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Lottery tickets
Tony Forbes
Perhaps some of you followed that excellent television program [1] involv-
ing Dara O Briain, Marcus du Sautoy and two teams of invited celebrities
engaging in mathematical problem-solving competitions. The idea is that
one team always uses trial and error, intuition, magic and other similar
methods to feel their way towards the answer to the given question whereas
their opponents must resort to mathematics and logic. Curiously, as the
game progresses it is not usually obvious which side has the better chance
of winning. On one occasion they were required to

find the minimum number of tickets you need to buy to guar-
antee a win in a lottery where (i) there are 14 numbered balls,
(ii) you choose three numbers, (iii) three balls are drawn by the
lottery machine and (iv) you win if and only if you match two
or more numbers.

Both teams failed to answer the question and it was left for Marcus du
Sautoy to reveal a 14-ticket solution involving two S(2, 3, 7)s. Construct a
Steiner system S(2, 3, 7) on the points {1, 2, . . . , 7}, say

{{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}}, (∗)

and purchase 7 tickets corresponding to its 7 triples. By definition [2] this
will cover each of the 7 choose 2 pairs from {1, 2, . . . , 7}. Do the same for
{8, 9, . . . , 14} by adding 7 to the numbers in (∗). So now you have 14 tickets.
The three balls are drawn. They must contain at least two small numbers
or at least two large numbers. And since you are covered for each of these
possibilities, you are guaranteed a prize. But if I remember correctly, only
one half of the problem was solved. So I offer the other half to M500 readers:
Do 13 tickets suffice to guarantee a prize in the 14-ball lottery?

Whilst watching the programme it occurred to me (and to many others
I expect) that there exists a Steiner system S(3, 6, 22). And moreover it
might have some relevance to the UK lottery with its 49 balls, where you
choose six numbers, they draw six balls and a ticket wins if and only if it
matches at least three numbers.

Now imagine temporarily that the number of balls is reduced to 44, an
even number that is two times 22. As a simple calculation shows, a Steiner
system S(3, 6, 22) consists of (22 choose 3)/(6 choose 3) = 77 sextuples and
contains each of the 22 choose 3 = 1540 triples. So you can buy 77 tickets
to cover numbers in the set A = {1, 2, . . . , 22} and a prize is guaranteed if
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the draw contains three numbers from this set. Similarly another 77 tickets
will cover the set B = {23, 24, . . . , 44}. But amongst the six balls drawn
there must be three A numbers or three B numbers (or both). Therefore
at least one of your 154 tickets will win a prize.

We will need to exhibit an actual Steiner system S(3, 6, 22) to make this
work. Writing out 77 sextuples will take a lot of space. Fortunately there
exist systems generated from a set of starter blocks under the action of the
mapping z 7→ z+ 2 (mod 22). To see how this might work, you can confirm
that 7 · 22/2 = 77. Take these seven blocks,

{0,1,2,3,6,19}, {0,1,5,8,12,13}, {0,1,7,9,14,16}, {0,2,4,7,12,18},
{0,2,11,13,14,21}, {0,3,4,9,10,13}, {0,3,5,7,11,17},

and apply z 7→ z + 2 (mod 22) to create seven distinct orbits of 11 blocks
each. When you use this system to buy your lottery tickets you must of
course remember to add 1 and 23 to cover the numbers 1–22 and 23–44
respectively.

Well, that’s very nice, but the UK lottery still has 49 balls. Fortunately
there also exists a Steiner system S(3, 6, 26) [3], and in a similar manner we
can use its 130 blocks to make (26 choose 3)/(6 choose 3) = 130 tickets from
the set B′ = {23, 24, . . . , 48} bringing the total to 77 + 130 = 207. This
works extremely well. We don’t have to worry about the missing number,
for if the draw includes 49, the other five balls will still contain either three
A numbers or three B′ numbers.

However, 207 is rather large; so instead we shall try to extend the two
S(3, 6, 22) method. Divide the numbers into three sets

A = {1, 2, . . . , 22}, B = {23, 24, . . . , 44}, C = {45, 46, . . . , 49},

use the S(3, 6, 22) for A and B and purchase one more ticket,

{1, 45, 46, 47, 48, 49}.

Now we are covered if the draw contains three As or three Bs or three Cs
and so the only pattern that might cause trouble is {A,A,B,B,C,C}.

One simple way of patching things up is to buy another 20 tickets,

{n, 45, 46, 47, 48, 49}, n = 2, 3, . . . , 21,

which brings the total to 175. Since the draw contains two A numbers we
do not need n = 22.
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I am certain that 175 is not optimal. There ought to be a better alter-
native to the wasteful 21-fold repetition of the five C numbers. But I shall
gladly leave it for others to construct a superior strategy. So here is another
problem for you to solve.

Find a set of less than 175 UK National Lottery tickets that
guarantees a prize.

A far as I am aware the minimum number is not known.

Finally, I suppose I ought to explain that using the two S(3, 6, 22)s
method for purchasing lottery tickets is not a sensible thing to do in real
life—unless you are feeling very charitable. The UK lottery’s terrible odds
still apply and you will not necessarily recover your costs.

