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Solution 254.4 – Gaussian binomial coefficients
For positive integer n, define

[n]q = 1 + q + · · ·+ qn−1, [n]q! = [1]q [2]q . . . [n]q

and as with the usual binomial coefficient

(
n

k

)
=

n!

k! (n− k)!
,

define the Gaussian binomial coefficient by[
n

k

]
q

=
[n]q!

[k]q! [n− k]q!
.

Show that

[
n

k

]
q

is a polynomial in q with integer coefficients.

Stuart Walmsley
Introduction The problem concerns a system of polynomials, defined so
that it closely parallels the integers, factorials and binomial coefficients.

The binomial coefficients are familiar constructs arising successively
from the positive integers n = 1, 2, 3, . . . and the factorials n! = 1·2·3·· · ··n
leading to the binomial coefficients themselves:(

n

k

)
=

n!

k!(n− k)!
. (1)

The Gaussian binomial coefficients arise from a system in which poly-
nomials replace integers,

[n]q = 1 + q + q2 + · · ·+ qn−1,

with ‘factorials’
[n]q! = [1]q · [2]q · · · · · [n]q

and hence the Gaussian binomial coefficients,[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
. (2)

The binomial coefficients, which are rational numbers from the defini-
tion, may be shown to be integers and the objective of the problem is to show
that the Gaussian binomial coefficient, formally a quotient of polynomials,
can be simplified to a single polynomial.
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Two ways of proving the integer results will be considered and it will be
shown that they can be adapted to deal with the case of the polynomials.
The first method uses a recurrence relation and the second the properties
of factors.

The integer recurrence relation From (1)(
n

k

)
=

(
n

n− k

)
and (

n

0

)
=

n!

0!n!
= 1 =

(
n

n

)
with the usual convention that 0! = 1. The lowest binomial coefficients can
then be evaluated in the form of the Pascal triangle.(

0

0

)
= 1(

1

0

)
= 1

(
1

1

)
= 1(

2

0

)
= 1

(
2

1

)
= 2

(
2

2

)
= 1

It is seen that all these values are integers. It is well known (and easily
proved) that (

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
. (3)

Thus all coefficients are sums of coefficients with lower n. Since the lowest
values are integers, all values are integers.

The polynomial recurrence relation The same path is followed for the
Gaussian system. From (2),[

n

k

]
q

=

[
n

n− k

]
q

and

[
n

0

]
q

=
[n]q!

[0]q! [n]q!
=

[
n

n

]
q

.

It will be assumed that [0]q! = 1 as in the integer case and shown later that
this is consistent. Then [

n

0

]
q

= 1 =

[
n

n

]
q

.

In addition [
2

1

]
q

=
[2]q!

[1]q! [1]q!
= 1 + q
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so that the top of the ‘Gaussian’ Pascal triangle can be written thus.[
0

0

]
q

= 1[
1

0

]
q

= 1

[
1

1

]
q

= 1[
2

0

]
q

= 1

[
2

1

]
q

= 1 + q

[
2

2

]
q

= 1

All the terms are polynomials.

The strategy is now to examine the polynomial equivalent of each side
of (3) and to see if a modification can be found which leads to equality. We
have [

n

k

]
q

=
[n]q!

[k]q! [n− k]q!
=

[n− 1]q!

[k]q! [n− k]q!
[n]q, (4)

[
n− 1

k − 1

]
q

+

[
n− 1

k

]
q

=
[n− 1]q!

[k − 1]q! [n− k − 1]q!

(
1

[n− k]q
+

1

[k]q

)
=

[n− 1]q!

[k − 1]q! [n− k − 1]q!
· [k]q + [n− k]q

[k]q [n− k]q

=
[n− 1]q!

[k]q! [n− k]q!

(
[k]q + [n− k]q

)
.

Thus[
n

k

]
q

= {const}[n]q,

[
n− 1

k − 1

]
q

+

[
n− 1

k

]
q

= {const}([k]q + [n− k]q).

The factor {const} being the same in the two cases. Then

[n]q = 1+q+q2+· · ·+qn−1 = 1+q+q2+· · ·+qk−1+qk+qk+1+· · ·+qn−1,

[k]q + [n− k]q = 1 + q + q2 + · · ·+ qk−1 + 1 + q + q2 + · · ·+ qn−k−1.

