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Solution 215.5 – Pins
What is the probability of a pin of unit length crossing a crack if
dropped at random on to a floor consisting of (I) infinitely long
parallel floorboards of width a, or (II) square blocks of side a?

Steve Moon
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Part I We consider three solutions: a ≥ 2, 1 ≤ a ≤ 2 and a ≤ 1, although
we shall see that the first two cases give the same result.

Case 1 (a ≥ 2, left-hand diagram, above) Let the ends of the pin be X,Y .
The upper and lower lines represent the edges of a floorboard, line AB is
perpendicular to these edges, A′ and B′ are at distance 1 from A and B
respectively, Z is the mid point of AB and θ = ∠AXY . The distance AX
is x.

By symmetry we can assume that pin end X lands somewhere on AZ
and that 0 ≤ θ ≤ π. When X falls on AZ, the pin cannot cross the lower
edge, and it can cross the upper edge only if it falls on AA′, that is, when
0 ≤ x ≤ 1. The probability that 0 ≤ x ≤ 1 is 2/a. Also if X falls on AA′,
the probability that the pin crosses the upper edge is (cos−1 x)/π.

Now we calculate the mean value of (cos−1 x)/π on [0, 1]:

θ([0, 1]) =
1

1− 0

∫ 1

0

cos−1 x

π
dx =

1

π
.
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So for a ≥ 2, the probability of the pin crossing an edge is

P (a ≥ 2) =
2

a
· 1

π
=

2

aπ
.

Case 2 (1 ≤ a ≤ 2, right-hand diagram, above) Here, if X lies on AB′,
the pin can only cross the upper edge. However, if X lies on B′Z, for some
θ the pin crosses the upper edge and for some θ′ it crosses the lower edge
in which case 0 ≤ θ′ ≤ cos−1(a− x).

First we calculate the probability of the pin crossing the upper edge,
with X on AZ, 0 ≤ x ≤ a/2. The probability of X on AZ is obviously 1,
and for any x, 0 ≤ x ≤ a/2 the probability of the pin crossing the upper
edge is (cos−1 x)/π. The mean value of θ on [0, a/2] is

θ([0, a/2]) =
1

a/2− 0

∫ a/2

0

cos−1 x

π
dx =

2

aπ

(
a

2
cos−1

a

2
−
√

1− a2

4
+ 1

)
and so for 0 ≤ x ≤ a/2 the probability of the pin crossing the upper edge is

2

aπ

(
1 +

a

2
cos−1

a

2
−
√

1− a2

4

)
. (1)

Now we calculate the probability of the pin crossing the lower edge for X
on B′Z, a − 1 ≤ x ≤ a/2. The probability of X on B′Z is (2 − a)/a, and
for a − 1 ≤ x ≤ a/2 the probability of the pin crossing the lower edge is
cos−1(a− x)/π. The mean value of θ′ on [a− 1, a/2] is

θ′([a− 1, a/2]) =
1

a/2− (a− 1)

∫ a/2

a−1

cos−1(a− x)

π
dx

=
2

(2− a)π

(
−a

2
cos−1

a

2
+

√
1− a2

4

)
and so for a−1 ≤ x ≤ a/2 the probability of the pin crossing the lower edge
is

2

aπ

(√
1− a2

4
− a

2
cos−1

a

2

)
. (2)

Adding (1) and (2) and being surprised to see the similarity to the result
from Case 1, we obtain

P (1 ≤ a ≤ 2) =
2

aπ
.
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Case 3 (a ≤ 1) There is some range of θ
and θ′ which enables the pin to cross either
edge for any position if X on AZ (0 ≤ x ≤
a/2). So using the method from the second
calculation of Case 2,

θ([0, a/2])

=
2

aπ

∫ a/2

0

(
cos−1 x+ cos−1(a− x)

)
dx

=
2

aπ

(
1 + a cos−1 a−

√
1− a2

)
.
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Since the probability of X on AZ is 1, the probability that the
pin crosses an edge is

P (a ≤ 1) =
2

aπ

(
1 + a cos−1 a−

√
1− a2

)
.

If a = 1, we have P (a ≤ 1) = 2/π, consistent with the result from Case 2.
Also, expanding as a Taylor series about a = 0 gives

P (a ≤ 1) = 1− a/π +O(a3)

and so P (a ≤ 1)→ 1 when a→ 0, as expected.

