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The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends of the
Open University. By publishing M500 and by organizing residential weekends, the
Society aims to promote a better understanding of mathematics, its applications
and its teaching. Web address: m500.org.uk.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

The May Weekend is a residential Friday to Sunday event providing revision
and examination preparation for both undergraduate and postgraduate students.
For full details and a booking form see m500.org.uk/may.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. For details see m500.org.uk/winter.htm.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to the Editor, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation.

Donald Preece
We are sorry to hear that Donald Preece, Emeritus Professor of Combinatorial
Mathematics at the University of Kent, died on 6 January 2014 at the Western
Infirmary, Edinburgh. He was a virtuoso pianist and some of you will remember
his performance, dressed in his Ruritanian army outfit, as our guest lecturer at
the M500 September Weekend of 2003. He was also our guest speaker in 2010.
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The χ2 distribution
Ken Greatrix
Following the success I had in compiling and using a robust version of the
Standard Normal Distribution [M500 249, page 12] and requiring a contin-
uous reference for another computer project, I set about making a robust
version of the χ2 distribution.

From the internet, I had found the formula for the PDF as

fν(x) =
x(ν−2)/2e−x/2

2ν/2Γ
(
ν/2
) .

Also widely published on the internet is the Gamma function:

Γ(1) = 1, Γ

(
1

2

)
=
√
π, Γ(n+ 1) = nΓ(n),

and if n is an integer, then Γ(n+ 1) = n!.

As before, direct integration of the expanded formula caused overload
errors and program crashes if too many terms were used in the resulting
series. A consequence of using fewer terms in the expansion was that as
the value of ν increased, the results ‘drifted’ away from the values given
in published tables (as in, for example, Elementary Statistics Tables by
Henry R. Neave). This became very noticeable even with values as low as
ν = 10, particularly for the higher percentages of the CDF. (Note that in
the following integrations, for all values of ν, x = 0 ⇒ fν(0) = 0 and also
for the CDF, Fν(0) = 0. For this reason, I need not show a constant of
integration). It is more convenient to separate the formula into two parts:
for ν even and for ν odd.

Firstly for ν even: ν = 2, substituted into the PDF gives

f2(x) =
x0 e−x/2

21 Γ(1)
.

When this expression is simplified, its integration can be expressed as

F2(x) =

∫ x

0

e−z/2

2
dz

(using z as an auxiliary variable). Thus

F2(x) =
[
−e−z/2

]x
0

= 1− e−x/2.
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Repeating this for ν = 4:

f4(x) =
x1 e−x/2

22 Γ(2)
.

Simplifying this and showing it as an integration gives

F4(x) =

∫ x

0

z e−z/2

22 Γ(2)
dz = 1− e−x/2 − x

2

e−x/2

Γ(2)
= F2(x)− x

2

e−x/2

Γ(2)

and, by a similar process,

F6(x) = F4(x)−
(x

2

)2 e−x/2
Γ(3)

.

After repeating this process a few more times, I found that I had a basis
for mathematical induction. In which case, for even values of ν, I assumed
that

Fν+2(x) = Fν(x)−
(x

2

)ν/2 e−x/2

Γ
(
(ν + 2)/2

) .
Making the inductive step,

fν+2(x) =
xν/2e−x/2

2(ν+2)/2Γ
(
(ν + 2)/2

) ,
Fν+2(x) =

∫ x

0

zν/2e−z/2

2(ν+2)/2Γ
(
(ν + 2)/2

)dz,
and applying integration by parts,

g(z) = zν/2, h′(z) = e−z/2, g′(z) =
ν

2
z(ν−2)/2, h(z) = −2e−z/2,

we get

Fν+2(x) =

[
−2zν/2e−z/2

2(ν+2)/2Γ
(
(ν + 2)/2

)]x
0

−
∫ x

0

ν

2

z(ν−2)/2
(
−2e−z/2

)
2(ν+2)/2Γ

(
(ν + 2)/2

)dz.
Simplifying this expression we get

Fν+2(x) =
−xν/2e−x/2

2ν/2Γ
(
(ν + 2)/2

) +

∫ x

0

z(ν−2)/2 e−z/2

2ν/2 Γ
(
ν/2
) dz
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= Fν(x)−
(x

2

)ν/2 e−x/2

Γ
(
(ν + 2)/2

) ,
which is as I had assumed.