If it is assumed that k ≤ n − k, then the number of terms in each is the
same and [n]q = [k]q + qk[n− k]q. Correspondingly[

n

k

]
q

=

[
n

n− k

]
q

=

[
n− 1

k − 1

]
q

+ qk
[
n− 1

k

]
q

, k ≤ n− k,

giving a recurrence relation.
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This is consistent for

[
n

1

]
q

and

[
n

n

]
q

if both are assigned the value 1.

Thus all the Gaussian binomial coefficients are sums of coefficients with
lower n, some multiplied by a power of q. Since the lowest values are
polynomials, all values are polynomials.

Integer factorization Consider the (ordinary) binomial coefficients(
n

k

)
=

n!

k! (n− k)!
=

(
n

n− k

)
.

Without loss of generality consider k ≤ n− k. Then(
n

k

)
=

n(n− 1) . . . (n− k + 1)

1 · 2 · · · · · k
; (5)

that is, the quotient of the product of k successive integers divided by the
product of the the first k integers. For each j in the sequence 1 to k, there
is a multiple of j in any sequence of k successive integers. Hence each such
j can be cancelled out and the rational number is reduced to an integer.
Hence all binomial coefficients are integers.

Polynomial factorization The basic component

[n]q = 1 + q + q2 + · · ·+ qn−1

can be rewritten

[n]q =
qn − 1

q − 1
.

In this way, the Gaussian binomial coefficient can be rewritten[
n

k

]
q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(q − 1)(q2 − 1) . . . (qk − 1)
.

Thus each integer j, in the binomial coefficient form (5), is replaced by a
polynomial qj − 1. The roots of qj − 1 are the j distinct jth roots of 1:

exp(2πik/j), k = 0, 1, . . . , j − 1. (6)

All the roots are non-real, except for +1 corresponding to k = 0 and −1 for
k = j/2 when j is even.

Factors which are polynomials with integer coefficients can be found for
progressively higher values of j, there being one new factor for each new
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integer. These are the cyclotomic polynomials, the roots of which are the
terms (6) for which k is co-prime to j.

Let fj = (qj − 1) and let tj represent the corresponding cyclotomic
polynomial. Then

f1 = t1 = q − 1 giving t1 = q − 1,
f2 = t1t2 = q2 − 1 giving t2 = q + 1,
f3 = t1t3 = q3 − 1 giving t3 = q2 + q + 1;

in general, for a prime number p, the only factors are 1 and p and so
tp = qp−1 + · · ·+ 1;

f4 = t1t2t4 = q4 − 1 giving t4 = q2 + 1,
f6 = t1t2t3t6 = q6 − 1 giving t6 = q2 − q + 1,
f8 = t1t2t4t8 = q8 − 1 giving t8 = q4 + 1.

Then every term in the Gaussian binomial coefficient (4) is given by a prod-
uct of cyclotomic polynomials, one for each of the factors of the underlying
integer. All the factors in the denominator are cancelled by factors in the
numerator by an extension of the arguments used for the integer case, re-
ducing the polynomial quotient to a single polynomial, as required.

Tony Forbes
We can continue computing cyclotomic polynomials as above to obtain

t9 = q6 + q3 + 1,
t10 = q4 − q3 + q2 − q + 1,
t12 = q4 − q2 + 1,
t14 = q6 − q5 + q4 − q3 + q2 − q + 1,
t15 = q8 − q7 + q5 − q4 + q3 − q + 1,

t16 = q8 + 1 (and in general t2r = q2
r−1

+ 1),
t18 = q6 − q3 + 1,
t20 = q8 − q6 + q4 − q2 + 1,
t21 = q12 − q11 + q9 − q8 + q6 − q4 + q3 − q + 1.

At this point (or even before) one might be tempted to conjecture that the
coefficients are always ±1 or 0, and indeed this is true—until you get to

t105 = q48 + q47 + q46 − q43 − q42 − 2q41 − q40 − q39 + q36 + q35 + q34

+ q33 + q32 + q31 − q28 − q26 − q24 − q22 − q20 + q17 + q16 + q15

+ q14 + q13 + q12 − q9 − q8 − 2q7 − q6 − q5 + q2 + q + 1.
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Solution 244.6 – Flagpole integral
Compute ∫ π/2

α

(
tan θ −

√
tan2 θ − α2

)
dθ,

where 0 < α < π/2 is a constant. Ideally an exact solution is
desired. We are also interested in a good approximation on the
assumption that 2/α2 is the Earth’s radius in metres.

