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Integer partitions

Identities involving partitions of an integer – generalization of a
standard result

Tommy Moorhouse
Introduction A partition of a non-negative integer n is an expression for
n as a sum of positive integers, where the terms in the sum are known
as the ‘parts’ of the partition. In this article we will set up the notation
to express a well-known identity relating partitions of different types, and
prove it. The first step will be to establish some tools and notation. Finally
we prove an interesting generalization of the identity using the tools we have
developed.

Notation In previous articles we have considered certain generating (‘par-
tition’) functions. Given any integer-valued function ξ we define the loga-
rithm Lξ through the action

Lξ
(
pk11 p

k2
2 · · · pkrr

)
= k1ξ(p1) + k2ξ(p2) + · · ·+ krξ(pr).

Clearly this is a partition of the integer Lξ(n) into parts of the form ξ(pj).
Then

Zξ(s) =

∞∑
n=1

e−sLξ(n) =

∞∑
n=0

Pξ(n)e−sn

is the generating function for Pξ(m), the number of partitions of m having
parts given by ξ(pj). This follows by looking at the coefficient of e−sk,
which comes from those e−sLξ(n) for which Lξ(n) = k.

More general functions than Z(s) can be written down. These functions
can be used to define a wider class of partitions, as we will see. Given any
function f we can write

F (s) =

∞∑
n=1

f(n)e−sLξ(n).

Gathering together terms as before we find

F (s) =

∞∑
n=0

Eξf (n)e−sn,

where
Eξf (n) =

∑
Lξ(m) = n

f(m).
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Since Lξ is a logarithm Lξ(1) = 0 and, assuming that ξ is non-trivial,

Eξf (0) =
∑
Lξ(m)=0 f(m) = f(1). In this notation Pξ = Eξu, where u(n) = 1

for every n.

It is straightforward to show that

Eξf∗g = Eξf ◦ E
ξ
g , where A ◦B(n) =

∑
j+k=n

A(j)B(k)

and j and k are non-negative integers.

Partitions into distinct parts We now order the prime numbers by size,
so that 2 = p1, 3 = p2 and so on. We then specify ξ by setting ξ(pk) = k.
A partition of n into distinct parts is an expression of the form

n = j1 + j2 + · · ·+ jm = ξ(pj1) + · · ·+ ξ(pjk)

, where each j is different. Clearly, n = Lξ(m) if m is a product of distinct
prime factors (that is, m = pj1pj2 · · · pjk), and only these m give rise to
partitions into distinct parts. It is possible to show, and the reader is
encouraged to try this, that in fact the number of such partitions is exactly∑

Lξ(m)=n

σ(m) = Eξσ(n),

where σ(n) vanishes if n has any square factors greater than 1, and is 1
otherwise [Hint: 2sLξ(n) = sLξ(n

2)].

There is an interesting interplay between the infinite product and infi-
nite sum representations of Zf (s) which we will exploit in the sequel.

Partitions into odd parts Defining the function ω(pi) = 2i− 1 we find
that the number of partitions of an integer into odd parts is generated by
Zω(s) and will be denoted Pω.

We wish to show that
Pω = Eξσ.

First we note that

Zξ(s) = Zξ(2s)Zω(s) (1)

as can be seen using the product representation

Zf (s) =
∏
p

1

1− e−sLf (p)
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and the fact that the right hand side of the expression (1) for Zξ(s) is just
the product of the odd and even contributions to the product on the left.

This tells us that

Zω(s) =
Zξ(s)

Zξ(2s)
.

The right-hand side can be expanded in the series representation using

1

Zξ(2s)
=

∞∑
n=1

µ(
√
n)η(n)e−sLξ(n),

where η(n) = 1 if n is a square and is zero otherwise. What we have done
here is put the series into the form F (s) for f(n) = µ(

√
n)η(n) so that we

can use the methods developed so far.

The product becomes, by the rules established above,

∞∑
n=0

Pω(n)e−sn =

∞∑
n=1

{µ(
√

) · η) ∗ u}(n)e−sLξ(n)

=

∞∑
n=1

{ ∑
m2|n

µ(m)
}
e−sLξ(n)

=

∞∑
n=1

σ(n)e−sLξ(n) =

∞∑
k=0

Eξσ(k)e−sk,

where we have used the notation µ(
√

) as shorthand for the function sending
k to µ(

√
k), and used the following.

Lemma ∑
m2|n

µ(m) = σ(n),

which means that the sum of µ(d) over square divisors d of n vanishes unless
n is prime-square-free, in which case it is 1.

Proof Suppose n is prime-square-free. Then the only square dividing n is
1, and µ(1) = 1. If, on the other hand, n = ad2 where a is square-free and
d > 1 then ∑

m2|n

µ(m) =
∑
k|d

µ(k) = µ ∗ u(d) = I(d) = 0,

where I(d) = 1 for d = 1 and is zero otherwise (see Apostol, for example).
Here I(d) vanishes because of our stipulation that d > 1.
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The identity Comparing coefficients of e−sn above we see that

Pω = Eξσ.