Notes

[1] School of Hard Sums, first broadcast on Dave in 2012.

[2] Recall from M500 195, or elsewhere, that a Steiner system S(t, k, v)
consists of a pair (V,B), where V is a v-element set and B is a collection
of k-element subsets of V , usually called blocks, or lines if the system has
some geometric significance, with the property that each t-element subset
of V is contained in precisely one block. For the S(2, 3, 7) at the beginning,
V is the set {1, 2, 3, 4, 5, 6, 7} and

B = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}}.

In this example each line has three points and a point occurs at the inter-
section of three lines, The system corresponds to a finite projective plane of
order 2. Observe also that the system is cyclic—it can be generated from
{1, 2, 4} under the action of z 7→ z + 1 (mod 7) on identifying 0 and 7. The
interested reader is invited to draw the thing on a sheet of paper, repre-
senting the points as dots and the blocks as (not necessarily straight) lines.
And you might like to prove by constructing it from scratch (or otherwise)
that the S(2, 3, 7) is unique up to isomorphism.

[3] A Steiner system S(3, 6, 26) can be built from these ten blocks,

{0,1,2,4,7,13}, {0,1,3,12,19,21}, {0,1,5,9,10,16}, {0,1,6,8,15,24},
{0,1,11,17,18,22}, {0,1,14,20,23,25}, {0,2,6,14,19,22},
{0,2,12,15,16,23}, {0,3,13,15,18,25}, {0,5,13,17,19,23},

by applying z 7→ z + 2 (mod 26) to make ten 13-block orbits.
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Trouble with infinity
Ken Greatrix
After reading an article by Sebastian Hayes, Contra Cantor, M500 223, pp
1–9, I realize that I’m not the only one to question the theory of something
existing beyond infinity. Here’s my version of the situation, in which I
also describe the confusion I experienced with the mathematical concept of
infinity.

When I was a small boy at primary school, we didn’t have infinity. We
had sums, and multiplication tables, and fractions, and percentages, and
take-aways (not the burger and chips variety), and decimals. Life was much
simpler then, and all seemed to be getting along fine.

At secondary school we became more formal, with arithmetic, algebra
and geometry. So just when I was beginning to feel we were now getting
into proper maths, problems started to rear their ugly heads to spoil the
fun.

In the geometry class, the teacher told us about parallel lines, the state-
ment being in the true Euclidean fashion that parallel lines never meet, no
matter how far they are produced. This was OK so far, but then an older
boy from a higher year told me quite authoritatively that parallel lines meet
at infinity. Aside from this being a contradiction of the geometry teacher’s
information, and not knowing much about these things at that time, I con-
jured up a vision of a machine with a continuous strip of paper passing
over a rotating drum, with two pencils clamped a set distance apart. When
infinity was eventually achieved (I had a very vivid imagination then!), the
two pencils would magically collide. Disregarding the magic, how can these
clamped pencils loosen themselves and then collide; thus causing the paral-
lel lines to ‘meet at infinity’? By taking the simplistic (or Euclidean) view,
two lines either converge at a point with an angle which is always apparent,
diverge from a point with an equally apparent angle or they don’t meet at
all.

Leaving the geometry aside, at some stage during the advanced arith-
metic classes we were given the impression that infinity was a very big
number and then some more. Not a very good definition here, but even
more confusingly; ‘one divided by zero equals infinity’ and ‘one divided by
infinity equals zero’.

After leaving school I went to college as part of an engineering appren-
ticeship scheme. The above definition of infinity was debunked by the maths
lecturer. Extending the above statement, he went on to say that ‘Also note
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that two divided by infinity equals zero, therefore two equals one. This is a
contradiction. Hence infinity is not a number and should not be treated as
such.’ (Which incidentally is why I didn’t express the above statements in
strict mathematical symbolic language.) Unfortunately, this spark of clarity
was just as quickly extinguished. This was because also during this same
session, he went on to talk about the Aleph-Null, and the myriad of infinities
which follow on from it.

So far, this is not a very good start for a budding mathematician (which
I thought of becoming later on; at this particular time I was trying to be-
come an electrical engineer). I wonder if other students have been similarly
confused by these awkward definitions in their early maths life.

I am pleased to report that things begin to pick up some time later.
Several years after finishing my apprenticeship training and its associated
further education, I enrolled with the OU.

The concept of infinity that is appropriate here as a property of positive
integers is:

If a number n exists, then so does the number n+ 1.

The Archimedean principle.

Thus, if we are able to describe any number, n, by counting from 0 we
then have a set of values, a0, such that 0 ≤ a0 < n. So we begin to see the
concept of the counting numbers being boundless.

This principle is extended into the account of Hotel Hilbert (David
Hilbert, 1862–1943). This hotel has an infinite number of rooms with an
infinite number of guests in residence. When another guest arrives, all the
existing guests are moved up one room—leaving the first room empty for
the newcomer.