Steve Moon
To postpone the potential problems as θ → π/2, we first tackle the integral
with limits α, β such that 0 < α < β < π/2. Thus∫ β

α

(
tan θ −

√
tan2 θ − α2

)
dθ =

[
log sec θ

]β
α
−
∫ β

α

√
tan2 θ − α2 dθ. (1)

Postpone the evaluation of the log sec term for now. In the remaining inte-
gral, make the substitution

tan θ = αx, dθ =
αdx

1 + α2x2
,

so that the limits α and β become

a =
tanα

α
and b =

tanβ

α

respectively. Then, after a bit of work,

−
∫ β

α

√
tan2 θ − α2 dθ = −

∫ b

a

√
x2 − 1

(x2 − 1) + (1 + 1/α2)
dx

= −
∫ b

a

dx√
x2 − 1

+

∫ b

a

1 + 1/α2

(x2 − 1) + (1 + 1/α2)
· dx√

x2 − 1
. (2)

Now ∫ b

a

dx√
x2 − 1

=
[
cosh−1 x

]b
a

=
[
log
(
x+

√
x2 − 1

)]b
a
.

Undo the substitution tan θ = αx:

−
∫ b

a

dx√
x2 − 1

= −

[
log

(
tan θ

α
+

√
tan2 θ

α2
− 1

)]β
α

. (3)
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Combining the log sec term from (1) and the first integral from (2) evaluated
as (3) gives

[
log sec θ

]β
α
−

[
log

(
tan θ

α
+

√
tan2 θ

α2
− 1

)]β
α

=

[
log

α

sin θ +
√

sin2 θ − α2 cos2 θ

]β
α

= log
sin θ +

√
sin2 θ − α2 cos2 θ

2
(4)

on letting β → π/2.

We are left with the second integral in (2),

J =

∫ b

a

[
1 + 1/α2

(x2 − 1) + (1 + 1/α2)

]
dx√
x2 − 1

.

Some ‘trial and error’ is needed here. The form of the square-bracketed
component indicates we might expect an arctan or arctanh in the integral
result. Consider the functions

f(x) =
x√

x2 − 1
and g(x) = A tanh−1(Bf(x))

with A and B constants. Then

f ′(x) =
−1

(x2 − 1)
√
x2 − 1

and g′(x) =
AB√
x2 − 1

· 1

B2x2 + 1− x2
.

Now set A = B =
√

1 + α2 so that

g′(x) =
1 + 1/α2

√
x2 − 1

· 1

x2 + 1/α2
,

which is the integrand we seek. Hence

J =

[√
1 + α2 tanh−1

x
√

1 + α2

√
x2 − 1

]b
a

.

Again, unwind the substitution tan θ = αx:

J =

[√
1 + α2 tanh−1

√
1 + α2 sin θ√

sin2 θ − α2 cos2 θ

]β
α

.
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Now we can take the limit as β → π/2 :

J =
√

1 + α2

(
tanh−1

√
1 + α2 − tanh−1

√
1 + α2 sinα√

sin2 α− α2 cos2 α

)
. (5)

Using the log form of the arctanh function, tanh−1 x =
1

2
log

1 + x

1− x
, equal-

ity (5) becomes

J =
A

2

(
log

1 +A

1−A
− log

√
sin2 α− α2 cos2 α+A sinα√
sin2 α− α2 cos2 α−A sinα

)
, (6)

where A =
√

1 + α2, as before. Finally, combining (4) and (6),∫ π/2

α

(
tan θ −

√
tan2 θ − α2

)
dθ = log

sinα+
√

sin2 α− α2 cos2 α

2

+
A

2
log

(1 +A)
(√

sin2 α− α2 cos2 α−A sinα
)

(1−A)
(√

sin2 α− α2 cos2 α+A sinα
) . (7)

Tony Forbes
To get an approximate formula for small α we compute the first few terms
in the Taylor expansion about α = 0 of the right-hand side of (7). Rather
than do it by hand I shall instead use Mathematica:∫ π/2

