323519667859049566141092194172466586933037520
.

Find a simpler Egyptian fraction expansion of 39/163.

Dick Boardman
May I offer

39

163
=

1

11
+

1

13
+

1

14
+

1

326326
=

1

7
+

1

11
+

1

182
+

1

326326
,

but I can’t find any set of fewer than four fractions.

Vincent Lynch
39/163 = 1/5 + 1/27 + 1/450 + 1/220050.

Tony Forbes
There is nothing special about 39/163; it just happened to fill the page in
M500 247. For a more systematic analysis, here are the first a/b (ordered
b = 2, 3, . . . , a = 2, 3, . . . , b− 1) with ‘last resort’ expansion length n.

n a/b last fraction

2 2/3 1/6
3 4/5 1/20
4 8/11 1/4070
5 16/17 1/32640
6 27/29 1/1003066152
8 44/53 1/1458470173998990524806872692984177836808420
9 65/131 1/(2.929007088348530525717072791634 · · · × 10112)

11 11/199 1/(2.039986670246850822853427080268 · · · × 101347)
12 221/398 1/(2.039986670246850822853427080268 · · · × 101347)
13 641/796 1/(2.039986670246850822853427080268 · · · × 101347)
14 958/1819 1/(1.592227275436832438091464380382 · · · × 107172)
15 1197/2273 1/(2.152341706044747611206947160254 · · · × 1014582)
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David Wild
Let (a, b, . . . ) represent 1/a+ 1/b+ . . . . Then, according to my computer,
39/163 can be written as (5, 26, 1248, 1017120), (5, 26, 1495, 7498), (5,
27, 450, 220050), (6, 14, 856, 2930088), (6, 14, 858, 326326), (6, 14, 861,
140343), (6, 14, 868, 60636), (6, 14, 966, 7498), (6, 14, 978, 6846), (6, 14,
1141, 3423), (7, 11, 182, 326326), (8, 9, 326, 11736) or (11, 13, 14, 326326).
If we favour smaller numbers then we should choose (6, 14, 1141, 3423), or
(6, 14, 978, 6846) if we also want to use only even numbers.

In the associated article Sebastian Hayes speculates on the number of
terms required to express a proper fraction. I shall describe how to find the
greatest proper fraction that can be expressed in four or fewer terms. If a
proper fraction can be expressed in fewer than four terms then we can always
find an additional term which will increase the value. Therefore we only need
to consider all possible values (a1, a2, a3, a4) where 2 < a1 < a2 < a3 < a4.

Initially we will look for a set of contiguous integers such that (n, n +
1, n+ 2, n+ 3) < 1 and n is a minimum. The value we find is (3, 4, 5, 6) =
57/60. This is greater than any other set of terms with a1 ≥ 3. Therefore
any potentially larger values must be of the form (2, a2, a3, a4) = (2) +
(a2, a3, a4).

We now essentially repeat the process above where we just look at the
last three terms. We find a set of contiguous integers such that (n, n+1, n+
2) < 1−1/2. Here we find (6, 7, 8) = 73/168. This is greater than any other
set of terms with a2 ≥ 6; (2, 6, 7, 8) = 157/168. Therefore the maximum
value of a2 we now need to consider is 5. The minimum value of a2 we can
use must be at least 2 + 1 = 3 and as (2, 3) = 5/6 < 1, it is 3. Therefore
any potentially larger values must be of the form (2, 3, a3, a4), (2, 4, a3, a4),
or (2, 5, a3, a4).

We repeat the process for these three candidates and eventually end
up with the following potentially largest values (2, 3, 7, 43) = 1805/1806,
(2, 3, 8, 25) = 599/600, (2, 3, 9, 19) = 341/342, (2, 3, 10, 16) = 239/240,
(2, 3, 11, 14) = 230/231, (2, 3, 12, 13) = 155/156, (2, 4, 5, 21) = 419/420,
(2, 4, 6, 13) = 155/156, (2, 4, 7, 10) = 139/140, (2, 4, 8, 9) = 71 / 72,
(2, 5, 6, 8) = 119/120, (2, 5, 7, 8) = 271/280, (2, 6, 7, 8) = 157/168, and (3,
4, 5, 6) = 19/20. Therefore any proper fraction greater than 1805/1806 can-
not be expressed using four terms (or many smaller values, such as 16/17).