The function when ν is odd is not as straightforward. When ν = 1,

f1(x) =
x−1/2e−x/2

21/2Γ
(
1/2
) .

Integrate for the CDF:

F1(x) =

∫ x

0

z−1/2e−z/2

21/2Γ
(
1/2
)dz.

I know of no straightforward technique to complete this integration so I
apply the technique that I demonstrated in my previous article. In brief,
this is: expand the exponential term into its series form, multiply by the
term in x and then integrate each term in the resulting series.

1. Extract any common factor, then show the resulting series as a sum of
two other series—an exponential series and a remainder series.

2. Repeat from 1 on each successive remainder series until sufficient terms
have been generated to give the desired accuracy. The result of this process
is a formula that can be easily put into recursive form ready for computer
programming.

Expand the x-terms of the above formula (I will ignore the constant terms
for the time being):

x−1/2e−x/2 = x−1/2
(

1− x

2
+ · · ·+ (−1)k

(x
2

)k 1

k!
+ . . .

)

= x−1/2 − x1/2

2
+
x3/2

22
1

2!
− x5/2

23
1

3!
+ · · ·+ (−1)k

x(2k−1)/2

2k
1

k!
+ . . . .

Integrate with respect to x:

2x1/2 − 2

3
x3/2

1

2
+ · · ·+ 2(−1)k

2k + 1
x(2k+1)/2 1

2k
1

k!
+ . . . .

(In the following, for convenience, ease of handling and clarity I only con-
sider the relevant section of the series under consideration.) Extract the
common factor, 2x1/2, and then rearrange the result as a sum of two series:

1− x

2
+
(x

2

)2 1

2!
−
(x

2

)3 1

3!
+ · · ·+ (−1)k

(x
2

)k 1

k!
+ . . .
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and the remainder series,

2

3
· x

2
− 4

5

(x
2

)2 1

2!
+

6

7

(x
2

)3 1

3!
+ · · ·+ (−1)k

k + 2

k + 3

(x
2

)k+1 1

(k + 1)!
+ . . . .

The first series is e−x/2, and after x/3 is extracted from the second as a
common factor the process is repeated:

x

3

(
1− 3

5
· x

2
+

3

7

(x
2

)2 1

2!
− 3

9

(x
2

)3 1

3!
+ · · ·+ (−1)k

3

2k + 3

(x
2

)k 1

k!
+ . . .

)
.

The series in the larger brackets can again be split into two component
series, one being e−x/2 and the other the next remainder series:

2

5
· x

2
− 4

7

(x
2

)2 1

2!
+

6

9

(x
2

)3 1

3!
+ · · ·+ (−1)k

k + 2

k + 3

(x
2

)k+1 1

(k + 1)!
+ . . .

with x/5 as its common factor. (In the above expressions, the indexing
integer, k, is nominal and does not necessarily transfer its value between
those expressions.)

Then, after putting all the component parts together (and including the
previously ignored constants and common factors), we arrive at

F1(x) =
2
√
x

21/2Γ
(
1/2
)(e−x/2 +

x

3

(
e−x/2 + · · ·+ x

2k + 3

(
e−x/2 + . . .

)))
.

Since x is likely to remain finite x/(2k + 3) ⇒ 0 as k ⇒ ∞, so with a
sufficiently high value of k, the subsequent terms in this recursive formula
can be ignored. The recursion is started with this high value of k, which is
then reduced in value until k = 0 (for the x/3 term).

In testing this part of the formula in the program I called a subroutine
twice, first with a high value of k (I actually used k = 20,000) and then with
a reducing value until a difference in the two results occurred. From this
process I conclude that a k-value of approximately 350 should be sufficient
for most practical purposes, this being to provide accuracy to six places
of decimals. Anyone using this process should bear in mind that for more
accuracy, a higher value of k may be required.