Including the result P (a ≥ 1) = 2/(aπ) from Cases 1 and 2 gives a
probability function that looks like this.
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Part II After creating a lot of waste pa-
per, I can’t readily make the same method
work for this; so I have attempted it using
multiple integrals. (I suppose this would
work for Part I, with the a ≥ 1 and a ≤ 1
results arising more naturally.) Anyway,
for the end X of the pin we have, as shown
on the right, three independent variables:

0 ≤ x ≤ a, 0 ≤ y ≤ a, 0 ≤ θ ≤ π.
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In this coordinate system any outcome (x, y, θ) can be represented as a point
in a cuboid of volume a2π. The pin will not cross an edge for points given
by∫ π/2

0

∫ a

cos θ

∫ a

sin θ

dx dy dθ+

∫ π

π/2

∫ a−cos(π−θ)

0

∫ a

sin θ

dx dy dθ = a2π+ 1− 4a.

Therefore the probability of not crossing an edge is (a2π + 1 − 4a)/(πa2).
Hence the probability of crossing an edge is

1− a2π + 1− 4a

πa2
=

4a− 1

πa2
.

If a � 1, this tends to 4/(πa), or twice that for floorboards with a ≥ 1 as
the effect of the corners reduces relative to two pairs of parallel sides.

I have so far not made any assumption about a lower bound for a. If
we put a = 1/

√
2, the diagonal is 1 and the probability of the pin crossing

an edge is 1. However, the formula gives (4a − 1)/(πa2) = 2(
√

2 − 1)/π ≈
1.16 > 1, a nonsense. So there is (at least) one more case to cover.

We need to investigate what happens
when 1/

√
2 ≤ a ≤ 1. the upper bound

a ≤ 1 imposes a restriction on the range
of θ, reducing it from 0 ≤ θ ≤ π to
cos−1 a ≤ θ ≤ sin−1 a. (And similarly for
π/2 ≤ θ ≤ π, although based on earlier
results I assume the second integral will
equal the first; so I haven’t done it explic-
itly.)
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1

1

Hence the probability of not crossing a line requires the volume integral

2

∫ sin−1 a

cos−1 a

∫ a

cos θ

∫ a

sin θ

dx dy dθ = 2a2(sin−1 a−cos−1 a)+4a
√

1− a2−2a2−1.
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So the probability of crossing an edge for 1/
√

2 ≤ a ≤ 1 is

1− 2a2(sin−1 a− cos−1 a) + 4a
√

1− a2 − 2a2 − 1

πa2

=
4a2 cos−1 a− 4a

√
1− a2 + 2a2 + 1

πa2
.

To check for sense and consistency, if we put a = 1 this reduces to 3/π,
agreeing with the result for a ≥ 1 earlier. If we put a = 1/

√
2 we obtain 1,

as required.

To summarize, for square tiles of side a, the probability of a pin of length
1 crossing an edge is

4a− 1

πa2
for a ≥ 1,

4a2 cos−1 a− 4a
√

1− a2 + 2a2 + 1

πa2
for

1√
2
≤ a ≤ 1,

1 for a ≤ 1√
2
,

and for floorboards spaced a apart, the probability is

2

aπ
for a ≥ 1,

2

aπ

(
1 + a cos−1 a−

√
1− a2

)
for a ≤ 1.

Problem 255.1 – Elementary trigonometry
This came up while I (TF) was investigating something to do with mutually
touching finite cylinders. I must admit total disbelief initially and having
to resort to a calculator to ‘prove’ it. Show that

cot

(
π

6
− 1

2
arccos

11

14

)
= 3
√

3.

Lytton Jarman
We are sorry to hear that Lytton Jarman, a regular contributor to early
issues of M500, died in September 2013. Our sympathy goes to his widow,
Rosemary.



Page 6 M500 255

Solution 253.2 – Quadratic
This is like finding Pythagorean triples but slightly different.
Solve the quadratic 3x2 + y2 = z2 for positive integers x, y, z.

Dick Boardman
Consider the product

(a2 + 3b2)(c2 + 3d2) = (ac− 3bd)2 + 3(bc+ ad)2.

Thus the product of any two numbers of the form 3x2 +y2 can be expressed
as a number of the same form. Such a set of numbers is called a multi-
plicative domain. Hence, if we take any number of the form a2 + 3b2 and
square it, we get another number of the same form, which will therefore be
a solution to the original equation. Therefore x = 2ab, y = a2 − 3b2 is a
solution.