This says that the number of partitions of an integer into odd parts is equal
to the number of partitions of that integer into distinct parts.

Although this seems like a circuitous route to a straightforward result,
we have established that the partition function approach can accommodate
a range of ideas not immediately apparent at first sight. The notation and
reasoning are robust and may be extended, as we will see.

A generalization Using the ideas above we can show the following.

Theorem The number of partitions of an integer n in which no part
appears more than p − 1 times is equal to the number of partitions of n
in which none of the parts are congruent to 0 (mod p). (The result above
represents the case p = 2.)

Proof Write
Zξ(s) = Zξ(ps)Zθ(s),

where θ(pi) = ĩ and ĩ is the ith member of the sequence 1, 2, . . . , p− 1, p+
1, . . . . In this sequence every integer divisible by p has been removed. Zθ(s)
is the generating function for partitions into parts none of which is congruent
to 0 (mod p) (i.e. divisible by p). We have

Zθ(s) =
Zξ(s)

Zξ(ps)
.

All we have to do to establish the result is to show that the right-hand side
is equal to

∑
Eξσp(n), where σp(n) is 1 if n has no factor that is prime to

a power greater than p − 1. The reasoning follows that for the case p = 2
very closely.

∞∑
n=0

Eθu(n)e−sn =

∞∑
n=1

{µ(p
√

) · ηp) ∗ u}(n)e−sLξ(n)

=

∞∑
n=1

{ ∑
mp|n

µ(m)
}
e−sLξ(n)

=

∞∑
n=1

σp(n)e−sLξ(n) (2)

=

∞∑
k=0

Eξσp(k)e−sk,
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where ηp(n) is 1 if n is a p th power and vanishes otherwise. Equation (2)
follows by similar reasoning to that in the case of p = 2. This establishes
the Theorem, since Eξσp(k) is the number of partitions of k into parts, no

part occurring more than p−1 times, and Eθu(k) is the number of partitions
of k into parts none of which is congruent to 0 (mod p).

Further reading Much more interesting material on partitions can be
found in The Theory of Partitions by G. E. Andrews (Cambridge, 1984).
This book uses methods different from those presented here. I found a
good starting point for basic number theory to be Elementary Number The-
ory by D. Burton (McGraw–Hill, 1995 (3rd Ed.)) or the more demanding
Introduction to Analytic Number Theory by T. Apostol (Springer).

Problem 254.1 – Four bottles
Tony Forbes
Find a two-variable func-
tion that provides a con-
vincing model for the
shape of the stretched
plastic sheeting in this
typical example of four
one-litre bottles of fizzy
stuff that I bought from
my local supermarket for
£1.65 (50 pence each if
purchased separately).

Observe (for which I have no explanation) that the cross-section through
the centre in the NW–SE direction, a parabola-like curve, differs from the
NE–SW cross-section, which looks as if it could be a quartic with two local
maxima and a local minimum at the central saddle point.

Problem 254.2 – Interesting integral
Show that ∫ π/2

0

cos(tanx)dx =
π

2e

and hence that
∫ a
0

cos(tanx)dx = a/e if a is an integer multiple of π/2.
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Solution 253.1 – A Diophantine equation
Given that P = 2, Q = 1, and R = 7 is a solution to the
Diophantine equation

P 4 + 8P 2Q2 +Q4 = R2,

use this to find further solutions.

Vincent Lynch
We start by reducing the number of variables by the substitutions p = P/Q,
r = R/Q2. This gives the equation in rational numbers p4 + 8p2 + 1 = r2.
Completing the square gives (p2 + 4)2 − r2 = 15, which factorizes as

(p2 + 4 + r)(p2 + 4− r) = 15.

We may now put p2 +4+ r = 15x and p2 +4− r = 1/x. Eliminating r gives
2(p2 + 4) = 15x+ 1/x.

The next step is the most difficult to think of. Multiply through by 2x2

and substitute y = 2px to give

y2 = 30x3 − 16x2 + 2x. (1)

This is the equation of an elliptic curve. Knowing the coordinates of a
rational point on such a curve means we can find the equation of the tangent
at the point and solve it with the curve to find another rational point. The
given solution leads to p = 2, x = 1, y = 4.

The gradient of the tangent at this point is 15/2 and its equation is
y = (15x− 7)/2. Solving with (1) gives

120x3 − 289x2 + 218x− 49 = 0.

But we know x = 1 is a double root. So we can divide by x2 − 2x + 1 to
give 120x − 49 = 0. So x = 49/120 and y = 7/16. Further substitution
gives p = 15/28 and r = 1441/784. So we have a solution to the original
equation: P = 15, Q = 28, R = 1441.