For increasing odd values of ν, the process is much the same as for the
even values shown above, and with the same result:

F3(x) = F1(x)−
(x

2

)1/2 e−x/2
Γ
(
3/2
) ,
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F5(x) = F3(x)−
(x

2

)3/2 e−x/2
Γ
(
5/2
) ,

F7(x) = F5(x)−
(x

2

)5/2 e−x/2
Γ
(
7/2
) .

Then after applying a process of mathematical induction:

Fν+2(x) = Fν(x)−
(x

2

)ν/2 e−x/2

Γ
(
(ν + 2)/2

) .
There is one more hurdle remaining! There is no direct inverse calculation
for a specific percentage of the CDF and so another interactive process had
to be written into the program for this. It’s a bit more tedium, but presents
no great hardship.

At some stage while compiling this account I felt that I had been ‘bitten
by the bug’ and decided that I should look into other similar integrations.
However, I gave up on this as M500 readers would probably get bored with
repeats of the same process but with different numbers. Perhaps it’s a
known technique, and all I’ve done is ‘re-invent the wheel’. If not then it
would be interesting to discover the accepted method. Also of interest is its
accuracy compared with other methods. With any repetitive process, errors
can accumulate. Just because I have the same result with two sufficiently
high k values which match the tables to four places of decimals doesn’t
mean that I have an accuracy equal to the accepted method.

Instead of repeating the technique for similar integrations, I have de-
cided to construct a general formula for the recursive process. The main
reason is that in the previous article, I claimed that ‘I am certain that this
expression can be proven by induction.’ Such claims should never be made
by a mathematician unless a proof actually exists or can be constructed.
The resulting article is complete but is still in rough draft form and will be
submitted for publication in due course. I had already decided to write this
general proof while compiling the above and that is why I didn’t make an
attempt at a proof here either.

I blink, therefore eye am.

I didn’t sink, therefore I swam.

And in case you are thinking they can’t possibly get any worse,

I mink, therefur I am.
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Solution 253.1 – A Diophantine equation
Given that P = 2, Q = 1, and R = 7 is a solution to the
Diophantine equation

P 4 + 8P 2Q2 +Q4 = R2, (1)

use this to find further solutions.

Tony Forbes
We saw in Vincent Lynch’s article [M500 254] how points on the elliptic
curve

C : y2 = x3 − 16x2 + 60x

yield solutions of (1) via the substitutions

p =
y

2x
, r = p2 + 4− 30

x
, P = |Qp|, R = |Q2r|,

where Q is any integer that makes P and R integers1. So we get these
solutions obtained by successive doubling in the elliptic curve group of C.

x y p r P Q R

30 120 2 7 2 1 7

49

4

105

8

15

28

1441

784
15 28 1441

2076481

176400

812768671

74088000

564031

1210440

2444755743361

1465164993600
564031 1210440 2444755743361

We wish to study this process in a little more detail and for that purpose
it would be useful to have the group addition formula. However, it is not a
great deal of effort to develop the formula for the general curve

y2 = x3 + ax2 + bx+ c, (2)

and so this is what we will do. Denote the group operation by ⊕ and its
identity by O = (∞,∞), the ‘point at infinity’. Given points P1 = (x1, y1)
and P2 = (x2, y2) on the curve, we shall obtain an explicit formula for
P3 = (x3, y3) = P1 ⊕ P2, which is defined as the point (x3,−y3) (note the
minus sign) where the line joining P1 and P2 again meets the curve.

1The elliptic curve in M500 254 was actually Y 2 = 30X3 − 16X2 + 2X but the coeffi-
cient 30 of X3 makes life slightly awkward; so I have transformed it away by substituting
X = x/30, Y = y/30. The only immediate effect is that r has −30/x instead of −1/X.
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The line is

y = λx+ µ, λ =
y2 − y1
x2 − x1

, µ = y1 − λx1,

unless P1 = P2 when we use instead the slope of the tangent at P1 for λ,

λ =
dy

dx
(x1) =

3x21 + 2ax1 + b

2y1
.