We can extend this by taking a cube, 4th or any power of a2 + 3b2

and get a number of the same form so that this method gives a solution to
a2 + 3b2 = zn All this generalizes, and in fact for fixed r and s, the set of
numbers of the form a2 + rab+ sb2 forms a multiplicative domain since

(a2 + rab+ sb2)(c2 + rcd+ sd2) = P 2 + rPQ+ sQ2

with
P = ac− sbd, Q = bc+ ad+ rbd,

so that there is a general solution to a2 + rab + sb2 = zn. The theory is
taken from Diophantine Analysis by Robert Carmichael, now available as a
free e-book that may be downloaded from Google.

Vincent Lynch
The equation can be written 3x2 = (z + y)(z − y) and then as

3x

z + y
=

z − y
x

=
λ

µ
.

Using Kramer’s rule or ordinary simultaneous algebra we get

x

2λµ
=

z

λ2 + 3µ2
=

y

3µ2 − λ2
.

If we take λ and µ co-prime with only one even, we have the solutions

x = 2λµ, y = 3µ2 − λ2, z = λ2 + 3µ2.
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Any multiples of these are also solutions. But unlike the Pythagoras case,
z may be even. We can obtain these solutions by having λ and µ both odd.
In this case we need to divide by 2 to give

x = λµ, y =
3µ2 − λ2

2
, z =

λ2 + 3µ2

2
.

Problem 255.2 – Bomb
Tony Forbes
(i) A bomb is released from position (0, 0, h) by an aircraft travelling at
velocity v relative to the ground. The wind has velocity w. Air resistance
may be ignored. Assuming the ground is flat, where will it land and how
long will it take to get there?

(ii) As (i) but air resistance is not ignored. The bomb, travelling at
velocity u relative to the air, experiences an acceleration of −u|u|k for
some small constant k.

Just to give a couple of simple examples, let v = (v, 0, 0) and w =
(0, 0, 0). Then by a familiar calculation, with no air resistance the bomb
lands at (v

√
2h/g, 0, 0) after time

√
2h/g. With air resistance it’s a little

more complicated. The landing point and drop time are now (I think)(
1

k
log
(

1 +
√
k/g v cosh−1 ekh

)
, 0, 0

)
and

cosh−1 ekh√
gk

respectively.

Problem 255.3 – Points of inflexion
Tony Forbes
A point of inflexion occurs at (u, v) on the elliptic curve y2 = x3+ax2+bx+c
if the tangent at (u, v) meets the curve at a triple point. Show that the x
coordinate of a point of inflexion occurs at a root of

3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2. (∗)

Now forget about elliptic curves. Given a quartic of the form (∗) with real
a, b and c, explain why it cannot have more than one real root u for which
u3 +au2 + bu+ c ≥ 0 except possibly when the cubic has zero discriminant.
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Solution 252.3 – Quadratic triangles
(See author’s Problem statement, below.)

Edward Stansfield

Definitions

Curve C: y(x) = ax2 + bx+ c;

discriminant: D = b2 − 4ac > 0;

roots: y(α) = y(β) = 0, where 0 < α < β.

Tangent lines to C at x = α and x = β intersect at point γ = (u, v).

Comment: D > 0⇒ distinct real roots, α < β.

Problem statement

(1) Show that the tangent lines at x = α and x = β have equal and opposite
slope with y′(β) =

√
D.

(2) Find the area A of triangle T with corners {(α, 0), (β, 0), (u, v)} in terms
of D and a.

(3) Find the perimeter P of triangle T in terms of D and a.

(4) Check the dimensions of the results assuming x and y are lengths.

(5) Deduce that all quadratic curves are symmetric about x = 1
2 (α + β)

and uniquely determined by the corners of triangle T .

Proposed solution

(1) Roots α and β are given by

α =
−b−

√
D

2a
and β =

−b+
√
D

2a
(positive square root).

Hence α+ β = −b/a and α− β = −
√
D/a. Therefore

dy

dx
= 2ax+ b ⇒ dy

dx

∣∣∣∣
x=α

= −
√
D and

dy

dx

∣∣∣∣
x=β

= +
√
D.

Hence

y′(β) =
dy

dx

∣∣∣∣
x=β

= − dy

dx

∣∣∣∣
x=α

=
√
D,

as required. �
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(2) The tangent at x = α has equation y = −
√
Dx + p and passes

through point (α, 0). Hence p = α
√
D.

The tangent at x = β has equation y =
√
Dx + q and passes through

point (β, 0). Hence q = −β
√
D.

The two lines y = (α − x)
√
D and y = (x − β)

√
D meet at the point

γ = (u, v). The abscissa u is the solution for x of (α−x)
√
D = (x−β)

√
D,

namely u = 1
2 (α+ β), and the ordinate v is thus v = 1

2 (α− β).