What we have done is find a finite range of possible values for a1. For
each possible value of a1 we find a corresponding finite range of values of
a2, and then repeat the process for a3 and a4. As we are always dealing
with finite sets of values we must be able to find the largest value and are
able to select an n such that 1− 1/n = (n− 1)/n is greater than this. This
value cannot be expressed in the form (a1, a2, a3, a4). We could follow this
procedure for any number of terms so we can always find a proper fraction
which requires more than this number of terms.
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Solution 247.3 – Balls
Cannon balls are stacked in the usual square pyramid structure
except that some of the top layers might be missing. When is
it possible to stack a square number of cannon balls to make a
truncated square pyramid?

Chris Pile
Thank you for a new variation on consecutive sums of squares. I dusted off
my old notes and found I already had some examples – all that was needed
was to obtain a neat formula.

I recall similar problems on cannon balls [M500 166 and 169] but these
were mainly about tetrahedral stacking. There are many relations between
tetrahedral and square pyramids, as noted in past M500s. In particular, four
of the 24-layer square pyramids can be reassembled as a 48-layer tetrahedral
pyramid – the only one to have a square number of balls (19600) apart from
the trivial 2-layer, 4-ball case.

There are many instances of truncated tetrahedral pyramids having a
square number of balls – but you did not ask about that!

The number of balls in a square pyramid of n layers is given by

n∑
r=1

r2 =
n(n+ 1)(2n+ 1)

6
.

The only case when this total is also a square is n = 24, giving 702 = 4900
balls. Consider a truncated pyramid with a base of B2 balls and the top n
layers removed. The number of balls is

B(B + 1)(2B + 1)

6
− n(n+ 1)(2n+ 1)

6
=

B − n
6

(
2(B − n)2 + 6Bn+ 3(B + n) + 1

)
.

Let L = B−n be the number of layers in the truncated pyramid. Then the
number of balls becomes

L
(
2L2 − 3L+ 1

)
6

+BL(B − L+ 1) =
L(L− 1)(2L− 1)

6
+BLT,

where T = B−L+ 1 is the side of the top square of the truncated pyramid.
The problem requires this total to be a square.
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Here is a list of truncated square pyramids with base layer less than
1002 and a square number of balls, N2.

B2 T 2 L N2 B2 T 2 L N2 B2 T 2 L N2

42 32 2 52 432 202 24 1582 732 252 49 3572

212 202 2 292 482 382 11 1432 772 282 50 3852

282 182 11 772 482 252 24 1822 802 222 59 4132

292 72 23 922 502 252 26 1952 922 602 33 4402

322 92 24 1062 562 72 50 2452 932 442 50 4952

392 172 23 1382 592 272 33 2532 962 382 59 5312

392 72 33 1432 672 442 24 2742 992 762 24 4302

Vincent Lynch
I decided that the number of layers was the best parameter to fix, since
trying to blast it with x and y as the largest and smallest sides just gives a
rotten cubic. So, I decided to start small, as I used to tell my students who
were doing investigations—two layers. I found it led to a Pellian equation,
and since we can easily spot a solution, 3, 4, 5, it means there are an infinite
number of solutions. For example I found 6962 + 6972 = 9852 using only a
calculator.

I next wrote a Basic program to look for solutions in which the base
side was 1000 or less. What surprised me was the paucity of small numbers
of layers; only 2 and 11 less than 20. And there doesn’t seem to be any
pattern.

So I went back to algebra and produced two formulae: For 2k layers
from sides x− k + 1 to x+ k, we must have

k(6x2 + 6x+ 2k2 + 1) = 3z2,

where z2 is the total number of balls. For 2k + 1 layers from sides x− k to
x+ k:

(2k + 1)(3x2 + k2 + k) = 3z2.

I’ve not been able to derive much useful information from these general
equations. But by considering particular values of k, I have been able to
prove that many values of the number of layers are impossible. For example,
using the odd formula with k = 8, and 17 layers, gives 17(x2 + 24) = z2.
But x2 + 24 ≡ 0 (mod 17) has no solution. I have managed to prove that
the only possible values of the number of layers less than 23 are 2 and 11.
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More balls
Chris Pile
Re: Problem 247.3

While attempting the above-mentioned problem I was pleased to find that
the number of balls in a 7-layer square pyramid is 140 as this happens to
be my house number. (I am thinking of using this pyramid as a finial on
my gate post!)