α

(
tan θ −

√
tan2 θ − α2

)
dθ =

−2 logα+ log 4− 1

4
α2

+
12 logα− 6 log 4− 5

96
α4 +

2
√

6

27
α5 +O(α6). (8)

If α =
√

2/R and R = 6378137 is the Earth’s radius in metres, the α2 term
of (8) can be used to obtain a good approximation for the average length of
the shadow cast by a 1 metre flagpole at a location where the sun is directly
overhead at midday, assuming it is observed between sunrise and sunset on
a cloudless day (see Vincent Lynch’s analysis in M500 244, pp 16–17):

2R

π

(
α2

2
+
−2 logα+ log 4− 1

4
α2

)
≈ 5.52635,

which is correct to five decimal places, possibly more. On reflection, I think
the Taylor expansion is too interesting to have delivered as if by magic. So
for enlightenment we would be very interested if anyone would like to show
how to get at least the first term on the right of (8).
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Problem 258.1 – Battersea Power Station
David Singmaster
For those who don’t know London, Battersea Power Station is a London
landmark beside Chelsea Bridge and the Thames. This was (is?) the world’s
(or Europe’s?) biggest brick building, using 61M bricks. Giles Gilbert Scott
was asked to improve the architecture in 1931. Battersea A was started in
1929 and the first part, of 138MW, started work in 1933, with an additional
105MW in Sep 1935. Construction of Battersea B started in 1937. The first
part, of 100MW, was in service in 1941. After the war, another 60MW was
added and a final 100MW was added in 1953. The final result is a massive
rectangular building with four massive chimneys, at the four corners of the
rectangular building, which are visible from much of London. The chimneys
are 337ft high. Battersea A closed in 1975. Battersea B closed on 31 Oct
1983. It was planned to be converted into a theme park by 1990, but the
idea fell victim to a recession and the building remains half open to the
elements. A friend recently described it as looking like a dead table.

The chimneys are basically at the corners of a rectangle, whose long
sides run approximately north–south. The dimensions are approximately
50m × 160m. The problem arises because one sees the chimneys on the
skyline as one drives into London from the west and one notices that the
relative positions of the chimneys shift as one drives along the north side
of the Thames. It appears to me that there will be some point where the
chimneys will appear regularly spaced along the skyline. Is this true? If
so, where does one have to be to see this effect? For consistency, let us
label the four chimneys as A, B, C, D, going clockwise from A at the SW
corner which we take as the origin of a coordinate system. So A is at (0, 0),
B is at (0, 160), C at (50, 160), D at (50, 0). John Sharp has found a site
which does architectural views and has sent the view below, but there are
no dimensions given. I want to be able to go to a correct viewpoint and
take a photo.
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Solution 255.2 – Bomb
(i) A bomb is released from position (0, 0, h) by an aircraft trav-
elling at velocity v relative to the ground. The wind has velocity
w. Air resistance may be ignored. Assuming the ground is flat,
where will it land and how long will it take to get there?

(ii) As (i) but air resistance is not ignored. The bomb, travelling
at velocity u relative to the air, experiences an acceleration of
−u|u|k for some small constant k.

For example, when v = (v, 0, 0) and w = (0, 0, 0) the landing
point and drop time are (I (TF) think)(

1

k
log
(

1 +
√
k/g v cosh−1 ekh

)
, 0, 0

)
and

cosh−1 ekh√
gk

,

which degenerate to (v
√

2h/g, 0, 0) and
√

2h/g when k = 0.

Tommy Moorhouse
Rather than frame the solution in militaristic terms I would like instead
to consider the question of a parcel of emergency aid dropped from an
aeroplane. The reader should be in no doubt that the equations are the
same but the outcome is more humane.

First of all we consider the simplest case of a parcel released at a height h
with zero velocity. The parcel will accelerate under the influence of gravity,
with the air resistance growing as the speed increases. If we label the vertical
direction z (measured from the ground up) and the z-velocity as u = ż we
have

u̇ = − g + ku2.