Triangle T therefore has base length β − α and height h = |v| = 1
2 (β −

α)
√
D. Hence the area is A = 1

4 (β − α)2
√
D. Since β − α =

√
D/a this

gives A = D3/2/(4a2). �

(3) Let the perimeter of the isosceles triangle T with base β − α be
denoted by P , and the length of each (non-base) side be g. By Pythagoras’s

theorem we have that g2 + h2 +
(
1
2 (β − α)

)2
. Substituting for h and β − α

then gives g =
√
D(1 +D)/(2a). The perimeter is therefore given by

P = 2g + β − α =

√
D

a

(
1 +
√

1 +D
)
. 2

(4) Let [φ] = L⇔ φ is a length, and [θ] = 1⇔ θ is dimensionless. Since
y(x) = ax2 + bx+ c, we must have that

[y] = L, [x] = L, [a] = L−1, [b] = 1, [c] = L, [D] = 1.

Hence [A] = [a]−2 = L2 and [P ] = [a]−1 = L, as expected. �

(5) To verify symmetry about the line x = 1
2 (α + β) = u, consider the

function y(u± z) in the variable z. Then

y(u± z) = a(u± z)2 + b(u± z) + c = au2 ± 2auz + az2 + bu± bz + c.

Since u = −b/(2a) this becomes

y(u± z) =
b2

4a
∓ bz + az2 − b2

2a
± bx+ c = az2 − b2

4a
+ c.

Hence y(u+z) = y(u−z) and the symmetry of y(x) about x = u = 1
2 (α+β)

is confirmed. �

To confirm the uniqueness of y(x) in terms of the corners α, β and γ of
the triangle T , it is sufficient to be able to determine the coefficients a, b
and c uniquely in terms of α, β and γ. Since

γ = (u, v) =

(
1

2
(α+ β),

1

2
(α− β)

√
D

)
,
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the only parameters we really need are α, β and D. Furthermore, we know
that (α − β) = −

√
D/a and (α + β) = −b/a. These equations give a =√

D/(β − α) and b = −a(α + β) respectively. Finally, from D = b2 − 4ac
we also deduce that c = (b2 − D)/(4a). Hence a, b and c are uniquely
determined from α, β and γ. �
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y = (α− x)
√
D y = (x− β)

√
D

γ =
(

1
2 (α+ β), 1

2 (α− β)
√
D
)

y = ax2 + bx+ c

Multiplication
Without doubt elementary mathematics has an important role to play in
modern society. Just to give a few examples, see how simple multiplication
can solve typical problems that present themselves in everyday life.

(i) If a computer programmer takes three weeks to write a computer
program, how long would it take three programmers to write the same
program? Answer 9 weeks (3× 3).

(ii) If it takes on average 10 seconds for a person to cross a busy road,
how long on average would it take a group of 6 people to cross the same
road under the same traffic conditions? Answer 60 seconds (6× 10).

(iii) If a man takes one hour to dig a hole, how long would it take 5 men
to dig the same hole? Answer 5 hours (5× 1).

Can readers find more examples?

(i) Eight weeks deciding how to divide up the work, 1 week to do it. (ii) Personal

experience—try it and see. (iii) Old Gas Board joke. One digs, the other four are

there to observe, supervise and provide distraction.
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Solution 253.6 – Four sums
Prove the following

1

1 · 4
+

1

6 · 9
+

1

11 · 14
+

1

16 · 19
+ . . . =

π

15

√
1 +

2√
5
,

1

2 · 3
+

1

7 · 8
+

1

12 · 13
+

1

17 · 18
+ . . . =

π

5

√
1− 2√

5
,

1

1 · 11
+

1

13 · 23
+

1

25 · 35
+

1

37 · 47
+ . . . =

(2 +
√

3)π

120
,

1

5 · 7
+

1

17 · 19
+

1

29 · 31
+

1

41 · 43
+ . . . =

(2−
√

3)π

24
.

Tommy Moorhouse
Introduction

We start with some general results. These can be applied to many other
sums of this type, and there are generalizations to other problems.

Lemma 1 If Re a < 1 then
∞∑
k=1

1

k2 − a2
=
−1

2a2

(
2πai

e2πai − 1
+ iπa− 1

)
.

Proof We write
∞∑
k=1

1

k2 − a2
=

∞∑
k=1

1

k2
1

1− a2/k2

=

∞∑
k=1

1

k2

(
1 +

a2

k2
+

(
a2

k2

)2

+ · · ·+
(
a2

k2

)m
+ · · ·

)
= ζ(2) + a2ζ(4) + · · ·+ a2mζ(2m+ 2) + · · · .