The volume of a regular tetrahedron is half the volume of a regular
square pyramid with the same side length. A 7-layer triangular pyramid
has 84 balls, suggesting a more efficient packing. The ratio between the
number of balls in a square pyramid and a triangular pyramid approaches 2
as the number of layers increases. By my calculation, the volume occupied
by the number of balls in a 7-layer pyramid compared with the circumscribed
polyhedron is about 62 percent for both square and triangular.

Twelve balls can be arranged to touch a central ball. Such a 13-ball
cluster is contained in a 5-layer triangular pyramid with three balls appear-
ing on each face of the pyramid. This cluster represents the closest packing
scheme; the centres of the 12 balls are at the vertices of a cuboctahedron.

My local ‘Poundland’ store is selling 16 spherical Christmas baubles
(about 1.5 inches in diameter) packed in a 2× 2× 4 arrangement, while 25
baubles, about half the diameter, are randomly packed into a cylindrical
box. Using the packing scheme as in the square pyramid it is possible to
pack 244 unit-diameter balls in a 6×6×6 cubical box, eight layers alternately
6 × 6 and 5 × 5, instead of 216 balls in six layers of 6 × 6. Is it better to
use a systematic packing arrangement instead of just tipping the balls into
a box and shaking? How many unit diameter balls can be packed into an
n3 box? Is a cubical box the best shaped container?

Exercise for reader. Calculate the exact height of the stack of eight layers
alternately 6× 6 and 5× 5 that fits into the 6× 6× 6 cubical box. — TF

Problem 250.1 – Quadratic sum
Tony Forbes
Show that ∞∑

n=0

1

an2 + n+ 1
= γ − log a+O(a)

as a→ 0. Here, γ ≈ 0.5772156649 is Euler’s constant.
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Solution 236.1 – Relationships
How many distinct sets of relationships can you have involving
six people if there are two types of entanglement, platonic and
romantic.

Tony Forbes
Recall that the problem was inspired by Caitlin Moran’s review of ITV’s
Married Single Other (The Times, 6 March 2010). Also recall that I could
not agree with answers 36 and 15 offered by Times correspondents and that
I thought it would be a good idea to collect M500 readers’ thoughts on the
matter before I attempted to explain why the correct answer is 755. I have
not received very many responses from readers, so I might as well go ahead
with my solution.

Sets of relationships are like partitions, and the number of partitions of
6 (that is, the number of ways of writing 6 as a sum of positive integers) is
11, as represented in the first column of the table, below. But people are not
indistinguishable; so there are a number of ways in which a specific partition
can occur. This is the second column. A brief explanation is appropriate.
The first entry corresponds to one big relationship involving all six people
and in the second entry there is one lonely person, who can be chosen in 6
ways. More complicated is the 10th row, where in the partitioning of the
6 people into 3 sets we can choose the first set in 15 ways, the second in
6 ways and the third in one way—that’s 90. But the three sets have the
same size and order is not relevant; so we divide by 3! to get 15. The
power of 2 in the third column accounts for the two types of entanglement.
I am assuming one cannot be in a relationship with oneself. Column 4 is
obviously column 2 times column 3.

XXXXXX 1 2 2
XXXXX X 6 2 12
XXXX X X 15 2 30
XXXX XX 15 4 60
XXX X X X 20 2 40
XXX XX X 60 4 240
XXX XXX 10 4 40
XX X X X X 15 2 30
XX XX X X 45 4 180
XX XX XX 15 8 120
X X X X X X 1 1 1

203 755
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Solution 247.2 – Integral

For n > 1, show that

∫ ∞
0

dx

xn + 1
=

π

n (sinπ/n)
.

Tommy Moorhouse
First we set out some notation and identities involving nth roots of unity.
Let ζ = e2πi/n be an nth root of unity so that ζn = 1, and let ε = eiπ/n so
that εn = −1, and indeed (ζmε)n = −1 where m = 0, 1, · · ·n− 1. The set of
complex numbers ζmε is the compete list of nth roots of −1. We have

1 + ζ + ζ2 + · · ·+ ζn−1 = 0. (1)

To prove this let
1 + ζ + ζ2 + · · ·+ ζn−1 = X,

say, and note that ζ 6= 0 and ζ 6= 1. Multiply both sides by ζ. The left hand
side is the same (the terms simply get permuted) and we have ζX = X.
Since ζ 6= 1 we must have X = 0.