This process can be repeated. The final chapter of the sixth edition of
Hardy and Wright’s famous book on number theory is on elliptic curves.
The addition of two points on such a curve is obtained by finding where the
chord joining the points meets the curve again and reflecting in the x-axis.
To duplicate a point, you find where the tangent at the point meets the
curve again and reflect in the x-axis. We didn’t need this last step here. In
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the chapter there are formulae for these, but the equation needs to be in
standard form: y2 = x3 +Ax+B.

We can put our equation in this form using the substitutions 30y = u,
30x = w + 16/3 to give

u2 = w3 − 76w

3
+

448

27
;

so A = −76/3, B = 448/27. We can now use the duplication formula given
in the chapter. Let x2P denote the x coordinate of the duplication of the
point whose x coordinate is xP . Then

x2P =
x4P − 2Ax2P − 8BxP +A2

4(x3P +AxP +B)
.

Using the solution x = 49/120 of (1) and applying the duplication formula
with xP = 30x − 16/3 = 83/12 gives the next solution to the original
equation: P = 564031, Q = 1210440, R = 2444755743361.

Dick Boardman
Clearly P = 2n, Q = n, R = 7n2 is a solution for all integer n. Further, p2+
8pq+ q2 forms a multiplicative domain, so that the techniques I mentioned
in my other submission [Solution 253.2 – Quadratic, to appear] also apply.
Having found all of these solutions, I am afraid I didn’t search further.

Tony Forbes In case you were wondering what they look like, here is
the graph of y2 = 30x3 − 16x2 + 2x, equation (1), together with the line
y = (15x− 7)/2. The other dot is at (49/120, 7/16).

0.2 0.4 0.6 0.8 1.0 1.2

-4

-2

2

4
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Rotations of the sphere
Rob Evans
This article will be concerned with the following interesting problem.

Let S2 denote an arbitrary sphere. In turn, let ρ1 and ρ2 denote
arbitrary non-trivial rotations of S2 about different diameters of
S2. In turn, let θ12, θ21 denote respectively the angles of turn of
the composite rotations ρ1ρ2 and ρ2ρ1. Prove that θ12 = θ21.

This problem (with a less formal wording) appeared in M500 216 under the
title ‘Rotations’. It is a remarkable fact that our solution to this problem
has no need to resort to far-from-obvious results from the geometry of the
sphere. Indeed, it highlights some of the features that are common to the
geometry of the sphere and the geometry of the plane.

In order to solve the above problem it is natural to modify it in a way
that distinguishes between ‘clockwise’ and ‘anticlockwise’ rotations. (How
exactly we do this shall soon become clear.) In order to state the modified
problem as succinctly as possible, we introduce the following notation.

Euclidean 3-space is denoted by E3. As in the original problem, S2

denotes an arbitrary sphere in E3. In turn, O denotes the centre of S2.

Let P,Q ∈ E3 such that #{P,Q} = 2. Then l(P,Q) denotes the line
that passes through P and Q.

Finally, let P,Q ∈ E3 such that #{P,Q} = 2 and θ ∈ R. Then ρ(P,Q; θ)
denotes the rotation of E3 through θ radians about l(P,Q), where the an-
gle of turn, as seen from P towards Q, is measured clockwise. Using this
notation, we state the modified problem as follows.

Let ρ1 = ρ(O,P1; θ1) and ρ2 = ρ(O,P2; θ2) for some P1, P2 ∈ S2

such that O,P1, P2 are non-collinear, and for some θ1, θ2 ∈ (0, π].
Prove that ρ1ρ2 = ρ(O,P+; θ) and ρ2ρ1 = ρ(O,P−; θ) for some
P+, P− ∈ S2 and θ ∈ (0, 2π) where, moreover, ρ1(P−) = P+

and ρ2(P+) = P−. (See figure. This figure is intended only
as an aid to visualizing P±. The detailed construction of those
points will be made clear in the course of the solution.)

(N.B. For each P ∈ S2 and θ ∈ (0, 2π) we have that ρ(O,P ; θ) = ρ(O,P ′; θ−
π), where P ′ denotes the point that is antipodal to P on S2 (i.e. P ′ ∈ S2

such that P ′ 6= P and O,P, P ′ are collinear). In other words, the condition
that θ1, θ2 ∈ (0, π] implies no less generality than the condition that θ1, θ2 ∈
(0, 2π). The reason for the choice of the former over the latter condition
will become clear in the remarks following the solution.)
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In order to present our solution of the modified problem as succinctly
as possible, we introduce the following additional notation.

Let P,Q ∈ E3 such that #{P,Q} = 2, and θ ∈ [0, 2π). In turn, let ρ =
ρ(P,Q; θ) and x ∈ R. Then, ρx denotes ρ(P,Q;xθ). (N.B. The condition
that θ ∈ [0, 2π) ensures that ρx is well defined.)