Although I find the concept of Hotel Hilbert acceptable, the associated
explanation that ‘infinity-plus-one is still infinity’ doesn’t seem to follow
on from the Archimedean Principle. But this is yet another example of the
misuse of infinity. If n+ 1 = n, should we assume that n =∞? By simple
algebraic manipulation we get 1 = 0, which is just another contradiction.

Returning to the above counting scheme:

If n+ 1 exists, then so does (n+ 1) + 1; (or n+ 2).

If n+ 2 exists, then so does (n+ 2) + 1; (or n+ 3).

etc.

If n+ a0 exists, then so does (n+ a0) + 1 (for some value a0 given above).
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So by continuing with this process, we eventually reach the value n+n,
or 2 · n.

At this stage, we could say that ‘twice infinity is infinity’. We could
even quote another example of this by the experience of Hotel Hilbert: an
infinite number of guests now arrive requiring accommodation. To achieve
this, each existing guest is moved into the room number which is twice their
current room number. This means that all the odd-numbered rooms are
now available for the new arrivals. The falsehood is the same as before—
infinity is not a number. Since it is not a number, as mathematicians we
should say in preference that if n exists, then so does the number 2 · n.

In any case if we have the expression 2 · n = n, are we to assume that
n =∞? The only value to fit this is n = 0, a long way short of infinity.

Continuing with the counting sequences: If 2 · n exists, then so does
2 · n + 1. This process continues and during its continuation we make the
numbers 3 ·n, 4 ·n, 5 ·n, . . . , a1 ·n+a0 (for 0 ≤ a1 < n), . . . , until we count
to n · n, or n2.

Cantor (Georg Ferdinand Ludwig Philip Cantor, 1845–1918) uses this
situation to show that sets of such numbers are denumerable. He does this
by taking two numbers j and k (where 1 ≤ j, k ≤ n), and forming sets of
fractions of the type j/k, arranged in a square matrix. The cardinality of
this set of fractions is n2 – inclusive of those which have a common factor
in the numerator and denominator, or otherwise reduce to a common value.
His arrangement here does seem to be somewhat superfluous, in that after
constructing a square containing these number pairs, he then shows that a
diagonal line can be drawn back and forth through each of these pairs. He
could have taken any size of square, divided it into cells and then counted
them to show the same result. The same is true of any size of rectangular
table also. As a simple example of this, construct a square and divide it into
10 by 10 cells. Then take the number pairs, (0, 0), (0, 1), (0, 2), . . . , (9, 9)
and put each in a different cell. No matter how you arrange these (randomly
if you wish), the end result is the same in that each cell has only one number
pair as its contents, no pair of numbers is repeated and there are no empty
cells. The cells in this grid could be numbered by their columns and rows
such that a one-to-one mapping could be constructed between each cell’s
reference and each of the above number pair. The end result in all of these
is to demonstrate that if n exists, then so does n2. (Or in the rectangular
case, the cardinality of the table is the product of two positive numbers.)
To be fair about this, the diagonal line passes through all the cells and thus
shows that each number pair is counted once.
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We could continue the counting process, but rather than be long-winded
about it, I’ll take stock of the situation so far. Taking the wider view of
the situation: by a process of counting we have constructed a system of
addition, which leads to multiplication and then to exponentiation. I refer
to this as the ‘Archimedean Process’.

Thus if n exists, then so does an · nn + an−1 · nn−1 + · · · + a1 · n + a0
(for 0 ≤ ai < n).

This polynomial format also indicates that any number can be expressed
in any radix. Furthermore, the (Archimedean) process doesn’t end with nn;
it continues with nn+1, nn+2, . . . , nn+m, etc.

It would seem that for any (positive) numbers, n and m, 0 ≤ m,n there
exists mn. (I have swapped m with n to illustrate the next example.)

Of particular interest here is when m = 10, which brings me to another
of Cantor’s proofs.

Depending on which version you read, Cantor considers a list of all
(decimal) numbers between 0 and 1. For the purposes of this exercise, you
are led to believe that each of the numbers in this list is either irrational or
never-ending in some way. From this list, he takes the first digit of the first
number, the second digit from the second number, the third digit from the
third number, and so on—this is Cantor’s ‘Diagonal Process’. Each of these
digits is changed in some way and then they are placed back together (in
their original decimal columns) to make a new number. He then states that
this new number cannot be the same as any other number in the original list
because there is at least one digit different in at least one decimal column.

I believe that Cantor may have fallen into a trap! I think he may have
assumed that because there are an infinite number of rows and of columns,
then the number of rows and the number of columns in his list are equal.

Returning to my above consideration of mn, when m = 10. If n exists,
then so does 10n.

My strategy is to choose a number, n, and write every n-digit decimal
in a list. This list has 0.000 . . . as its first entry and 0.999 . . . as its last.
Any other decimal number is somewhere between these extremes. It is also
the case that if I multiply each decimal in my list by 10n, the result is the
counting or indexing set of numbers (for convenience, I include 0 in the
counting numbers).

For n = 1, 101 = 10. So there are 10 1-digit numbers.