Note the sign of the second term: since u is going to point downwards the
air resistance will act upwards (in the positive z-direction). We make the
substitution

u =
−1

k

ψ̇

ψ

and find that ψ̈ = kgψ. The solution is

ψ(t) = A sinh(t
√
gk) +B cosh(t

√
gk)

with arbitrary constants A and B. Substituting back we get

u =
−1

k

√
gk
A cosh(t

√
gk) +B sinh(t

√
gk)

A sinh(t
√
gk) +B cosh(t

√
gk)

.
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At t = 0 we have u = 0 so A = 0 and

u =
−1

k

√
gk tanh(t

√
gk).

Note that this leads to a ‘terminal velocity’ of −
√
g/k. To find z we use

ż = u to integrate and find

z =
−1

k
log(cosh(t

√
gk)) + z0.

Since z(0) = h we have z0 = h. When z = 0 we have − log(cosh(t
√
gk))/k =

−h so t = cosh−1(ehk)/
√
gk.

The general case is only slightly more involved, and the result above
for the transit time remains true. First we choose the z-direction to be
vertically upwards, and the x-direction to be in the horizontal direction of
the initial velocity V . Write u = ż, w = ẋ. Our equations of motion are
then the set

u̇ = − g + ku2,

ẇ = − kw2.

We only have to worry about the second equation, having solved the first.
Rearranging ẇ = −kw2, we have

− ẇ

w2
= k.

The left-hand side is just the time derivative of 1/w so we have, using the
initial condition w(0) = V ,

w(t) =
V

kV t+ 1
.

(It is interesting to see how a substitution similar for the one we used to
find u above works to give the same result.) Integrating ẋ = w we find

x(t) =
1

k
log(kV t+ 1) + C

and since x(0) = 0 we have C = 0. At the time the parcel hits the ground

x =
1

k
log

(
V
√
k

√
g

cosh−1(ehk) + 1

)
.

Note. This type of nonlinear second order ordinary differential equation
was studied by Painleve and others, and the linearization is associated with
Miura.
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Solution 256.5 – Lost energy
The diagram represents the initial
state of a circuit containing two ca-
pacitors of C farads each, with 100
volts across C1. When the switch
is closed C1 loses charge to C2 until
they equalize at 50 volts across each
capacitor.

��

C1 0 v

100 v

C2 0 v

0 v

Initially the total energy in the system is the 1002C/2 =
5000C joules stored in C1. But when the circuit has settled
down after the switch is closed, the energy is split between the
two capacitors at 502C/2 joules each, making a total of 2500C
joules. What has happened to the other 2500C joules?

Mike Lewis
Voltage is defined as the electrical potential energy per unit charge, mea-
sured in joules per coulomb (= volts). The energy stored in C1 is thus
potential energy. The change in energy represents the work expended when
half the charge moves from C1 to C2 and is analogous to the loss in poten-
tial energy that results from a mass being moved from a height to a lower
height.

If the two charged capacitors C1 and C2 are carefully disconnected and
reconnected in series instead of parallel then the voltage across the combi-
nation is 100 volts and the capacity is C/2. The energy is unchanged at
1002(C/2)/2 = 2500C joules. In rewiring the capacitors no charge moved
thus no potential energy was lost or gained.

Tony Forbes
I think the answer lies in the wiring.
With no resistance, equalization occurs
by ∞ amps flowing for 0 seconds. So
the energy lost in the wires is given by∫ 0

0
∞2 · 0 dt, a finite quantity which is

obviously equal to 2500C.
To be more realistic, let’s give the

upper and lower wires resistances R1

and R2 respectively so that we can
model the situation with a slightly more
complicated diagram, right.

��p p

C 0 v

100 v

C 0 v

0 v

R1

R2
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This is more or less precisely the circuit that was analysed in M500 246
by Mike Lewis. So I can just quote his final result. At time t after the
switch is closed the current is

i(t) =
100 e−t/T

R1 +R2
, where T =

(R1 +R2)C

2
.

We can now calculate the energy lost:∫ ∞
0

i(t)2(R1 +R2)dt =

∫ ∞
0

1002e−2t/T

R1 +R2
dt = 2500C,

which is independent of R1 and R2, and neatly explains how the 2500C
joules goes missing—at least for conductors with positive resistance.