Let P,Q,R ∈ E3 such that P,Q,R are non-collinear. Then, Π(P,Q,R)
denotes the plane that passes through P,Q,R.

As in the hypothesis, let ρ1 = ρ(O,P1; θ1) and ρ2 = ρ(O,P2; θ2) for
some P1, P2 ∈ S2 such that O,P1, P2 are non-collinear, and for some θ1, θ2 ∈
(0, 2π). Then, eq denotes the circle S2 ∩ P (O,P1, P2).

In turn, H± denotes the hemispherical region of S2 that has eq as its

boundary and that contains ρ
±1/2
1 (P2) and ρ

∓1/2
2 (P1).

In turn, s±1 and s±2 denote the semicircles Π[O,P1, r
±1/2
1 (P2)]∩H± and

Π[O,P2, r
∓1/2
2 (P1)] ∩H± respectively.

Finally, q denotes reflection of E3 in P (O,P1, P2).

Using this notation and our previous notation, we proceed to solve the
modified problem as follows.

Firstly, since O,P1, P2 are non-collinear we can already conclude that
neither ρ1ρ2 nor ρ2ρ1 is the identity transformation. In other words, we can
already conclude that each of ρ1ρ2 and ρ2ρ1 is a non-trivial rotation of S2

about a diameter of S2. In order to show that ρ1ρ2 and ρ2ρ1 have the form
stated in the conclusion we proceed as follows.

Next, we demonstrate that q(P±) = P∓ where P± = s±1 ∩ s
±
2 . (See

figure.) From the relevant definitions it is obvious that we have:

q(H±) = H∓;

q(Π[O,P1, ρ
±1/2
1 (P2)]) = Π[O,P1, ρ

∓1/2
1 (P2)];

q(Π[O,P2, ρ
±1/2
2 (P1)]) = Π[O,P2, ρ

∓1/2
2 (P1)].

Moreover, since q is 1–1 on E3 we have q(A∩B) = q(A)∩q(B) for A,B ∈ E3.
Consequently, in turn, we have:

q(s±1 ) = q(Π[O,P1, ρ
±1/2
1 (P2)] ∩H±) = q(Π[O,P1, ρ

±1/2
1 (P2)]) ∩ q(H±)

= Π[O,P1, ρ
∓1/2
1 (P2)] ∩H∓ = s∓1 ;

q(s±2 ) = q(Π[O,P2, ρ
∓1/2
2 (P1)] ∩H±) = q(Π[O,P2, ρ

∓1/2
2 (P1)]) ∩ q(H±)

= Π[O,P2, ρ
±1/2
2 (P1)] ∩H∓ = s∓2 .
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Consequently, in turn, we have

q(P±) = q(s±1 ∩ s
±
2 ) = q(s±1 ) ∩ q(s±2 ) = s∓1 ∩ s

∓
2 = P∓. Q.E.D.

Next, we demonstrate that ρ1(P−) = P+ and ρ2(P+) = P−.

From the relevant definitions it is obvious that we have: P± ∈ s±1 where,
in turn, s+1 = ρ1(s−1 ), and P± ∈ s±2 where, in turn, s−2 = ρ2(s+2 ). However,
since q(P±) = P∓ it is also obvious that we have

|P1P
+| = |P1P

−| and |P2P
+| = |P2P

−|.

From the last two statements we deduce that ρ1(P−) = P+ and ρ2(P−) =
P−. Q.E.D.

At the beginning of this solution we established that each of ρ1ρ2 and
ρ2ρ1 is a non-trivial rotation of S2 about a diameter of S2. We now demon-
strate that P+ and P− are respectively invariant under ρ1ρ2 and ρ2ρ1. Since
ρ1(P−) = P+ and ρ2(P+) = P− we have:

(ρ1ρ2)(P+) = ρ1[ρ2(P+)] = ρ1(P−) = P+ and

(ρ2ρ1)(P−) = ρ2[ρ1(P−)] = ρ2(P+) = P−. Q.E.D.

We now know that ρ1ρ2 = ρ(O,P+; θ+) and ρ2ρ1 = ρ(O,P−; θ−) for some
θ+, θ− ∈ (0, 2π) where, moreover, ρ1(P−) = P+ and ρ2(P+) = P−.

Finally, we demonstrate that θ+ = θ−.

Firstly, it is obvious that to show that θ+ = θ− it is sufficient to show
that there exist an isometry i : E3 → E3 and points Q,Q′ such that we have

i(P+) = P−; (ρ1ρ2)(Q) = Q′; (ρ2ρ1)[i(Q)] = i(Q′).

However, we already know that ρ2(P+) = P− where, moreover, it is ob-
vious that ρ2 is an isometry. Also (as readers can confirm), straightfor-
ward calculations show that the last two of the above equations hold for
(i, Q,Q′) = (ρ2, ρ

−1
2 (P1), P1). (N.B. In these calculations, one needs to as-

sume that ρ1(P1) = P1. However, one is justified in doing so since, by
definition, ρ1 is a rotation about the line l(O,P1).)