For n = 2, 102 = 100. So there are 100 2-digit numbers. Etc.
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These lists consist of n columns and 10n rows. No matter how I choose
n digits and arrange them into a decimal number, I can always find that
number in my list. This can be demonstrated (if not proven by mathematical
induction) as follows:

If I have a full list of decimal numbers in n columns then I could regard
these numbers as a string of characters (in the computer sense of a string-
variable). For each string, I can append each of the digits 0 to 9 in turn,
then convert the string back to decimal format and so increase my row count
ten-fold for each extra column. Another way to think of this extension of
decimal places is to multiply each existing decimal by 10n+1, add each of the
numbers 0 to 9 to make ten new numbers and then divide these by 10n+1

to revert to the required decimal listing. In simple mathematical terms:
10 · 10n = 10n+1.

This indicates that if n exists, then so does the number, n + 1 (in the
number of columns), and that if n exists, the so does 10n and also 10n+1

(in the number of rows).

Another example is given in chapter 2 of Computability and Logic by
George S. Boolos & Richard C. Jeffrey, (3rd edition, Cambridge University
Press 1991, an OU set book for M335, M381, etc.). From the note (‘following
Georg Cantor’) in the text, I assume that this next process is a variation of
the above diagonal process.

They consider the set of all sets of positive integers. This set has the
empty set, the set of every positive integer and every set in between these
two extremes as its subsets. They then describe a type of diagonal process
in which if a certain number does not appear in a certain subset then a new
set comprising of these ‘missing’ numbers is compiled. Then it is claimed
that this new set cannot be a subset of the original set.

Looking at this situation from the Archimedean Process, it would seem
to me to be a case of: if n exists, the so does 2n.

I have a set of n items (in this case the numbers from 1 to n), from
which I make subsets comprising of combinations of 1, 2, 3, . . . , r items.
The total number of subsets derived by combinations of r-choices from a
list of n items can be seen in the nth row of Pascal’s Triangle.

The sum of the entries in each row is 2n, as I will now demonstrate. The
first few rows of the Triangle have this property, so assume this of the kth
row. Adjacent pairs of numbers are added together to make the (k + 1)th
row, so that each number is added twice (with the exception of the 1s at
each end which are only added once), once to its neighbour to the left, and
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once to the right. Two 1s are placed, one at each end of the (k + 1)th row
so that its sum becomes 2k+1. Since the Pascal’s Triangle is well defined as
are the associated combinations that it enumerates, I fail to see why this
‘extra’ set isn’t a subset of the original set.

It is always difficult to challenge a long-standing principle. Has it sur-
vived all these years because nobody dared to challenge it, or is it really
true? Has it merely been accepted without question? It is obvious to me
that something is wrong. But I wonder if I am missing something in the ar-
gument. Have I taken a view that is too simplistic? Is my maths of sufficient
standard to understand the problem (let alone to solve it)? Is there some
sort of process which takes effect in the transition from finite to infinite?
Even with these doubts and although this essay is presented in an informal
manner, I don’t think that the mathematical content is sufficiently strong
to prove that Cantor was wrong about (all) non-denumerable sets.

However, I will claim that there is a contradiction between the vari-
ous techniques (mostly mathematical induction) used in my arguments and
Cantor’s theory. I suspect that the diagonal process, although a powerful
mathematical tool, is used inappropriately in the examples quoted above. I
think that the use of such a process should be restricted to a tabular format
(in any number of dimensions, n such that n ≥ 2) where the count of entries
in each dimension is the same, so that each (n− 1)-dimensional surface in-
tersects with the main diagonal. Analysis using the diagonal process within
this table should be restricted to the main diagonal.

Finally, a puzzle for you to ponder: Take a finite-length line. Are the
points on this line denumerable? I suggest the following will indicate that
they are, even with the knowledge that between any two points on a line
there are an infinite number of points.

Mark the point at one end of this line with 0 and the other end with
1, now divide the line into ten segments of equal length and so mark the
points 0.1, 0.2, . . . , 0.9. Divide each segment into ten equal smaller segments
and mark the remaining points 0.01, 0.02, . . . , 0.99. Divide each subsequent
segment into ten and continue this process until every point is marked with
a decimal number. If my reasoning is correct and the decimal numbers are
denumerable then so are the points on a line.

Teacher: “What’s the largest number?”

Small boy: “1,000,000,000,000,000,000,000,000,000.”

Teacher: “What about 1,000,000,000,000,000,000,000,000,001?”

Small boy: “Well, I nearly got it right, didn’t I?”
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Solution 255.1 – Elementary trigonometry
This came up while I (TF) was investigating something to do
with mutually touching finite cylinders. I must admit total dis-
belief initially and having to resort to a calculator to ‘prove’ it.
Show that

cot

(
π

6
− 1

2
arccos

11

14

)
= 3
√

3. (1)

Ken Greatrix
I made a half-hearted attempt at the solution, in the expectation that after
several hours and as many pages of scribbling, I still wouldn’t have achieved
anything. So, you can imagine my surprise when the answer ‘popped out’
after just two pages. I have therefore decided to offer my solution in its
almost draft form. With this in mind, I suspect that there’s an easier way
to the same solution.