The ζ functions can be expressed in terms of the Bernoulli numbers:

ζ(2m) = (−1)m+1 (2π)2mB2m

2(2m)!
.

Writing out the sum and using the definition of the Bernoulli numbers

z

ez − 1
=

∞∑
n=0

Bn
n!
zn

we obtain the desired result with z = 2πia.
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Lemma 2 With a as in Lemma 1

∞∑
k=0

1

(2k + 1)2 − a2
=

π

4a
tan(πa/2).

Proof Note that the sum is over odd integers, and can be written as

∞∑
k=0

1

(2k + 1)2 − a2
=

∞∑
k=1

1

k2 − a2
−
∞∑
k=1

1

(2k)2 − a2
.

The second term on the right is just

1

22

∞∑
k=1

1

k2 − (a/2)2
,

and if we write

S(a) =

∞∑
k=1

1

k2 − a2
,

the sum over odd integers is just S(a) − S(a/2)/4. Writing out the sums
using Lemma 1 and noting that

tan(x) = − ie
ix − e−ix

eix + e−ix

we obtain the result.

The sums

All four sums (and many more) can be reduced to the form set out in
Lemma 2. The first sum, S1 may be written

∞∑
n=0

1

(5n+ 1)(5n+ 4)
,

which in turn may be written as

∞∑
n=0

1

25(n+ 1/2)2 − (3/2)2
.

This can be recast in the form of Lemma 2 as

4

25

∞∑
n=0

1

(2n+ 1)2 − (3/5)2
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so that a = 3/5. From Lemma 2 we have

S1 =
4

25
· π

4 · 3/5
tan

(
3π

10

)
=

π

15
tan

(
3π

10

)
=

π

15

√
1 +

2√
5
.

Similarly the second sum, S2 say, is
∞∑
n=0

1

(5n+ 2)(5n+ 3)
,

which we rewrite as
∞∑
n=0

1

25(n+ 1/2)2 − (1/2)2
.

Now we follow the steps above to find a = 1/5 and

S2 =
4

25
· π

4/5
tan

( π
10

)
=

π

5
tan

( π
10

)
=

π

5

√
1− 2√

5
.

The third sum may be deduced using

S3 =

∞∑
n=0

1

(12n+ 1)(12n+ 11)
=

∞∑
n=0

1

(12(n+ 1/2) + 5)(12(n+ 1/2)− 5)
.

We find that a = 5/6 and

S3 =
1

36
· π

4 · 5/6
tan

(
5π

12

)
=

π

120
tan

(
5π

12

)
=

π

120
(2 +

√
3).

The fourth sum is

S4 =

∞∑
n=0

1

(12n+ 5)(12n+ 7)
=

∞∑
n=0

1

(12(n+ 1/2) + 1)(12(n+ 1/2)− 1)
.

We find a = 1/6 and

S4 =
1

36
· 6π

4
tan

( π
12

)
=

π

24
(2−

√
3).

Incidentally, the expressions for the tangents can be found by using poly-
nomials based on

tan(a+ b) =
tan(a) + tan(b)

1− tan(a) tan(b)

and, for example,
1

tan(5 · π/10)
= 0.



Page 14 M500 255

Rubik’s Clock
Tony Forbes
Whist trying to find something in
M500 110 for ‘Twenty-five years
ago’ I came across one of my early
contributions to this magazine in
which I asked, What is the length of
God’s algorithm for Rubik’s Clock?
Unfortunately, there were some mis-
takes in the details and the analysis
at the end of the article was sadly in-
adequate. So here it is again, hope-
fully with fewer errors.

The device consists of 14 little clocks that just show the hours 1–12.
The aim is to set them all to 12 o’clock by performing a finite sequence of
moves. A typical basic operation advances some of the clocks by one hour
and leaves all others unchanged. A repeated operation counts as a single
move. It turns out that the group Z14

12 is generated by 14 basic operations
represented by the vectors shown in the following table.

A (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) abcdA (1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
aB (0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) bA (1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)
cA (1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) dA (1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)
abA (1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1) abC (0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0)
bcA (1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0) bcB (0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0)
cdA (1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0) cdC (0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1)
adA (1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1) adB (0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

Although the mechanical details need not concern us, you can relate my
notation to a real Rubik’s Clock—they do occasionally turn up in charity
shops—as follows. The vector elements correspond to the 14 clocks, which
I shall call (A,B,C,D, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9). The clocks on the front are

labelled
B 1 A
2 0 4
C 3 D

with 5, 6, 7, 8, 9 on the back of 0, 1, 2, 3, 4 respectively.