Tommy Moorhouse
The energy stored in the final configuration is half that stored in the starting
configuration. We will show that the energy difference is accounted for by
electromagnetic radiation. To do this we imagine that a resistor is inserted
in series with the capacitors on the high voltage side. It does not matter
what the value of the resistance is, and we can see this simply from the fact
that the charge in the system is constant: the presence of the resistor does
not influence the initial and final configurations.

We work from the expressions for the voltages, charges and currents as
the system evolves after the switch is closed. Call the initial charge on the
first capacitor Q, and call the time-varying charge on this capacitor Q1(t),
with Q1(0) = Q. Similarly the charge on the second capacitor is Q2(t) and
Q2(0) = 0.

The voltage across the resistor varies with time, but if the current at
time t is I(t) we have V (t) = I(t)R.

Now I(t) = −Q̇1(t) = Q̇2(t). If the voltage across capacitor 1 is V1(t)
and that across capacitor 2 is V2(t) we have

V (t) = V1(t)− V2(t) =
1

C
(Q1(t)−Q2(t))

so that

I(t) =
1

RC
(Q1(t)−Q2(t)).
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We see that as well as the conservation law Q1(t) +Q2(t) = Q we have

Q̇1(t)− Q̇2(t) = − 2I = − 2

RC
(Q1(t)−Q2(t)),

Q1(t)−Q2(t) = Qe−2t/RC .

Thus Q1(t) = Q(1 + exp(−2t/RC))/2 and

I(t) =
Q

RC
e−2t/RC .

The instantaneous power converted and radiated by the resistor is
V (t)I(t) = RI(t)2 and we need to integrate this over the time after the
switch is closed to get the total energy radiated:

E = R
Q2

(RC)2

∫ ∞
0

e−4t/RCdt =
Q2

4C
.

This amounts to half of the energy originally stored. If the resistance is low
the discharge time is faster and the energy is radiated over a shorter time. In
a naive circuit without resistance the discharge is practically instantaneous.
In this case the energy would be radiated by the electrons accelerating
(synchrotron radiation).

John Davidson
This is an example of an idealized problem with an inherent snag in its
specification. Consider a capacitor C having a terminal voltage v(t) across
it. The charging current i(t) supplied to it is given by i(t) = Cdv/dt and to
avoid ‘infinities’ it is usually valid to conclude that the terminal voltage v(t)
is continuous. However, in the circuit shown for Problem 256.5, an idealiza-
tion arises because of the lack of circuit resistance (including the switch).
It follows that, when the switch is closed, the terminal voltages of the two
capacitors are equal and hence both capacitors have discontinuities in their
respective terminal voltages; that is, the action of the idealized switch in
the idealized circuit is to ‘force’ discontinuities in what would otherwise be
continuous variables. In such a situation the ‘short cut’ reasoning is via a
conservation law, which in this context is that of conservation of charge:
since Q = CV it follows that before the switch is closed the total charge in
the system is given by

QTOT = C1V1 + C2V2 = C × 100 + C × 0 coulombs = 100C coulombs.
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After the switch is closed the total charge redistributes itself, and since the
two capacitors are forced to have the same terminal voltage, say VAFTER,
it follows that

QTOT = C1VAFTER + C2VAFTER = (C1 + C2)VAFTER = 2CVAFTER.

For conservation of charge,

QTOT = 100C = 2CVAFTER ⇒ VAFTER = 50 volts.

The total energy stored in the system is then

1

2
(C1 + C2)V 2

AFTER =
1

2
× 2C × 502 J = 2500C J.

But now suppose that, due to the wires and/or the contacts of the
switch, the original circuit is allowed to possess a resistance R. If the circuit
current is i(t) when the switch is closed, in the direction so as to discharge
capacitor C1 and charge capacitor C2, then [by a familiar calculation; see
above or Mike Lewis’s article in M500 246 — TF], with C1 = C2 = C and
T = RC/2, the energy dissipated is

E =

∫ ∞
0

i(t)2Rdt =
1002

R

∫ ∞
0

e−2t/T dt = 2500C J.

This quantity is evidently independent of the actual value of R. Two points
are perhaps worth mentioning: firstly, any physically-realizable circuit must
necessarily occupy non-zero space and would therefore also contain circuit
inductance—the resulting oscillatory current would then radiate energy with
the circuit behaving as an antenna. Secondly, the redistribution of energy
due to the idealized switch being closed instantaneously violates general
relativity.