For the determination of (x3,−y3), we just substitute y = λx+ µ in (2) to
get (λx + µ)2 − x3 − ax2 − bx − c = 0. But the expression on the left is a
cubic in x with leading coefficient −1 and roots x1, x2, x3. Hence

(λx+ µ)2 − x3 − ax2 − bx− c = −(x− x1)(x− x2)(x− x3) = 0. (3)

Equating coefficients of x2 immediately gives

(x3, y3) =
(
λ2 − a− x1 − x2, − λx3 − µ

)
, (4)

our desired formula. Observe that if the line is vertical, we have P1 ⊕O =
P1 = O ⊕ P1 and (x, y)⊕ (x,−y) = O, which suggests the notation 	(x, y)
for (x,−y). As usual with Abelian groups, we write 2X for X ⊕X, and in
general mX for (m− 1)X ⊕X. An interesting alternative to (4), which has
some merit when c = 0, is (x3, y3) =

(
(µ2− c)/(x1x2), −λx3−µ

)
obtained

by equating the constants in (3).

5 10 15 20 25 30

-100

-50

50

100
S

2 S
3 S
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Let S be the point (30, 120) on C. For 2S, we put a = −16, b = 60,
c = 0, λ = 15/2 and µ = −105. Plugging these numbers into (4) gives 2S =
(x3, y3) = (49/4, 105/8). We can then calculate 3S = 2S⊕S: λ = 855/142,
µ = −4305/71, leading to 3S = (50430/5041, 142680/357911) and another
solution of (1), P = 58, Q = 2911, R = 8487367.

At any point on the curve of the form (x, 0) the tangent is vertical and so
2(x, 0) = O. Therefore points of order 2 occur at the roots of x3+ax2+bx+c,
and when all three are present they together with O form a finite subgroup
isomorphic to Z2 × Z2. From the picture we can identify rational points at
A = (0, 0), B = (6, 0) and C = (10, 0). Thus we have the 4× 4 block on the
left of the partial group addition table, below, where I have also included
some combinations involving small multiples of S.

⊕ O A B C S 2S 3S

O O A B C (30, 120)

(
49

4
,

105

8

) (
50430

5041
,

142680

357911

)
A A O C B (2,−8)

(
240

49
,−1800

343

) (
10082

1681
,−16472

68921

)
B B C O A (5, 5)

(
54

25
,

1008

125

) (
5

841
,

14555

24389

)
C C B A O (12,−12)

(
250

9
,−2800

27

)
(10092,−1013028)

The reader might like to spend some time using (4) to verify the entries. You
can also confirm that each entry in the column headed S yields essentially
the same solution of (1), and similarly for 2S and 3S. With (5, 5), for
instance, p = 1/2, r = −7/4, and Q = 2 gives P = 1, R = 7.

By the Nagell–Lutz theorem [1, §II.5], a rational point (x, y) of finite
order has integer coordinates, and if y 6= 0, then y2 must divide the dis-
criminant, ∆ = 62 · 102 · 42 = 57600. On checking each divisor of ∆, the
only possible candidates are the eight points (30,±120), (2,±8), (5,±5),
(12,±12). But they all become non-integral when doubled as can be seen
from the table (e.g. 2(5, 5) = 2(B ⊕ S) = 2B ⊕ 2S = 2S). So {O,A,B,C}
accounts for all rational points of finite order. Since S has infinite order,
〈S〉, the subgroup generated by S, is isomorphic to Z. So together with the
points of order 2 we have successfully identified the subgroup

G ∼= Z2 × Z2 × Z.

The absence of any obvious candidate for a rational point not in G suggests
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that it is actually the whole group of rationals on C. For a proof we use the
methods of [1, Chapter III].

Let E be the elliptic curve y2 = x3 + ax2 + bx and let ΓE be its group
of rational points. The rank of E is the number of independent points of
infinite order in ΓE . Define E , the dual of E , by y2 = x3−2ax2 + (a2−4b)x.
Applying the same process, a → −2a and b → a2 − 4b, to E gives a curve
which is isomorphic to E via the map (x, y) 7→ (x/4, y/8). The dual of C is

C : y2 = x3 + 32x2 + 16x.

For rational z = r/s, denote by q(z) the square-free kernel of z. This is the
number you get when you remove all squares from rs; so q(−27/98) = −6
for example. We use this function in the definition of the homomorphism

αE : ΓE →
Q∗

Q∗2
,

{
αE(O) = 1, αE(0, 0) = q(b),
αE(x, y) = q(x) otherwise.