The buttons next to the corner clocks are called a, b, c, d, and a move is
created by setting them up or down and then manually rotating one of the
corner clocks through an integer number of hours. Gearing invisible to the
naked eye causes other clocks to move by the same amount. The labels
next to the vectors in the table indicate which buttons are down and which
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corner clock is advanced. And when I say ‘advanced’ I mean that clocks on
the front go clockwise but those on the rear go anticlockwise. You might
find it helpful to view the back of the thing in a mirror.

With a little experimentation you can discover expressions that move
just a single clock other than 0 and 5. For example, A− aB advances just
A by one hour, and bA− abC −A+ aB affects only clock 1.

This means that you can always restore the system with 14 moves.
Given any state of the clocks, first determine how many of A and abcdA
you need to restore clocks 0 and 5. Then work out which sequences of moves
you now need to restore each non-central clock by itself. Add everything
together modulo 12 and you will have a sequence of at most 14 moves that
restores all the clocks. To show that it really does work, you can verify that
this sequence restores the nine clocks visible in the picture and leaves the
other five unchanged:

5aB + 2abC + 11adB + 10bA+ 3bcA+ 6cA+ 11cdA+ 10dA+ 6A.

Can the upper bound of 14 be improved?

Solution 253.5 – Integral

Compute

∫
dθ

sin6 θ + cos6 θ
.

Vincent Lynch
We have

(sin2 θ + cos2 θ)3 = 1 = sin6 θ + 3 sin4 θ cos2 θ + 3 sin2 θ cos4 θ + cos6 θ.

Then

sin6 θ + cos6 θ = 1− 3 sin2 θ cos2 θ(sin2 θ + cos2 θ) = 1− 3

4
sin2 2θ

= 1− 3

4
· 1− cos 4θ

2
=

5 + 3 cos 4θ

8
,

so that

I =

∫
dθ

sin6 θ + cos6 θ
= 8

∫
dθ

5 + 3 cos 4θ
.

Substitute tan 2θ = t; then cos 4θ =
1− t2

1 + t2
and dθ =

dt

2(1 + t2)
. So after a

little work we have

I = 2

∫
dt

t2 + 4
= arctan

t

2
+ C = arctan

tan 2θ

2
+ C.
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Solution 253.7 – Quintic roots
Show that the 27th powers of the roots of x5 + ax+ b sum to 90(ab)3.

Stuart Walmsley
Let the roots of a quintic be r1, r2, . . . , r5 and let Sn denote the sum of the
nth powers of the roots; that is

Sn = rn1 + rn2 + · · ·+ rn5 .

The general quintic can be written

y = x5 − p1x4 + p2x
3 − p3x2 + p4x− p5, (1)

where p1 is the sum of the roots, p2 is the sum of all distinct products of
two different roots and in general pn is the sum of all distinct products of
n different roots.

For the polynomial under consideration,

y = x5 + ax+ b, (2)

so that
p1 = p2 = p3 = 0, p4 = a, p5 = −b.

The problem in hand is then to prove S27 = 90(ab)3.

The Sn are related by recurrence relations known as Newton formulae,
one subset of which is readily derived. Substituting one of the roots rj into
the polynomial (1) gives

r5j − p1r4j + p2r
3
j − p3r2j + p4rj − p5 = 0. (3)

Summing over j and rearranging gives

S5 = p1S4 − p2S3 + p3S2 − p4S1 + 5p5,

which is one of the Newton formulae. This may be extended to higher values
of n. Multiply (3) by rn−5j and sum over j to give

Sn = p1Sn−1 − p2Sn−2 + p3Sn−3 − p4Sn−4 + p5Sn−5, n > 5. (4)

The derivation of the formulae for lower values of n is much more compli-
cated. Here, their form is given directly, emphasizing their regularity. In
an appendix, an indication is given of a derivation.
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As n is reduced one by one, the number of terms is reduced one by one,
keeping a characteristic pattern.

S5 = p1S4 − p2S3 + p3S2 − p4S1 + 5p5,

S4 = p1S3 − p2S2 + p3S1 − 4p4,

S3 = p1S2 − p2S1 + 3p3, (5)

S2 = p1S1 − 2p2,

S1 = p1.

The terms with higher values of n fit this pattern if pn for n > 5 is taken
to be zero. Then, for example,

S6 = p1S5 − p2S4 + p3S3 − p4S2 + p5S1 (− 6p6),

S7 = p1S6 − p2S5 + p3S4 − p4S3 + p5S2 (− p6S1 + 7p7) (6)

and the terms in brackets are zero.