Now we also have

1 +
1

ζ
+

1

ζ2
+ · · ·+ 1

ζn−1
= 0, (2)

which follows from (1). We also note that

e−πi/n = ε−1 = ζn−1ε, (3)

which is clear on writing out the exponentials.

Since 1 + xn vanishes if x is any nth root of −1 (and consequently 1/x
is also a root) we can write

1

1 + xn
=

1

(1− εx)(1− ζεx)(1− ζ2εx) · · · (1− ζn−1εx)
.

Now we can expand this as a sum of partial fractions, say

1

(1− εx)(1− ζεx) · · · (1− ζn−1εx)

=
a0

(1− εx)
+

a1
(1− ζεx)

+ · · ·+ an−1
(1− ζn−1εx)

.

Expanding the right hand side and equating powers of x we find that a0 =
a1 = · · · = an−1 = 1/n.
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Next we integrate term by term to get

− 1

nε

{
log(1− εx) +

1

ζ
log(1− ζεx) + · · ·+ 1

ζn−1
log
(
1− ζn−1εx

)}
.

At the lower limit of integration, x = 0, this sum vanishes because log(1) =
0. For x� 1 we write

log(1− ζmεx) = log(−εx) +m log(ζ) + log

(
1− 1

ζmεx

)
from which it is clear that the sum tends to

− 1

nε

{
log(−εx)

(
1 +

1

ζ
+

1

ζ2
+ · · ·+ 1

ζn−1

)

+

(
1

ζ
+

2

ζ2
+

3

ζ3
+ · · ·+ n− 1

ζn−1

)
log(ζ)

}
.

From identity (2) above we see that the term in (−εx) is zero, and we find∫ ∞
0

dx

1 + xn
= − 1

nε

(
1

ζ
+

2

ζ2
+

3

ζ3
+ · · ·+ n− 1

ζn−1

)
log(ζ).

The expression on the right is

− 1

nεζn−1
(
ζn−2 + 2ζn−3 + · · ·+ (n− 2)ζ + (n− 1)

)
and if we multiply top and bottom of the expression in brackets by (1− ζ)
we get n/(1− ζ). Since log ζ = 2πi/n and using identity (3) we have∫ ∞

0

dx

1 + xn
= − 2πi

nε(ζn−1 − 1)
=

π

n
· 2i

eπi/n − e−πi/n
=

π

n sin(π/n)
.

Problem 250.2 – Circle
Dick Boardman
Given two points A and B, show that the locus of a moving point P such
that the ratio |AP |/|BP | is constant is a (possibly degenerate) circle. Can
you provide a Euclidean construction?
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Problem 250.3 – Ellipsoid
Tony Forbes
Show that

4π

(
(ab)8/5 + (bc)8/5 + (ca)8/5

3

)5/8

is quite a good approximation to the surface area of an ellipsoid with radii
a, b and c. For instance, if a = 10 and b = c = 15, the formula gives 2225.5
whereas the true value is about 2225.0.

Problem 250.4 – Divisor sum
Let k be a positive integer. Denote by σk(n) the sum of the kth powers of
the (positive) divisors of n.

(i) Show that if k ≥ 2 and nk + 1 divides σk(n), then n must be prime.
For example, σ2(6) = 12 + 22 + 32 + 62 = 50 is not divisible by 62 + 1 = 37,
but σ2(7), which is also equal to 50, is divisible by 72 + 1, and hence 7 is
prime.

(ii) Apart from the example above, are there any k, n ≥ 2 for which
σk(n) = σk(n+ 1)?

Problem 250.5 – Guess
If you guess the solution to this problem, what’s the probability of getting
the correct answer?

(a) 0, (b) 0.25, (c) 0.25, (d) 0.5.

Problem 250.6 – Three towns
Dick Boardman
Three towns form an acute-angled triangle. They are connected by roads to
a single point in such a way that the total length of road is a minimum. The
sides of the triangle and the lengths of the road segments are all integers.
Find one or more examples.

Question: How many notes are there in an octave?

Musician: Eight of course. It’s from the Latin: octo, eight.

Mathematician: Wrong! The correct answer is seven.
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Solution 204.7 – Arctangent identities
Assuming that A,B,C,M,N are non-zero integers, show that

N arctan
1

B
+M arctan

1

C
= arctan

1

A

if and only if (B + i)N (C + i)M (A− i) is real.