Now we are ready to quote a formula from [1] for the rank r of E :

2r+2 = |αE(ΓE)| · |αE(ΓE)|. (5)

It turns out that an element of αE(ΓE) is a positive or negative square-free
divisor d of b, and arises from the point (dM2/e2, dMN/e3) on E , where
(M,N, e) is an integer solution of

N2 = dM4 + aM2e2 +
b

d
e4 (6)

with gcd(M, e) = gcd(N, e) = 1. From the table on page 8 we can see that
1, 2, 3, 5, 6, 10, 15 and 30 belong to αC(ΓC), accounting for all eight positive
square-free divisors of 60. Since C does not exist to the left of the y axis,
negative divisors can be ignored and hence |αC(ΓC)| = 8.

For C, the only square-free divisors of 16 are ±1 and ±2. However, by
working modulo 8 (or otherwise) it can be shown that (6) with a = 32 and
b = 16 has no admissible solution when d = −1 or ±2. But αC(O) = 1.
Therefore |αC(ΓC)| = |{1}| = 1. Putting this and |αC(ΓC)| = 8 into (5)
yields r = 1. The problem is solved; C has rank 1 and

ΓC ∼= Z2 × Z2 × Z.

[1] J. H. Silverman & J. Tate, Rational Points on Elliptic Curves, Springer-
Verlag, 1992.
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More identities involving partitions of an integer
Tommy Moorhouse
Introduction In this article we will denote by Zξ(s) the generating func-
tion for partitions of integers into terms of the form n = k1ξ(pi1) + · · · +
krξ(pir ), where ξ is a function defined on the prime numbers (ordered by i
with p1 = 2). That is,

Zξ(s) = Pξ(0) + Pξ(1)e−s + · · ·+ Pξ(k)e−sk + · · ·,

where Pξ(n) is the number of partitions of n into integers of the given form.
We have seen in previous articles (e.g. M500 220) that we can write

Zξ(s) =
∏
p

1

1− e−sξ(p)
.

An identity We will make use of the identity for t > 0:

1

1− e−t
=

∞∏
j=0

(
1 + exp(−2jt)

)
.

This may be proved in several ways, one of which is to observe that the
left-hand side is the sum 1+e−t+e−2t+ · · · while the right-hand side is the
generating function for partitions into distinct powers of 2. The product on
the right-hand side converges since the terms tend to 1 as j tends to infinity.
Now substitute t = ξ(p)s and multiply over the primes p to find

Zξ(s) =
∏
p

1

1− e−sξ(p)
=
∏
p

∞∏
j=0

(
1 + exp(−2jξ(p)s)

)
. (1)

Applications The rest of the article deals with specific functions ξ. As
an elementary example, take ξ(pi) = 2i− 1. The left-hand side of (1) is the
partition function for partitions into odd integers, while it is easy to check
that the right-hand side is that for partitions into distinct integers. This is
another proof of this well-known result.

Now take n to be an odd integer and take ξ(pi) = ni−1. The left-hand
side of (1) is the generating function for partitions into powers of n, while
the right-hand side is that for partitions into distinct terms of the form
2jnk. For example, if n = 3 the number of partitions of N into powers of 3
is equal to the number of distinct partitions into terms of the form 2j3k.
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As a final example let ξ(pi) = 2i−1. The resulting partitions into powers
of 2 are called binary partitions. Working from the product representation
of Zξ(s) we find the expression for Zξ(s) to be

Zξ(s) =

∞∏
j=0

(
1 + exp(−2js)

)j+1
.

This leads to an expression for the number of binary partitions in terms of
binomial coefficients, which it might be interesting to explore in a future
article.

Notes Partitions into a class of integers where parts can be repeated (e.g.
7 = 3 +3 +1) have something in common with elementary particles called
bosons. Bosons can occupy the same state as other bosons in the same sys-
tem (this lies behind the way lasers work). Here, two parts of the partition
are in the state ‘3’. Partitions into distinct integers from a class have more
in common with fermions, no two of which can be in the same state. This
is the basis of the Pauli exclusion principle. What we have done above cor-
responds in a tongue in cheek way to the process of ‘fermionization’, a way
of matching bosonic and fermionic descriptions of states in string theory.