From the above line of argument, we deduce that θ+ = θ−. Q.E.D. This
completes the solution.

Readers of the above solution might suspect that an analogous one could
be constructed within the context of the geometry of the plane. Except for
the cases whereby θ1 + θ2 = 0 (mod 2π), this is indeed so. In these excep-
tional cases both ρ1ρ2 and ρ2ρ1 would be translations! These exceptional
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cases aside, it would be (as readers can confirm) a straightforward matter to
extend the analogous solution to obtain the equation θ = θ1 + θ2 (mod 2π)
where θ = θ+ = θ− (mod 2π). (N.B. For the purposes of this paragraph
only we do not need to put conditions on θ1, θ2 and θ.)

In light of the last sen-
tence of the last paragraph,
it is natural to ask what
the corresponding extension
to our solution of the orig-
inal problem might be. It
turns out that one can ex-
tend the above solution to ob-
tain θ < θ1 + θ2 where θ =
θ+ = θ−. (Recall that here
we had that θ1, θ2 ∈ (0, π]
and θ ∈ (0, 2π).) Moreover,
using some results from the
trigonometry of the sphere
one can obtain an explicit
equation for θ in terms of
θ1, θ2 and the angular sep-
aration between l(O,P1) and
l(O,P2).

Problem 254.3 – Three integers
Given three positive integers a, b, c, with a and b co-prime, show that
the number of solutions in non-negative integer pairs (x, y) of the equation
xa+ yb = c is given by

c

ab
−
{

(a−1 mod b) c

b

}
−
{

(b−1 mod a) c

a

}
+ 1,

where {u} denotes the fractional part of u (that is, {u} = u − buc), and
(u−1 mod v) is the smallest (or in fact any) positive integer t that satisfies
tu ≡ 1 (mod v). For example, with a = 2, b = 5 and c = 99 the formula
gives

99

10
−
{

3 · 99

5

}
−
{

99

2

}
+ 1 =

99

10
− 2

5
− 1

2
+ 1 = 10,

using (2−1 mod 5) = 3 and (5−1 mod 2) = 1. On the other hand, one can
verify by counting that the number of solutions really is 10.
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Solution 251.4 – Four more towns
Four towns are to be ser-
viced by a road network
of minimum length. This
can often be achieved
by the creation of two
junctions, called Steiner
points, where three roads
meet at 120◦. A typi-
cal layout is shown on the
right.

Find a solution where
the lengths of the five
road segments, a, b, c, d,
e, and the six distances
between the towns, f , g,
h, i, j, k, are distinct in-
tegers.

a b

c

d

e

f

g

h

i

j

k

Tony Forbes
This came about as a result of my misunderstanding of Dick Boardman’s
Problem 251.3 – Four towns. (Four towns lie at the corners of a quadrilat-
eral with integer sides and integer diagonals, no two the same. They are
each connected to a single point such that the sum of the four distances is
minimum. Find solutions where all of the individual lengths are integers.)
Somehow I chose to ignore the bit about a single point and instead found
myself attacking a completely different problem.

I do not have a solution Dick’s original ‘Four towns’ problem. However,
I have managed to find one solution of 251.4 and moreover it was actually
presented in the picture that accompanied the original statement of the
problem in M500 251. The diagram is repeated above with letters a–k
added for reference. If you carefully measure the 11 lengths and multiply
by a suitable number, you should obtain 11 distinct integers.

Remembering that a, b and c as well as a, d and e meet at 120 degrees,
the cosine rule gives

f2 = b2 + c2 + bc and g2 = d2 + e2 + de.

So it makes sense (at least to me) to create a collection of positive integer

triples (x, y,
√
x2 + y2 + xy) where x2+y2+xy is a square. Then we can try
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combining two distinct triples from the collection together with an integer
a to make a road network where each segment has integer length. And as a
bonus we get two integer inter-town distances, f and g. If we do this often
enough we can maybe hope to find a combination where the four numbers

4h2 = (2a+ b+ e)2 + 3(b− e)2,
4i2 = (2a+ c+ d)2 + 3(c− d)2,

4j2 = (2a+ b+ d)2 + 3(b+ d)2,

4k2 = (2a+ c+ e)2 + 3(c+ e)2

are even squares. The method actually works and produces

a = 240, b = 33, c = 255, d = 552, e = 145,

f = 273, g = 637, h = 343, i = 693, j = 735, k = 560,

as given by the diagram.

With a little effort one can prove that the road network really does have
the smallest length. The only other possibility is the dual network, where the
Steiner points occur at the intersections of c and d and of b and e, in which
case the section joining them (corresponding to our a) is approximately
north–south orientated rather than east–west. But it turns out that the
dual network is slightly longer, at approximately 1272.09, compared with
a+ b+ c+ d+ e = 1225.