I started by converting the cotangent expression into its tangent:

cot θ = tan
(π

2
− θ
)
,

cot

(
π

6
− 1

2
cos−1

11

14

)
= tan

(
π

2
− π

6
+

1

2
cos−1

11

14

)
= tan

(
π

3
+

1

2
cos−1

11

14

)
.

I then thought it might be easier if I changed the arccos to an arctan, with
the idea that it would be cancelled by the required tangent. By applying
Pythagoras’s theorem, the third side of a right-angled triangle is

√
75, or

5
√

3. This now has the form of a tangent of the sum of two angles.

tan

(
π

3
+

1

2
tan−1

5
√

3

11

)
=

tan
π

3
+ tan

(
1

2
tan−1

5
√

3

11

)

1− tan
(π

3

)
tan

(
1

2
tan−1

5
√

3

11

) . (∗)

At this stage I began thinking that ‘tan of arctan is’ . . . ‘an awkward
expression when 1

2 is stuck in the middle of it’. Perhaps the half-angle
formula might help. My books only give expressions for sine and cosine, so
I combined these for the tangent. Later I looked on the internet and found
the same expression:

tan
θ

2
=

√
1− cos θ

1 + cos θ
.
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From the original expression, we know that cos θ = 11/14; so

tan
θ

2
=

√
1− 11/14

1 + 11/14
=

√
3

5
.

Since tanπ/3 =
√

3, the above expression (∗) simplifies to
√

3 +
√

3/5

1−
√

3 ·
√

3/5

from which, after cancelling and rearranging, we get 3
√

3 as required.

Tony Forbes

The problem concerning ‘something to
do with mutually touching finite cylin-
ders’ is illustrated on the right. There
are seven cylinders of radius 1. A short
cylinder of length 2 in the centre is sur-
rounded by six cylinders of length d in
such a manner that each makes contact
with each other. What is d?

In fact d = 7
√

3, as I discovered after a brief search on the internet.
Equality (1) on the previous page arose from my own attempt to reproduce
this answer, which I shall now try to explain.

O

A
B C D E

F
2Θ

Remembering that the cylinders (most of which have become rectangles
in the diagram) have radius 1, we see from the equilateral triangle surround-
ing the circle that |AB| = |BC| = |AF | =

√
3. Also from triangle OBE we



Page 12 M500 257

get |BD| = |DE|. So we want to show that |BD| = 3
√

3. I suspect someone
will tell me this is obvious. In case it isn’t we proceed as follows.

Let the two cylinders meet at angle 2θ. Then |BD| = cot θ and to get
another equation involving θ we look at quadrilateral OFAB. Its internal
angles are O = 60◦ + 2θ, A = 120◦ − 2θ, B = F = 90◦; so, using the cosine
rule, we get two expressions for the length of the diagonal FB:

8− 8 cos(60◦+ 2θ) = |FB| = 6− 6 cos(120◦− 2θ) = 6 + 6 cos(60◦+ 2θ).

Hence cos(60◦ + 2θ) = 2/14 and therefore

|BD| = cot θ = cot

(
1

2
arccos

2

14
− π

6

)
= 3
√

3. (2)

Unfortunately I must have forgotten some of the details of my original
analysis of the seven cylinders problem because (2) is not quite the same as
(1); but at least we now have another interesting expression for 3

√
3.

Steve Moon
We can use standard identities to write

cot(A−B) =
1

tan(A−B)
=

1 + tanA tanB

tanA− tanB
. (∗)

Here, set A = π/6; so tanA = 1/
√

3.
Also set B = 1/2 arccos(11/14) and as-
sume 0 < B < π/2. Hence cos 2B =
11/14. Consider the triangle on the
right. Then

tan 2B =
5
√

3

11
=

2 tanB

1− tan2B
.

2 B 11

14
5 3

Hence 5
√

3 tan2B + 22 tanB − 5
√

3 = 0 and solving for tanB gives

tanB =
−22±

√
222 + 300

10
√

3
=

6

10
√

3
=

√
3

5
.

on taking the positive root. Now substitute back into (∗)

cot

(
π

6
− 1

2
arccos

11

14

)
=

1 + 1/
√

3 ·
√

3/5

1/
√

3−
√

3/5
= 3
√

3.
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Problem 257.1 – Sorting by prefix reversal
Tony Forbes
A permutation of (1, 2, . . . , n) is sorted by repeatedly reversing an initial
segment. To see how this works, observe that (1, 3, 2) can be sorted in three
moves,

(1, 3, 2) → (3, 1, 2) → (2, 1, 3) → (1, 2, 3),

where to make things clear I have underlined the initial segments that are
being reversed. Moreover it is not too difficult to show that three moves are
always sufficient and sometimes necessary.

A problem is suggested. What is the maximum number of moves, P (n),
required to sort n elements by prefix reversal? Alternatively, P (n) is the
smallest number such that all n! permutations are generated by starting
from (1, 2, . . . , n) and applying up to P (n) prefix reversals in all possible
ways. This has also been called the flipping pancake problem presumably
because its solution provides a convenient and efficient method of rearrang-
ing a stack of pancakes into descending order of area.