Further reading Besides The Theory of Partitions by G. E. Andrews
(Cambridge, 1984) and basic number theory texts like Elementary Number
Theory by D. Burton (McGraw–Hill, 1995 (3rd Ed.)) and Introduction to
Analytic Number Theory by T. Apostol (Springer, 1998) the reader with an
inclination towards modern physics might be interested in parts of A First
Course in String Theory by B. Zwiebach (Cambridge, 2009).

Problem 256.1 – Two bisextics
Tony Forbes
Two more equations for you to solve. As usual, exact expressions for the 12
roots are required in each case:

x12 + x9 + 3x7 − 1 = 0, x12 + 3x5 − x3 + 1 = 0.

We would also be interested if anyone knows the correct name for these
things, or in general how to continue the sequence quadratic, cubic, quartic,
quintic, sextic, septic, octic, . . . .

Problem 256.2 – Three rational numbers
Numbers p+ 2q, pq2 and 2pq + q2 are rational. Must p and q be rational?



Page 12 M500 256

Solution 254.1 – Four bottles

Find a two-variable func-
tion that provides a con-
vincing model for the
shape of the stretched
plastic sheeting in this
typical example of four
one-litre bottles of fizzy
stuff that I bought from
my local supermarket.

Observe (for which I have no explanation) that the cross-section
through the centre in the NW–SE direction, a parabola-like
curve, differs from the NE–SW cross-section, which looks as if it
could be a quartic with two local maxima and a local minimum
at the central saddle point.

Ken Greatrix
Firstly, the shape of the plastic wrapping around the bottles. It would
seem to me that the four bottles were placed in a short tube of shrink-wrap
plastic. As the heat was applied, the open ends of the tube would give and
allow the centre to dip. The circumference of the tube would not allow the
same amount of shrinkage in the other direction. Had the process been done
with a continuous tube or enclosed more bottles, the shape would (I think)
have been more symmetrical. While shopping recently, I looked at a tray of
a dozen small bottles for comparison, but the plastic wrapper wasn’t tight
enough to ascertain if this idea was correct.

For convenience, I rotate the photograph by 45◦ clockwise so that the
lines drawn on the plastic become the x and y planes. To model the shape
mathematically, I define a general equation for a quartic surface as

z = a0x
4 + a1x

3 + a2x
2 + a3x+ a4 + b0y

4

+ b1y
3 + b2y

2 + b3y + b4 + c0x
4 + c1x

3y + c2x
2y2 + c3xy

3 + c4y
4.

In this expression c0 and c4 could be superfluous, but are included since the
whole could have been compiled from three separate components. Also a4
and b4 could be reduced to a single constant relating to the height of the bot-
tles. Any 1st or 3rd degree terms would make the result non-symmetrical,
so their coefficients are zero.
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From this full general formula I constructed a reduced general formula:

z = ax4 + by4 + cx2 + dy2 + ex2y2 + f,

where a, b, c, d, e, f are constants.

When both x and y are 0, z = f ; so this defines the height of the
cross (assuming that zero height is the base of the bottles). When y = 0,
z = ax4 + cx2 + f . To give a quartic shape, c is positive and a is negative.
Similarly, when x = 0, z = by4+dy2+f . Since a parabolic shape is required,
b, d are both negative.

After several attempts and a good few hours trying to solve the problem
analytically, I resorted to a trial-and-error approach and I arrived at the
following formula:

z = − 0.1x4 − 0.041y4 + 0.57x2 − 0.03y2 + 0.13x2y2 + 16.
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2

14

16

18

20

-3 -2 -1 1 2 3

14

15

16

I think the root of my problem is that I have been trying ‘force’ a shape
that probably doesn’t fit the maths. If this is the case, although I have
some workings-out that gave me the values of the coefficients (a, b, c, etc.),
I couldn’t model the complete surface. Perhaps there are too many values
and not enough formulae to give the solution analytically.