Unfortunately something has gone wrong here! For example, put A = B =
C = 1, M = −1 and N = 6. If, as is customary, we consistently use the
arctan function with range (−π, π), then 6 arctan 1− arctan 1− arctan 1 =
π 6= 0 whereas (1 + i)6(1 + i)−1(1 − i) = −8, which looks very real. I
leave it for the reader to determine what the problem meant to say. In the
meantime let’s change ‘if and only if’ to ‘only if’. — TF

Steve Moon
Using tan−1(1/θ) = cot−1 θ, define a, b, c by A = cot a, B = cot b, C = cot c.
So we seek to show that Nb+Nc− a = 0 only if (B + i)N (C + i)M (A− i)
is real. Now use the identity

cos θ + i sin θ = eiθ ⇒ cot θ + i =
eiθ

sin θ
, sin θ 6= 0.

Thus

B + i =
eib

sin b
⇒ (B + i)N =

eiNb

(sin b)N
, (1)

C + i =
eic

sin c
⇒ (C + i)M =

eiMc

(sin c)M
, (2)

cot(−a) + i =
e−ia

sin(−a)
⇒ − cot a+ i =

−e−ia

sin a
⇒ A− i =

e−ia

sin a
, (3)

and on multiplying (1), (2) and (3),

(B + i)N (C + i)M (A− i) =
ei(Nb+Mc−a)

(sin b)N (sin c)M (sin a)
,

which is real when Nb+Mc− a = 0, as required.

Archimedes discovered that the volume of an object can be deduced from
the volume of water it displaces. — TV science programme
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Problem 250.7 – Bernoulli numbers
Tony Forbes
Recall that the Bernoulli numbers, Bn, are defined for non-negative integers
n as the coefficients of xn/n! in the Taylor expansion of x/(ex − 1):

x

ex − 1
=

∞∑
n=0

Bnx
n

n!
. (1)

Using l’Hôpital’s rule we see that B0 = limx→0 x/(e
x−1) = 1. Also observe

that x/(ex− 1) +x/2 is an even function of x, and therefore the coefficients
of odd powers of x in its Taylor expansion will be zero. Thus B1 = −1/2
and Bn = 0 for odd n ≥ 3. Multiplying (1) by (ex − 1)/x,

1 =
x

ex − 1

ex − 1

x
=

( ∞∑
n=0

Bnx
n

n!

)( ∞∑
n=0

xn

(n+ 1)!

)
,

and equating coefficients of xn,

0n =

n∑
k=0

Bk
k! (n− k + 1)!

,

gives

Bn = 0n −
n−1∑
k=0

(
n

k

)
Bk

n− k + 1
,

a nice recursive formula from which one can quite easily calculate values of
Bn for even n.

n 0 1 2 4 6 8 10 12 14 16 18 20

Bn 1 −1

2

1

6
− 1

30

1

42
− 1

30

5

66
− 691

2730

7

6
−3617

510

43867

798
−174611

330

That’s enough background—now for the problem. When is Bn a fraction
with denominator 6?

To try to help you spot a pattern I have computed a list of all such
n < 1000: 2, 14, 26, 34, 38, 62, 74, 86, 94, 98, 118, 122, 134, 142, 146, 158,
182, 194, 202, 206, 214, 218, 254, 266, 274, 278, 298, 302, 314, 326, 334,
338, 362, 386, 394, 398, 422, 434, 446, 454, 458, 482, 494, 514, 518, 526,
538, 542, 554, 566, 578, 602, 614, 622, 626, 634, 662, 674, 686, 694, 698,



M500 250 Page 13

706, 722, 734, 746, 758, 766, 778, 794, 802, 806, 818, 842, 854, 866, 878,
898, 914, 922, 926, 934, 938, 958, 962, 974, 994, 998. Plotting these values
(by which I mean that a point occurs at (x, y) if y is the xth number in the
list) produces a graph which looks almost as if it could be linear. The slope
is about 11.8.

20 40 60 80

200

400

600

800

1000

I am curious; so I shall ask two more questions. Does this linearity property
hold for arbitrarily large n? And if it does, what is the exact limiting value
of the slope?

Problem 250.8 – Roman numerals
Tony Forbes
The number of decimal digits in the positive integer n is given by the formula⌊

log n

log 10

⌋
+ 1. Find a similar kind of formula for the number of letters in

the Roman numeral representation of n.

Problem 250.9 – Product
Show that

∞∏
n=2

n3 + 1

n3 − 1
=

3

2
.