Obviously P (1) = 0, P (2) = 1, and, as we have seen, P (3) = 3. With
a little more brute force one can compute P (4) = 4 and P (5) = 5. How-
ever, when n = 6 six moves generate only 718 permutations, all except
(4, 6, 2, 5, 1, 3) and (5, 3, 6, 1, 4, 2); thus you can confirm that P (6) = 7.
Thereafter the difficulty seems to increase very rapidly. So we suggest a
possibly much easier problem for you to solve.

Either prove that P (n) + 1 ≤ P (n + 1) ≤ P (n) + 2, or find a
counter-example.

According to Neil Sloane’s The On-Line Encyclopedia of Integer Sequences,
the exact value of P (n) is known only up to P (17) = 19, the +2 jumps
occurring at n = 3, 6 and 11. So there is still an infinite amount of work to
be done.

In the absence of a complete solution to the problem of sorting by prefix
reversal one can nevertheless try to obtain a good estimate for P (n). In
1978 the upper bound P (n) ≤ (5n + 5)/3 was published by W. H. Gates1

& C. H. Papadimitriou. This has since been improved at least for large n
to P (n) ≤ 18n/11 + O(1) by B. Chitturi, W. Fahle, Z. Meng, L. Morales,
C. O. Shields, I. H. Sudborough & W. Voit in 2008. It is sobering to measure
thirty years of progress by comparing 18/11 ≈ 1.636 with 5/3 ≈ 1.667.

1Founder of a large computer software company
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Solution 229.3 – Harmonic triangle
In this array of fractions

1

1
1

2

1

2
1

3

1

6

1

3
1

4

1

12

1

12

1

4
. . .

the first fraction in the nth row is 1/F (n, 1) = 1/n and the rth

fraction in the nth row is

1

F (n, r)
=

1

F (n− 1, r − 1)
− 1

F (n, r − 1)
,

r = 1, 2, . . . , n. Find a general formula for F (n, r). Hence show
that each row is symmetrical about the centre.

Steve Moon
Given

1

F (n, 1)
=

1

n
and

1

F (n, r)
=

1

F (n− 1, r − 1)
− 1

F (n, r − 1)
,

we try to establish a pattern by computing

1

F (n, 2)
=

1

F (n− 1, 1)
− 1

F (n, 1)
=

1

n− 1
− 1

n
=

1

n(n− 1)
,

1

F (n, 3)
=

1

F (n− 1, 2)
− 1

F (n, 2)
=

2

n(n− 1)(n− 2)
,

1

F (n, 4)
=

1

F (n− 1, 3)
− 1

F (n, 3)
=

6

n(n− 1)(n− 2)(n− 3)
.

From the pattern of these results we conjecture that

1

F (n, r)
=

(n− r)!(r − 1)!

n!
. (∗)

We prove this by induction. We know that the proposition is true for r = 1,
2, 3, 4. Assume (∗) is true for general r = k. For r = k + 1,

1

F (n, k + 1)
=

1

F (n− 1, k)
− 1

F (n, k)

=
(n− k − 1)!(k − 1)!

(n− 1)!
− (n− k)!(k − 1)!

n!
=

(n− (k + 1))!k!

n!
.
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So if (∗) is true for r = k, it is true for r = k+ 1; hence (∗) holds for r ≥ 1.

The general expression required is

F (n, r) =
n!

(n− r)!(r − 1)!
.

Furthermore by replacing r by n− r + 1 we get

F (n, n− r + 1) =
n!

(n− n+ r − 1)!(n− r + 1− 1)!
= F (n, r).

Observe, by the way, that all this works even when the second parameter
exceeds n, giving F (n, r) = 0 for r > n.

Problem 257.2 – Three hands
Tony Forbes
On a standard 12-hour analogue clock, for what proportion of the day is the
second hand in the smaller angle between the minute hand and the hour
hand, as happens, for example, at 02:01:05 and 06:01:15 but not at 02:01:20
and 06:01:45.

Yes, I know there are times when the angle is exactly 180◦ (exercise for
reader: when?). However, they form a null set and can therefore be ignored.
And while we are on the subject, can you always tell the time even if the
three hands are indistinguishable?

Problem 257.3 – Divisor sums of powers
This came up recently on the internet forum NMBRTHRY. As usual, let
σ(n) denote the sum of the divisors of n. Then σ(16) = 1 + 2 + 4 +
8 + 16 = 31 = 1 + 5 + 25 = σ(25). A problem suggests itself. When
does σ(a2) = σ(b2)? More generally, find solutions of σ(ak) = σ(bk).
In NMBRTHRY, Zhi-Wei Sun reported solutions with k = 3, including
σ(481422413) = σ(483749113), but I am unaware of any non-trivial exam-
ples with k ≥ 4.
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Solution 231.1 – Log 12

Let Sr =

∞∑
n=4, n composite

1

nr
. Show that

log 12 = 2 log π + S2 +
S4

2
+
S6

3
+
S8

4
+ . . . .

Steve Moon
First focus on the terms on the right-hand side in Sr:

S2 =
1

42
+

1

62
+

1

82
+

1

92
+

1

102
+

1

122
+ . . . ,

S4

2
=

1

2

(
1

44
+

1

64
+

1

84
+

1

94
+

1

104
+

1

124
+ . . .