Carrie Rutherford
Just a note to provide the Editor with some enlightenment. The difference
between the NW–SE and NE–SW cross-section curves mentioned in the
statement of the problem is easily explained. First the plastic sheeting is
stretched over the bottles in one direction to create the vaguely parabolic
curve. Then it is stretched in the other direction whereupon the quartic-like
curve materializes.
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Solution 250.4 – Divisor sum
Let k be a positive integer. Denote by σk(n) the sum of the kth

powers of the (positive) divisors of n.

(i) Show that if k ≥ 2 and nk + 1 divides σk(n), then n must
be prime. For example, σ2(6) = 12 + 22 + 32 + 62 = 50 is not
divisible by 62 + 1 = 37, but σ2(7), which is also equal to 50, is
divisible by 72 + 1, and hence 7 is prime.

(ii) Apart from the example above, are there any k, n ≥ 2 for
which σk(n) = σk(n+ 1)?

Reinhardt Messerschmidt
I will offer a solution to (i) and a partial solution to (ii). We first derive
some inequalities that will be needed. If n is any positive integer, then

σk(n) ≤ nk + (n/2)k + (n/3)k + · · ·
= nk + (n/2)k

[
1 + (2/3)k + · · ·

]
≤ nk + (n/2)k

[
1 + (2/3)2 + · · ·

]
because k ≥ 2

= nk + 4(n/2)k
[
(1/2)2 + (1/3)2 + · · ·

]
= nk + 4(n/2)k

[
π2/6− 1

]
< nk + 2.58(n/2)k.

We will also use the cruder inequality

σk(n) < nk + 2.58(n/2)k ≤ nk + (2.58/4)nk < 1.65nk.

If n is odd, then

σk(n) ≤ nk + (n/3)k + (n/5)k + · · ·
= nk + (n/3)k

[
1 + (3/5)k + · · ·

]
≤ nk + (n/3)k

[
1 + (3/5)2 + · · ·

]
because k ≥ 2

= nk + 9(n/3)k
[
(1/3)2 + (1/5)2 + · · ·

]
.

Now

(1/3)2 + (1/5)2 + · · · =

(∑
n≥1

n−2 −
∑
n≥1

(2n)−2
)
− 1 = 0.75(π2/6)− 1,

therefore
σk(n) < nk + 2.11(n/3)k.
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(i) If nk + 1 divides σk(n), then it also divides σk(n) − (nk + 1). We
have

0 ≤ σk(n)− (nk + 1) < 1.65nk − (nk + 1) < nk + 1,

therefore σk(n) = nk + 1, i.e. n is prime.

(ii) Suppose n is odd. Since k ≥ 2 we have (2.11)3−k < 2−k, therefore

σk(n) < nk + 2.11(n/3)k < (n+ 1)k +
[
(n+ 1)/2

]k
< σk(n+ 1).

Suppose n is even. We have

σk(n)− σk(n+ 1) < nk + 2.58(n/2)k − (n+ 1)k = akn
k − (n+ 1)k,

where ak = 1 + (2.58)2−k. We also have

σk(n)−σk(n+1) > nk+(n/2)k−(n+1)k−2.11
[
(n+1)/3

]k
= bkn

k−ck(n+1)k,

where bk = 1 + 2−k and ck = 1 + (2.11)3−k. Let

rk =
1

ak1/k − 1
, sk =

1

(bk/ck)1/k − 1
.

If n ≤ rk then akn
k − (n + 1)k ≤ 0, therefore σk(n) − σk(n + 1) < 0. If

n ≥ sk then bkn
k − ck(n+ 1)k ≥ 0, therefore σk(n)− σk(n+ 1) > 0.

In summary, we have shown that if k ≥ 2 and σk(n) = σk(n+ 1), then
n must be an even integer strictly between brkc and dske. The values of
brkc and dske for small k are as follows.

k brkc dske
2 3 160
3 10 71
4 26 115
5 63 226
6 151 476

Given the large number of times that σk(n)− σk(n+ 1) jumps between
being negative and being positive in the interval (brkc, dske), it seems pos-
sible that it will land on 0 for more values of (k, n) than just (2, 6). �
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The graph shows the behaviour of σ5(n)− σ5(n+ 1) for even n.

n (even values only)

1.5× 109

1.0× 109

0.5× 109

0

−0.5× 109

−1.0× 109

r5 s5

a5n
5 − (n+ 1)5

σ5(n)− σ5(n+ 1)

b5n
5 − c5(n+ 1)5

Solution 108.1 – Darts
On a standard dartboard, what is the lowest total you can’t
score with one, two, three, . . . , n darts?