When the formulae in (5) and (6) are applied to the specific polynomial
(2), the results are as follows.

S1 S2 S3 S4 S5 S6 S7

0 0 0 −4a −5b 0 0
(7)

Higher members are then found by using (4) adapted to polynomial (2):

Sn = p1Sn−1 − p2Sn−2 + p3Sn−3 − p4Sn−4 + p5Sn−5, n > 5,
−Sn = aSn−4 + bSn−5, n > 5.

The value for S27 can be built up as a Pascal triangle by repeated use of
(7), each line being equivalent to −S27.

−S27

aS23 + bS22

−(a2S19 + 2abS18 + b2S17)
a3S15 + 3a2bS14 + 3ab2S13 + b3S12

−(a4S11 + 4a3bS10 + 6a2b2S9 + 4ab3S8 + a5S7)
a5S7 + 5a4S6 + 10a3b2S5 + 10a2b3S4 + 5ab4S3 + a5S2

So finally

S27 = a5S7 + 5a4S6 + 10a3b2S5 + 10a2b3S4 + 5ab4S3 + a5S2.

Using the values of Sn, this gives

S27 = − 10a2b2(aS5 + bS4) = 10a2b2(5ab+ 4ab) = 90(ab)3,

which is the required result.
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Appendix

An indication is given of the derivation of the Newton formula for a quintic
with n ≤ 5. There are two forms:

y = x5 − p1x4 + p2x
3 − p3x2 + p4x− p5

= (x− r1)(x− r2)(x− r3)(x− r4)(x− r5).

For the factored form,

dy

dx
= y

(
1

x− r1
+

1

x− r2
+

1

x− r3
+

1

x− r4
+

1

x− r5

)
.

Since y = 0 when x = rj ,

y = (x5 − r5j )− p1(x4 − r4j ) + p2(x3 − r3j )− p3(x2 − r2j ) + p4(x− rj).

Then

y

x− rj
= x4 + rjx

3 + r2jx
2 + r3jx+ r4j − p1(x3 + rjx

2 + r2jx+ r3j )

+ p2(x2 + rjx+ r2j )− p3(x+ rj) + p4

= x4 + (rj − p1)x3 + (r2j − p1rj + p2)x2

+ (r3j − p1r2j + p2rj − p3)x+ (r4j − p1r3j + p2r
2
j − p3rj + p4).

Summing over j gives dy/dx,

dy

dx
= 5x4 + (S1 − 5p1)x3 + (S2 − p1S1 + 5p2)x2

+ (S3 − p1S2 + p2S1 − 5p3)x+ (S4 − p1S3 + p2S2 − p3S1 + 5p4).

This can be compared with

dy

dx
= 5x4 − 4p1x

3 + 3p2x
2 − 2p3x+ p4,

leading to

S1 − 5p1 = −4p1,
S2 − p1S1 + 5p2 = 3p2,
S3 − p1S2 + p2S1 − 5p3 = −2p3,
S4 − p1S3 + p2S2 − p3S1 + 5p4 = p4.

The Newton formulae then follow:
S1 = p1,
S2 = p1S1 − 2p2,
S3 = p1S2 − p2S1 + 3p3,
S4 = p1S3 − p2S2 + p3S1 − 4p4.
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Vincent Lynch
Notation: sk denotes the sum of the kth powers of the roots; σk denotes
the symmetric function of order k. For example,

σ2 = αβ + αγ + αδ + αε+ βγ + βδ + βε+ γδ + γε+ δε

in this case. We can start by writing down the values of the symmetric
functions:

σ1 = σ2 = σ3 = 0, σ4 = a, σ5 = −b.

Then by using Newton’s formula, we can calculate the first few values of sk:

s1 = σ1 = 0, s2 = σ2
1 − 2σ2 = 0, s3 = σ1s2 − σ2s1 + 3σ3 = 0,

s4 = σ1s3 − σ2s2 + σ3s1 − 4σ4 = −4a,

s5 = σ1s4 − σ2s3 + σ3s2 − σ4s1 + 5σ5 = −5b.

This last use shows how the formula works. Now, we substitute a root into
the equation α5 = −aα − b and multiply by αn−5 to give αn = −aαn−4 −
bαn−5. And then sum with the other four similar expressions for the other
roots to give

sn = − asn−4 − bsn−5.