Incidentally, 1225 is a square, 352. I leave it for someone else to explain
why this is significant. I also leave it for others to obtain a general solution.

Problem 254.4 – Gaussian binomial coefficients
For positive integer n, define

[n]q = 1 + q + · · ·+ qn−1, [n]q! = [1]q [2]q . . . [n]q

and by analogy with the usual binomial coefficient

(
n

k

)
=

n!

k! (n− k)!
,

define the Gaussian binomial coefficient by[
n

k

]
q

=
[n]q!

[k]q! [n− k]q!
.

(For example,

[
4

2

]
q

= 1+q+2q2 +q3 +q4.) Show that

[
n

k

]
q

is a polynomial

in q with integer coefficients.



Page 14 M500 254

An amazing construction
Dick Boardman
Problem Given four points, construct a square such that each side of the
square, extended if necessary, passes through one of the points.

I am sure that this problem has an elegant solution using Euclidean
methods. However, my solution uses methods of coordinate geometry.

Let the points be {P1, P2, P3, P4}. Choose P1 to be the origin and
choose the line joining it to P3 to be the x-axis so that the coordinates of
this second point are (xs, 0). Let the other two points be P4 = (x1, y1) and
P2 = (x2, y2). From this there are two solutions.

Firstly, from the origin, along the y-axis measure a distance x2−x1 and,
perpendicular to it, a distance xs + y1− y2. The line joining this new point
to the origin is one side of the square, the line through (xs, 0) parallel to it
is another, and the two lines through (x1, y1) and (x2, y2), perpendicular to
them complete the square.

Secondly, from the origin, along the y-axis measure a distance x1 − x2
and, perpendicular to it, a distance xs − y1 + y2. The line joining this new
point to the origin is one side of the square, the line through (xs, 0) parallel
to it is another. As before, the two lines through (x1, y1) and (x2, y2),
perpendicular to them complete the square.

If we choose a different pair of points to define the x-axis we arrive
at another pair of solutions. It turns out that for a general configuration,
there are six distinct squares that can be drawn through the four points.
The front cover of this magazine illustrates the 48 solutions obtained by
performing the two constructions on the 24 permutations of a given set of
four points. Readers can verify that each square appears eight times.

Proof A point can be defined by its distances from two perpendicular
axes (x, y) and the equation of a line is often given as y = mx+ c, where m
is called the gradient. Thus I can define a line by two numbers [m, c]. If a
line has gradient m then a line perpendicular to it has gradient −1/m.

These two definitions are linked. A line through two points (x, y) and
(u, v) becomes [

y − v
x− u

, y − x y − v
x− u

]
.

The intersection of two lines [m1, c1] and [m2, c2] becomes(
c2 − c1
m1 −m2

, m1
c2 − c1
m1 −m2

+ c1

)
.
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A line through (x, y) with gradient m becomes [m, y−mx], and the distance
between (x, y) and (u, v), squared, is (x− u)2 + (y − v)2.

Let

S1 = [m, 0] be the line through the origin (P1) with gradient m,

S3 = [m, −mxs] be the line through P3 with gradient m,

S2 = [−1/m, x2/m+ y2] be the line through P2 with gradient −1/m,

S4 = [−1/m, x1/m+ y1] be the line through P4 with gradient −1/m.

Denoting the intersection of Si and Sj by Si,j , let

V1 = S1,2 =

(
x2 +my2
1 +m2

,
m(x2 +my2)

1 +m2

)
,

V2 = S2,3 =

(
x2 +m(mxs + y2)

1 +m2
,
m(x2 − xs +my2)

1 +m2

)
,

V3 = S3,4 =

(
x1 +m(mxs + y1)

1 +m2
,
m(x1 − xs +my1)

1 +m2

)
,

V4 = S1,4 =

(
x1 +my1
1 +m2

,
m(x1 +my1)

1 +m2

)
.

Then these four points form the vertices of a rectangle. We choose m such
that the sides of the rectangle are equal. It is sufficient that the squares of
the sides are equal; so we equate the distances squared between V1 and V2
and between V1 and V4,(
x2 +m(mxs + y2)− (x2 +my2)

)2
+
(
m(x2 − xs +my2)−m(x2 +my2)

)2
=
(
x1 +my1 − (x2 +my2)

)2
+
(
m(x1 +my1)−m(x2 +my2)

)2
,

to obtain these two solutions,

m =
−x1 + x2
xs + y1 − y2

and m =
x1 − x2

xs − y1 + y2
,

from which we can derive the two alternative constructed points:

P5,1 = (xs + y1 − y2, x2 − x1) and P5,2 = (xs − y1 + y2, x1 − x2).

As an example, consider the set of four points defined by

x1 = 2, y1 = 2, x2 = 1.3, y2 = 1.7, xs = 1.5.