David Wild
The lowest total one cannot score with one dart is 23. For n ≥ 2 darts it
will be shown that the first score which cannot be reached is 60(n−1) + 43.

If m, m−1, and m−2 can all be scored with n darts then, by throwing
an appropriate treble, all the integers from m+ 1 to m+ 60 can be scored
with n+1 darts. As we can score 20, 21, and 22 with one dart, up to 82 can
be scored with two darts. Also we can score 38, 39, and 40 with one dart; so
all the scores up to 100 can be reached with two darts. As 101 = 3 · 17 + 50
and 102 = 3 · 20 + 3 · 14, all the numbers up to 102 = 60(2− 1) + 42 can be
reached with two darts.

As 100, 101, and 102 can be scored with two darts, we can see all the
numbers up to 162 = (3− 1) · 60 + 42 can be reached with three darts. So
in general we can reach all the numbers up to (n− 1) · 60 + 42 with n darts.

We now have to show that when n >1 we cannot reach 60(n− 1) + 43.
As 60(n−1)+43 > 60(n−1)+40, all of the darts must score more than 40.
Therefore each dart must score either 50 or a triple. As 60(n − 1) + 43 ≡
1 (mod 3) at least two of the darts must score 50 ≡ 2 (mod 3). Since
50 · 2 + (n− 2) · 60 = 60 · (n− 1) + 40 < 60 · (n− 1) + 43 this is not possible.

Therefore the minimum score which cannot be reached with n darts is
23 when n = 1, and 60n− 17 when n > 1.
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Problem 256.3 – U-boat
Tony Forbes
A U-boat is constrained (by a damaged rudder perhaps) to moving in the
x–z plane, −300 m ≤ z ≤ 0 m, with a top speed of 4 m/s in either direction.
Fortunately you know where the (x, z) plane is, and the U-boat cannot
outrun your destroyer’s top speed of 10 m/s. However, the ASDIC is not
working; so the U-boat’s x and z coordinates are not available. You can
drop depth charges at a maximum rate of one per second. A hit anywhere
in a box 80 m× 20 m× 20 m containing the entire submarine will put it out
of action.

Devise a strategy for attacking the U-boat.

Problem 256.4 – Two septics
Tony Forbes
Two more equations for you to solve. Like the octics in M500 254 and
the bisextics in this issue they have only a few terms. As usual, exact
expressions for the seven roots are required in each case:

x7 + 7x4 + 16 = 0, x7 + x6 + 3x5 + 3 = 0.

Finding these things can be quite fun, too. At M500 we would be interested
if you discover a 3- or 4-term equation of high degree that admits an exact
solution but does not split into small polynomials with integer coefficients.

Problem 256.5 – Lost energy
Behold a simple circuit containing two ca-
pacitors of C farads each. The diagram
represents the initial state, with 100 volts
across C1. When the switch is closed, cur-
rent flows from C1 to C2. Thus C1 loses
charge to C2 until they equalize at 50 volts
across each capacitor.

���

C1 0 v

100 v

C2 0 v

0 v

Initially the total energy in the system is the 1002C/2 = 5000C joules
stored in C1. But when the circuit has settled down after the switch is
closed, the energy is split between the two capacitors at 502C/2 joules each,
making a total of 2500C joules. What has happened to the other 2500C
joules?
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Front cover: A pancyclic graph consisting of 40 vertices and 45 edges.
Observe that a 3-cycle occurs at vertices (1, 2, 3) and a 4-cycle at (33, 34,
35, 36). Now see if you can find an example of a k-cycle for each of k = 5,
6, 7, . . . , 40. (In case it’s not clear from the picture, there really is an edge
at {1, 3} and also at {33, 36}.)