Page 14 M500 250

Letters

In our time
I’m just listening to In Our Time (R4, Melvyn Bragg). It’s about Simone
Weil (sister of the more famous André, as we would say). One of the people
on the programme remarked that Weil was nicknamed ‘The Martian’ by her
tutor Émile Chartier, because of the size of her intellect. The speaker went
on to speculate that this was because of the Mekon, who had a huge brain.

But hang on. Weil’s dates are 1909 to 1943, and the Mekon first ap-
peared in 1950. Furthermore, the Mekon was from Mekonta, North Venus,
as any Dan Dare aficionado knows.

There was a programme a couple of months back on ‘The Cell’. Melvyn
remarked: ‘The DNA in the human body would stretch to the Moon and
back 8000 times. Despite its unimaginable length . . . ’ Well, for something
‘unimaginable’, I reckon he did a pretty good job of imagining it there.

That same programme had Steve Jones, who almost referred to ‘in-
finitely long mitochondria’. But, being a scientist, he realized what he was
saying and stopped himself mid-word, substituting ‘very long’, or something
similar.

Jeremy Humphries

Pi
Dear Eddie,

Many thanks for M500 248. I was intrigued by Tony’s 5× 5× 5 Rubik
cube until I found that it is old hat and you can now buy 7×7×7 ones, and
that the redesign of the internal mechanism that made this possible is the-
oretically good up to 11×11×11; though probably such a cube would have
to be made out of something more rigid and more accurately formed than
moulded plastic. At some stage the physical cube will become unworkable,
but you could go digital and have virtual cubes with any number of pieces.

Also interested in Vincent Lynch’s Solution 245.6 – Quintic, in which
the result comes out as very slightly more than π. Some time ago I read that
cosmologists had done one of their usual fudges to make their sums come
out right, and this one was to suppose that the fabric of space–time has a
double curvature like that of a Pringles crisp, which has a convex curvature
along its north–south axis, and a concave curvature along its east–west axis.
If you lower a circular slice of raw potato on to the heated former that curves
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it into that shape, its perimeter will be stretched and its centre compressed.

So I wondered whether an inhabitant of pringlespace who drew a circle
on the pringleplane would actually find that π was greater than the value
that we consider correct. I suspect that this depends on whether one is
viewing the circle from inside or outside the pringleverse. If π were indeed
greater, its value would depend on the size of the circle that was drawn,
something that pringlites would presumably consider normal.

There are, of course, stories about π being taken as 3. One of these is
in the Bible, I Kings 7 23–26, where a ‘sea’ — a large circular bath made of
cast bronze in which the High Priest washed himself before officiating in the
Temple — is said to have been ‘ten cubits from one brim to the other’ and
‘a line of thirty cubits did compass it round about’. The other is a much
mythologised account of an American State decreeing in the 19th century
that π should be considered as 3 to make calculation easier.

As everyone and his dog now knows, gravitation distorts the fabric of
space–time, and this is conventionally represented by a drawing of a rub-
ber sheet into which massive bodies are shown as sinking. And I wondered
whether the great density of the ancient Israelites and the 19th century
Americans could cause a distortion that would produce a sagging concave
shape in which, when a circle was drawn, the relationship of radius to cir-
cumference really did represent π as 3.

However, neither of these stories will wash. The ‘sea’ in the Bible was
‘an hand breadth thick, and the brim thereof was wrought like the brim of
a cup’. If you assume a cubit to be 18 inches and a hand breadth to be 4
inches, and that the stated diameter included the thickness of the rim, but
the circumference was measured around the inner edge of the bowl, you get
a ratio of circumference to diameter of 3.13953 . . . : 1, near enough to π for
practical purposes such as temple building.

And yes, there really was an attempt in the United States to make π a
nicer number. It happened in Indiana in 1897, when a bill was introduced
into the state’s House of Representatives proposing that π should be fixed as
one of three more rational numbers: 16/5, or 3.2; the area of a square whose
side is a quarter the circumference of the circle, which gives a value of 4; the
ratio of a length of a 90 degree arc to the length of a segment connecting
the arc’s two endpoints, which comes out as the

√
2× 16/7, which is about

3.23 and actually no more convenient than the correct value of π.