These give

P1 = (0, 0), P2 = (1.3, 1.7), P3 = (1.5, 0), P4 = (2, 2),
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from which we derive

m = −0.388889, P5,1 = (1.8, −0.7),

V1 = (0.55496, −0.215818), V2 = (0.752011, 0.290885),

V3 = (1.25871, 0.0938338), V4 = (1.06166, −0.412869),

and
m = 0.583333, P5,2 = (1.2, 0.7),

V1 = (1.70984, 0.997409), V2 = (2.09067, 0.34456),

V3 = (2.74352, 0.725389), V4 = (2.36269, 1.37824).

P 1

P 2

P 3

P 4

P 5,1

P 1

P 2

P 3

P 4

P 5,2

Problem 254.5 – Descending integers
Find a nice formula as a function of n for the big number you get by writ-
ing down all the n-digit integers in descending order, as in, for example,
999998997. . . 101100 when n = 3.

Editor’s email address change In case you haven’t noticed on page
0, the Editor’s email address has changed. If you have sent a contribution to
tony@m500.org.uk without receiving an acknowledgement, would you please
resend it to editor@m500.org.uk.
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Solution 251.1 – Increasing digits
How many positive integers have the property that their digits
increase when read from left to right? For example, 3, 26, 1357,
but not 10, 43, 778, 34592.

Reinhardt Messerschmidt
In base b, the number of positive integers with increasing digits is

2b−1 − 1.

For example, in the decimal system there are 29 − 1 = 511 such integers,
and in base 4 there are 23 − 1 = 7, namely

14, 24, 34, 124, 134, 234, 1234.

Proof. A positive integer has increasing digits in base b if and only if its
digits can be found by first writing out the b−1 nonzero digits in increasing
order,

1, 2, . . . , b− 1,

and then removing either 0 or 1 or . . . or b − 2 of them. The number of
ways this can be done is

b−2∑
k=0

(
b− 1

k

)
=

b−1∑
k=0

(
b− 1

k

)
− 1 = 2b−1 − 1. 2

Vincent Lynch
This is a good example of selections any number at a time. Each of the nine
digits can either be in the selection or not be in it. That is two possibilities
for each digit, making 29 selections. Once a selection has been made, there is
only one way to arrange them, numerical order. The one selection where no
digits are selected could correspond to the number zero, but this is excluded
by the positive requirement. This leaves 29 − 1 = 511.

TF — I did seriously consider including zero to make the total exactly 29

in the interests of mathematical nicety. Then I got distracted by a lengthy
discussion involving Eddie Kent, Jeremy Humphries and myself concerning
the meaningfulness of the phrase ‘their digits increase when read from left
to right’ when applied to numbers less than 10. So it never happened.
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Solution 251.2 – Thirteen boxes
How big must h be in order to pack thirteen 17× 6× 6 cuboids
into a 33× 23× h box?

Vincent Lynch
I’ve tried quite a number of possibilities. This is the best I have found.
There are 12 cuboids arranged in two layers to leave a hole of length 16 and
width 23− 17 = 6. We now fit the 13th box in the hole.

Let this box make an angle of θ to the horizontal. It is clear from
the diagram that 6 sin θ + 12 cot θ = 16. Rearranging, we have tan θ =
6/(8− 3 sin θ), which we can solve using the iteration

θn+1 = tan−1
6

8− 3 sin θn
.

Starting with θ1 = 30◦ we end with θ = 45.7133◦ to 4 decimal places. Then
the height needed is h = 6 cos θ + 17 sin θ = 16.359 to 3 decimal places.

Θ

Birthday cake
Colin Davies
I had a birthday in March, and my son decorated the cake with the symbols
herewith. How old was I?

(ϕ2−1/ϕ)(ϕ2−1/ϕ)(ϕ
2−1/ϕ)∑

r=ϕ2−ϕ

ϕ(r)
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Solution 250.9 – Product
Show that

∞∏
n=2

n3 + 1

n3 − 1
=

3

2
.

Reinhardt Messerschmidt
Note that

n3 + 1

n3 − 1
=

anbn
cndn

,

where

an = n+ 1, bn = n2 − n+ 1, cn = n− 1, dn = n2 + n+ 1.

For every n ≥ 2, an = n + 1 = (n + 2) − 1 = cn+2, and bn+1 = (n + 1)2 −
(n+ 1) + 1 = n2 + n+ 1 = dn. It follows that for every N ≥ 3,

N∏
n=2

n3 + 1

n3 − 1
=

b2
c2c3

· aN−1aN
dN

=
3

2
· N2 +N

N2 +N + 1
,

therefore
N∏
n=2

n3 + 1

n3 − 1
−→ 3

2
as N −→∞. 2

Solution 252.2 – Can
A tin can has radius r, height h and surface area 1. Choose r
and h to maximize its volume.