Now we just need to use this iteration formula a rather large number of
times to give

s6 = 0, s7 = 0, s8 = 4a2, s9 = 9ab, s10 = 5b2, s11 = 0, s12 = −4a3,

s13 = −13a2b, s14 = −14ab2, s15 = −5b3, s16 = 4a4, s17 = 17a3b,

s18 = 27a2b2, s19 = 19ab3, s20 = −4a5 + 5b4, s21 = −21a4b,

s22 = −44a3b2, s23 = −46a2b3, s24 = 4a6 − 24ab4,

s25 = 25a5b− 5b5, s26 = 65a4b2,

and finally s27 = 90a3b3 = 90(ab)3. I would love to have found a quick
method for this. Perhaps someone will.

TF writes. I don’t know of any easier way to get this result. I was just
curious to see a simple expression appearing every so often. From the above
we see that s9 = 9ab, s18 = 27(ab)2, s27 = 90(ab)3, and just when you
are thinking s9n is going to be a constant times (ab)n we find that s36 =
315a4b4 − 4a9 and s45 = 1134a5b5 − 5b9 − 45a10b. Oh well.
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Solution 251.6 – Integer
Show that for positive integer n, D(n) is an integer, where

D(n) =

(
109n10

n−1−1 − 1
) (

100n − 10n + 10
)

+ 9(
10n − 1

)2 . (1)

Tony Forbes
This is one of those situations where I started with the answer and went
on to derive a hideous formula after a considerable amount of work. After
trying a few values of n,

D(1) = 123456789,

D(2) = 101112131415161718192021 . . . 90919293949596979899,

you can probably guess what D(n) will look like in general. However, I
cannot see any easy way of proving this directly. So I put it in M500 to give
readers a chance to tell me that I had overlooked something obvious.

Turning the problem around, I shall write down the numbers in order
from 10n−1 to 10n − 1 without leaving any gaps and then try to compute
the resulting n(10n − 10n−1)-digit number, E(n), say. Observing that the
units digit of k is in position n(10n − 1 − k) from the right-hand end of
E(n), we have

E(n) =

10n−1∑
k=10n−1

k10n(10
n−1−k) = 10n(10

n−1)
10n−1∑
k=10n−1

k10−nk.

By differentiating
∑a
k=0 10−kn = (10n − 10−an)/(10n − 1) we obtain

a∑
k=0

k10−kn =
10n − 10−an

(
10n + a(10n − 1)

)
(10n − 1)2

. (2)

Unfortunately I can’t think of anything better to do than substitute a =
10n − 1 and a = 10n−1 − 1 in (2) and subtract. Thus

E(n) =
10n(10

n−1)

(10n − 1)2

(
− 10−n(10

n−1)(10n + (10n − 1)2
)

+ 10−n(10
n−1−1)(10n + (10n−1 − 1)(10n − 1)

))
,

which eventually simplifies to (1) as the M500 reader can verify for himself.
(The masculine form is appropriate. I am told that no woman in her right
mind would waste time on such a futile exercise.)
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M500 Mathematics Revision Weekend 2014
The M500 Revision Weekend 2014 will be held at

Yarnfield Park Training and Conference Centre,

Yarnfield, Staffordshire ST15 0NL

between 16th and 18th May 2014.

For bookings received before 16th April, the standard cost, including ac-
commodation (with en suite facilities) and all meals from dinner on Friday
evening to lunch on Sunday, is £290. The standard non-residential cost,
which includes Saturday and Sunday lunch, is £155. An additional ad-
ministration fee of £20 will be applied to all bookings received after this
date.

There will be an early booking period to the end of February with a
discount of £25 for members and £15 for non-members. Members may make
a reservation with a £25 deposit, with the balance payable at the end of
February. Non-members must pay in full at the time of application and all
applications received after the 28th February must be paid in full before
the booking is confirmed. Members will be entitled to a reduced discount
of £10 for all applications received between 1st March and 15th April.

A shuttle bus service will be provided from Stone station on Friday
afternoon, with a return service to Stone station after the final teaching
session on Sunday. This will be free of charge, but seats will be allocated
for each service and must be requested before 1st May. There is free on-site
parking for those travelling by private transport.

For full details and an application form see the Society web site at
www.m500.org.uk/may.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. We expect to offer tutorials
for undergraduate and postgraduate mathematics OU modules, with the
exception of M347, subject to the availability of tutors and sufficient appli-
cations.

Cambridge group theorist Simon Phillips Norton enjoys this very interesting
property: SIMON × P = NORTON has a unique solution in distinct
decimal digits. Does any M500 reader have a similar property?

If your first name is longer than your surname, try division (÷). You
don’t have to use all ten digits. Only valid decimal representations should
be allowed; so in our example we must insist that N 6= 0.
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