Fortunately C. A. Waldo, a professor of mathematics at Purdue Uni-
versity, happened to be in town and was summoned to give his opinion on
the proposals. He was against them, and the bill failed. According to a
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local newspaper, ‘Although the bill was not acted on favorably no one who
spoke against it intimated that there was anything wrong with the theories
it advances. All of the Senators who spoke on the bill admitted that they
were ignorant of the merits of the proposition. It was simply regarded as
not being a subject for legislation.’

Best wishes,

Ralph Hancock

Finnish tongue twisters
Dear Tony,

Käki söi keksiä keskellä keksioksaa seems to me to mean ‘The cuckoo
was eating a biscuit on the centre of the central branch’ [rather than ‘The
cuckoo ate to come up in the middle of the average branch’].

If it can be eaten, then Keksi means a biscuit. However it can also
mean a gadget like a boathook: a long pole with a spike on the end often
used to direct floating logs towards a saw mill. Either way, keksiä is the
partitive case of keksi, and creates the meaning that ‘the cuckoo was eating’
rather than ‘the cuckoo ate.’ I wondered how the translator came up with
the expression ‘to come up’, until I realized that the verb ‘keksiä’ means ‘to
invent’, and hence ‘to come up with something.’

For another tongue twister: Yksikseskö istuskellet itsekseskö yskiskel-
let? is a rather contrived way of asking ‘Are you sitting alone and coughing
by yourself?’

I have been involved with Finland and its fascinating language since I
first went there in 1951. Some years ago, when in Finland, I met a professor
of mathematics at Swansea University. I think his name was Gerald Gould;
he was over 80 then, and his speciality and research subject was Game The-
ory. He had gone to a maths conference in Helsinki some years previously to
our meeting, and had noticed the mathematical precision of the grammar of
the Finnish language. So he decided to learn the language, and he learned
it very well. I met him several times later at Finnish language courses.

I would describe Finnish grammar as being very much like the grammar
of Latin, but with only one declension (albeit with many root changes like
3rd declension Latin), only one conjugation, no genders at all, very few
exceptions, and a spelling/ pronunciation system that is absolutely precise.

Colin Davies
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Forty years of M500
TF
Good grief, it really has been that long. M500 began life as the Solent
M202 Newsletter. No. 1 was published in 1973; according to founding editor
Marion Stubbs: At 2300 hrs., precisely, 16 February, 1973, Southampton,
England, 51◦ N, 1◦25′ W (born out of despair)—24 copies, together with
an application form to join the Solent OU Mathematics Self-Help Scheme,
dashed off in four hours flat for an M202 tutorial. It was an instant success.
M202, Topics in Pure Mathematics, was perhaps the most difficult course
the Faculty had to offer in the early years of the OU, and the Newsletter
was just the kind of thing that geographically isolated students needed.

When issue 6 went out in July, 1973, readers were invited to supply a
new title as it was no longer restricted to the Solent, nor to M202. Peter
Weir suggested ‘M500’ for reasons: (1) Why not? (2) A top-level course in
communications. Full credit. (3) It’s an overview of OU maths. (4) Why
not? [sic] (6) [sic] I thought of it. By Issue 7, the first to bear the name
‘M500’, readership had risen to about 200, and later it rose to over 500
when the Faculty allowed M500 to be advertised in the maths stop presses.
The distinctive logo first appeared on M500 59.

The editorship has been remarkably stable throughout the last 40 years.
Marion did everything for the first few issues. Eddie Kent joined her from
Number 25 and thereafter Eddie edited while Marion published. Jeremy
Humphries was recruited as Problems Editor and later took over from Eddie
at M500 68. Seventeen years later Jeremy handed the job to me at M500
161. Coincidentally, issue 250 also marks my 15th anniversary.

“Out of all the [undergraduate mathematics] magazines I’ve seen, you’re
the best,” was the enthusiastic comment of an eminent mathematician. It’s
because you the readers are the contributors. If you look at other similar
publications, you will often notice a pretty obvious division: authors are
superior, omni-cognate beings, readers are mere mortals. However, there’s
no such class distinction in M500. Readers and writers operate on equal
terms.

We will continue to flourish if you keep up the good work. You have done
very well to keep M500 going for such a long time against fierce competition.
Many, many thanks. You have demonstrated that the entire resources of
the Internet—all those blogs, twits, forums, newsgroups and such like—can
never provide an adequate substitute for the regular appearance of a real
paper journal dropping through your letter-box. But do keep the articles
coming. As usual, be as informal as you like and write to us about anything
to do with mathematics and at any level.
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