Vincent Lynch
This is another maximization problem which can be solved without calculus.
We have that, with the usual notation, 2πr2 + 2πrh = 1, and we seek to
maximize V = πr2h. Consider the quantities 2πr2, πrh, πrh. Their sum
is 1, so their mean 1/3 is fixed. Their product is 2π3r4h2. But this is
2πV 2. The product of numbers with fixed mean or sum is greatest when
the numbers are equal. So 2πr2 = πrh; hence h = 2r. Substituting,
2πr2 + 4πr2 = 1. Therefore

r =

√
1

6π
, h = 2

√
1

6π
and Vmax =

1

3
√

6π
.
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Solution 253.2 – Quadratic
This is like finding Pythagorean triples but slightly different.
Solve the quadratic 3x2 + y2 = z2 for positive integers x, y, z.

Tommy Moorhouse
We consider only solutions in which x, y and z have no factors in common
(they are relatively prime in pairs). Rewriting the quadratic as

3x2 = (z − y)(z + y)

we see that any prime factor of x divides z + y or z − y but not both, since
then x, y and z would have a common factor. Similarly 3 divides, say, z+ y
(the relative signs of z and y are not important). Set 3w = z + y. Then if
s is an odd prime factor of x we must have s|z + y or s|z − y. Thus if x
factorizes into relatively prime factors x = st we have w = s2, z − y = t2.
This leads to the solution set

(x, y, z) =

(
st,

1

2
(3s2 + t2),

1

2
(3s2 − t2)

)
.

The complete set of solutions is obtained by switching the signs of x, y and
z. Note that if x is even then both y and z are odd. But then z − y and
z+ y are even and we can cancel factors of 4 until we have x odd. Thus we
need only consider x odd.

Solutions with small x include (1, 1, 2) (with s = t = 1), and (77, 13, 134)
(s = 7, t = 11).

Problem 254.6 – Two octics
Solve

x8 + 4x5 + 8 = 0.

This occurred in an entry submitted by Noam Elkies to the internet forum
NMBRTHRY in which he asserts amongst other things that its Galois group
is solvable. Therefore it must have a derivable exact solution. And when
you have succeeded in finding all eight roots, try another equation from the
same source, also with a solvable Galois group:

x8 + 16x3 + 32 = 0.

(Just in case you were wondering: no, neither equation has a root near π.)
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Twenty-five years ago (M500 109)

Shakespeare by numbers, Stewart Cresswell
I am sure you have heard of Shakespeare’s attempt to code his plays (2B ∨
2B = ?), but were you aware of his influence on the translation of the
Bible?

Despite his literary ability, in common with many people then (and
now), his spelling was not consistent, and in particular he is known to have
spelt his name in many different ways (you may like to try listing the possible
variants), for example, Shaksper, Shakespere, Shakspeare, etc.

Being a budding numerologist and wanting to ensure that his contribu-
tion was recorded for posterity, William first noticed that Shakspeare has
two syllables which are words in themselves of four and six letters, so 46
would be a suitable key. Then he has a word with King James.

Initially James (who was, after all, 1st and 6th) had trouble with numer-
ical codes, but then he had a brainwave. Why not use a psalm, obviously
the 46th? After all, they have a special place and rota in services. William,
being the wordmonger, noticed that Psalm 46 appeared to be talking about
tidal waves and cessation of wars with the destruction of military weapons,
and suggested that ‘shake’ and ‘spear’ (our spellings) could be incorporated.
As ‘shake’ was the first part of his name, it should be 46 (of course) words
from the beginning, and as ‘spear’ was the last part of his name, it should
be 46 words from the end.

As a result, we have these magnificent passages.

‘Though the waters thereof roar and be troubled, though the mountains
shake with the swelling thereof.’

‘He maketh wars to cease unto the end of the earth; he breaketh the
bow, and cutteth the spear in sunder; he burneth the chariot in the fire.’

Problem 108.1 – Darts
On a standard dartboard, what is the lowest total you can’t score with one,
two, three, . . . , n darts?

TF writes (in 2013) — Whilst reading in M500 109 the extensive solutions
offered by Colin Lindsay and Graham Hawes, who show that the answer is
60n− 17, I cannot help wondering if there is an easy way to get this result.
That is why I have recycled the problem. To make things clear, on the
dartboard in question a single dart can score any of 0, 1, . . . , 22, 24, 25, 26,
27, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 50, 51, 54, 57, 60.
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Front cover: Four points and a square; 48 solutions; see page 14.

M500 Winter Weekend 2014
The thirty-third M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

Friday 3rd – Sunday 5th January 2014.

Cost: £205 to M500 members, £210 to non-members. Get a booking form
from the M500 web site: http://www.m500.org.uk/winter/booking.pdf.

The Weekend provides you with an opportunity to do some non course
based, recreational mathematics with a friendly group of like-minded peo-
ple. The relaxed and social approach delivers maths for fun. In addition,
on Friday we will be running a pub quiz with Valuable Prizes. We hope to
see you there.