)
,

S6

3
=

1

3

(
1

46
+

1

66
+

1

86
+

1

96
+

1

106
+

1

126
+ . . .

)
,

. . .
S2m

m
=

1

m

(
1

42m
+

1

62m
+

1

82m
+

1

92m
+

1

102m
+

1

122m
+ . . .

)
.

Now the first terms form an infinite sum, which is a Taylor series:

1

42
+

1

2
· 1

44
+

1

3
· 1

46
+ · · ·+ 1

k
· 1

42k
+ . . . = − log

(
1− 1

42

)
.

Similarly the second terms sum to − log(1− 1/62) and so on. Therefore

S2 +
S4

2
+
S6

3
+
S8

4
+ . . . = −

∞∑
n=4, n composite

log

(
1− 1

n2

)

=

∞∑
n=4, n composite

log

(
1

1− 1/n2

)
. (1)

From the properties of the Riemann zeta function, ζ(s),

ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

1

1− 1/ps
.
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Therefore

ζ(2) =
π2

6
=

∏
p prime

1

1− 1/p2
,

log ζ(2) = 2 log π − log 6 =
∑

p prime

log
1

1− 1/p2
.

So we now have

log 6 = 2 log π −
∑

p prime

log
1

1− 1/p2
. (2)

Also we can relate the infinite sums in (1) and (2):

∞∑
n=2

log
1

1− 1/n2
=

∑
p prime

log
1

1− 1/p2
+

∑
n≥4, n composite

log
1

1− 1/n2

= 2 log π − log 6 + S2 +
S4

2
+
S6

3
+
S8

4
+ . . . . (3)

Now 1/(1− 1/n2) = n/(n− 1) · n/(n+ 1). Hence

∞∑
n=2

log
1

1− 1/n2
=

∞∑
n=2

log
n

n− 1
+

∞∑
n=2

log
n

n+ 1
. (4)

If we form a few terms on the right-hand side,

log 2 + log
2

3
+ log

3

2
+ log

3

4
+ log

4

3
+ log

5

4
+ . . . ,

we note that log
(
(k+ 1)/k

)
+ log

(
k/(k+ 1)

)
= 0. So by ‘telescopic cancel-

lation’ the infinite sum (4) is convergent and

∞∑
n=2

log
1

1− 1/n2
= log 2.

Hence from (3),

log 2 = 2 log π − log 6 + S2 +
S4

2
+
S6

3
+
S8

4
+ . . . ,

which on rearranging becomes

log 12 = 2 log π + S2 +
S4

2
+
S6

3
+
S8

4
+ . . . .
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Solution 255.3 – Points of inflexion
A point of inflexion occurs at (u, v) on the elliptic curve y2 =
x3 + ax2 + bx + c if the tangent at (u, v) meets the curve at a
triple point. Show that the x coordinate of a point of inflexion
occurs at a root of

3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2. (∗)

Now forget about elliptic curves. Given a quartic of the form
(∗) with real a, b and c, explain why it cannot have more than
one real root u for which u3 + au2 + bu+ c ≥ 0 except possibly
when the cubic has zero discriminant.

Steve Moon
For a point of inflection we require d2y/dx2 = 0. Differentiating

y2 = x3 + ax2 + bx+ c

implicitly,

2y
dy

dx
= 3x2 + 2ax+ b, 2

(
dy

dx

)2

+ 2y
d2y

dx2
= 6x+ 2a.

So

d2y

dx2
=

3x+ a− (dy/dx)2

y

=
1

y

(
3x+ a− (3x2 + 2ax+ b)2

4y2

)
=

2y2(3x+ a)− (3x2 + 2ax+ b)2

4y3

=
4(x3 + ax2 + bx+ c)(3x+ a)− (3x2 + 2ax+ b)2

4y3

and this is 0 for a point of inflexion. Hence we need only consider the
numerator and equate it to zero. Expanding 4(x3 + ax2 + bx+ c)(3x+ a)−
(3x2 + 2ax+ b)2 gives the criterion

3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2 = 0

for a point of inflexion, as required.
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Tony Forbes
The second part of the problem seems to be rather difficult and I have no
idea how to solve it.

However, if we are allowed to cheat, by knowing that (∗) arises from the
elliptic curve y2 = x3 + ax2 + bx+ c (and hence the cubic x3 + ax2 + bx+ c
has non-zero discriminant), there is a straightforward explanation. A point
of order 3 on an elliptic curve is precisely a point of inflexion. You can see
this by performing the construction described in M500 256, pp 6–9, or look
it up in a text book such as Rational Points on Elliptic Curves by J. H.
Silverman & J. Tate.

We now use the fact that the real points of order 3 on a real elliptic
curve, together with the point at infinity, form a group isomorphic to Z3.
So there must be precisely two of them, and they must occur at (u,±v) for
some root u of (∗) and for real v =

√
u3 + au2 + bu+ c > 0. If you draw

a typical elliptic curve, you can probably see where they are. For example,
on y2 = x3 − 3x2 + 2 they occur at (2.46789,±1.30191) approximately.

-0.5 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

1

2

Since the relation between roots and inflexion points is reversible, this means
that when a, b and c are real, (∗) must have precisely one real root u for
which u3 + au2 + bu+ c is positive. We would be very interested if anyone
can prove this directly without reference to elliptic curves.

On the other hand, it is known that the group of complex points of
order 3 together with the point at infinity is isomorphic to Z3 × Z3. Now
there must be eight distinct points of inflexion (u,±v), two for each of the
four complex roots of (∗).
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Problem 257.4 – Tracks
Tony Forbes
Your MP3 player has tracks, T0, T1, . . . , Tn of lengths t0, t1, . . . , tn re-
spectively. The device selects tracks at random and plays them in full.
The probability of track Ti getting selected is proportional to ti. For what
fraction of the time would you expect to be listening to track T0?

If the general problem is too difficult, try this special case instead. Sup-
pose you have 30 minutes of music, one long track, T0 of 20 minutes, and
n ≥ 1 short tracks of 10/n minutes each. So, when the MP3 player makes
its selection, T0 is chosen with probability 2/3 and each of the others with
probability 1/(3n). I imagine you can expect to be listening to T0 quite
often, but for what fraction of the time I unfortunately cannot say, except
that it is significantly greater than 2/3.

Problem 257.5 – The diameter graph
Take a set S of n points in the plane. Construct G, the diameter graph of S,
as follows. Vertices of G are the points of S. If A and B are vertices, then
{A,B} is an edge of G if |A−B|, the Euclidean distance between points A
and B, is the maximum over all pairs of points in S. Prove that G contains
no cycle of even length.

For example, if the points form an equilateral triangle, every distance
between a pair is of maximum length, and hence G is the triangle graph,
K3, which indeed has no even cycles. On the other hand, if the points of S
form a square, the graph consists of two disjoint components each with two
vertices joined by an edge and, again, it is even cycle free.

The problem was described in an article by Filip Morić & János Pach
— Two and a Half Billion Years of Distance Research, Geombinatorics
XXII, April 2013, Celebrating the Centenary of Paul Erdős’ Birth — where
they say it appeared in the problem section of Jahresbericht der Deutschen
Mathematiker–Vereinigung 43 (1934), posed by Heinz Hopf and Erika Pan-
nwitz.

The ‘Two and a Half Billion Years’ refers to Erdős’s estimate of his own
age. In his youth the Earth was known to be approximately two billion years
old. However, by the time Erdős reached old age the figure had increased
to something nearer 4.5 billion.
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Fermat’s Last Theorem and Pythagorean triples
Peter L. Griffiths
The quadratic equation difference consists of one term 4pq calculated as
follows: (p+ q)2− (p− q)2 = 4pq, where p and q are integers. This one term
4pq has an integer square root if p and q both have integer square roots.
This does not apply if the power n is an integer higher than 2, where there
will always be two terms or more.

The cubic equation difference consists of two terms 6p2q + 2q3; that is,

(p+q)3−(p−q)3 = (p3+3p2q+3pq2+q3)−(p3−3p2q+3pq2−q3) = 6p2q+2q3.

If the alternating series is omitted, we have p3 + 3p2q + 3pq2 + q3 comp
6p2q + 2q3. If p = q, then these two expressions will be equal, that is
p3 + 3p3 + 3p3 + p3 = 6p3 + 2p3. This equality when p = q applies to all
the powers. But 8p3 clearly has an integer cube root, whereas 6p2q+ 2q3 at
first sight does not have an integer cube root unless p = q. Can 6p2q + 2q3

have an integer cube root without p equalling q?

Assume p > q, so that q = p/r, where r is equal to or greater than 1.
Then 6p2q+ 2q3 can be expressed as 6p2p/r+ 2(p/r)3; this equals p3(6/r+
2/r3). The number r = p/q must be rational, but the cube root of 6/r+2/r3

is almost certainly irrational unless r = 1; that is, (6r2 + 2)1/3 is almost
certainly irrational unless r = 1; that is unless p = q.

More generally, for the integer nth root greater than 2, the nth root of

2

((
n

1

)
rn−1 +

(
n

3

)
rn−3 +

(
n

5

)
rn−5 + . . .

)
will be irrational unless r = 1. The product 2× 2n−1 will always have 2 as
the nth root. Where n is an integer other than 1, the real nth root of 2 is
always an irrational number special to that particular value of n. It likewise
follows that the (1 − 1/n) root of 2 is also irrational but this corrects the
irrationality of 21/n.

In the FLT case under examination, 21/n always remains unchanged,
but in the event of r exceeding 1, 21−1/n will change and will cease to
correct the irrationality of 21/n, which will persist uncorrected. This is the
factorial mathematical explanation and proof of Fermat’s Last Theorem.
It is a matter of distinguishing rational from irrational amounts, and the
correction of irrationality.

Erratum In M500 255, ‘3x2 = (z + x)(z − y)’ on page 6, line −6 should
read ‘3x2 = (z + y)(z − y)’.
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