An analogous mechanical problem arises when it is supposed that two
incompressible masses M1 and M2 collide and, in so doing, somehow latch
together instantaneously, thereby possessing a common velocity. The usual
requirement of continuity of velocity is avoided via conservation of momen-
tum, leading to the conclusion that, for two equal masses M colliding where
the first mass has a velocity of 100 ms−1 and the second mass is stationary,
the common velocity after latching is 50 ms−1. The corresponding ‘lost’
kinetic energy is then readily shown to be 2500M J, but if it is now sup-
posed that the two masses are connected by a dashpot (rather than by an
instantaneous latching mechanism), it can be shown that the energy dissi-
pated in the dashpot is independent of the dashpot coefficient and is equal
to 2500M J.
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Two failed attempts to dispose of Fermat’s
Last Theorem
Bruce Roth
Nearly twenty years ago I went to a lecture given by Dr Simon Singh on
Fermat’s Last Theorem as part of the launch of his, then, new book. It was
very much in the news at the time due to the Horizon programme in the
wake of Andrew Wiles’s famous proof. Two things really stand out in my
memory. The first was when Dr Singh stated that the sum of two cubes
could never be a cube, only to be heckled by someone two seats to my left,
“What about

(−1)3 + 13 = 03 ?”

There was silence and the professor hosting the event stood up and explained
to the audience that Dr Singh had not been precise in his definitions and
that Fermat’s Last Theorem applies to positive integers.

The lecture resumed with Dr Singh explaining that he was a physicist
and that mathematicians were much more careful when they spoke about
their subject. He also spoke about how much he enjoyed mathematical
proof and gave (without proof!) the example that “26 is the only number
to be sandwiched between a square, 52, and a cube, 33.” The same heckler
shouted out, “What about zero? It is sandwiched between 12 and (−1)3.”
Dr Singh looked embarrassed and asked, “Have I made the same mistake?”
to be greeted with the entire audience replying “Yes” with one voice.

In Simon Singh’s latest book about the maths in The Simpsons he gives
the following interesting ‘equation’:

398712 + 436512 = 447212.

Now if you check this on your calculator,

12
√

398712 + 436512,

you may get a little shock, for your device probably can’t cope with such
large numbers.

It doesn’t take too much to see it is not an equation—but it stands up
to a little checking before falling apart. First I checked mod 2. Well, clearly
the two odd numbers add to an even one; so still it is working.

Next I thought I would check the last digits. For 7 we have the cycle

7 → 9 → 3 → 1 → 7.
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So 398712 must end in a one. For 5 we have the cycle 5→ 5; so 436512 ends
in a five. For 2 we have the cycle 2→ 4→ 8→ 6→ 2 and therefore 446212

ends in a six. So our equation still holds up for at least the last digit of its
more than forty.

It finally falls apart mod 3 (you could check its digital roots too!):

3987 ≡ 0 (mod 3), 1455 ≡ 0 (mod 3), but 4472 ≡ 2 (mod 3).

So where the calculator fails simple mathematics does not.

PS. I reminded Simon of the heckling many years ago at a BSHM meeting
and he said he had “got over the embarrassment.”

References Fermat’s Last Theorem, Simon Singh; The Mathematics of
The Simpsons, also by Simon Singh.

Problem 258.2 – Sandwiched
Find all solutions in integers x and y of the equation x3 = y2 ± 2.

Problem 258.3 – Cyclic quadrilateral and chord
Look at the diagram. The diagonals of the cyclic quadrilateral PQRS meet
at C, the midpoint of the chord AB. Pairs of opposite sides (extended if
necessary) of the quadrilateral meet the extended chord at D and E, and
at F and G. Show that C also bisects DE and FG.

rA
rBrC

rP

rQ

rR
rS

rD rE
rF

rG
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Problem 258.4 – Poly-Bernoulli numbers
Tony Forbes
First we need some background—in fact quite a lot of it. The poly-Bernoulli
numbers in the title generalize the (more) familiar Bernoulli numbers, Bn,
the coefficients of xn/n! in the Taylor expansion of x/(ex − 1):

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
. (1)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bn 1 −1

2

1

6
0 − 1

30
0

1

42
0 − 1

30
0

5

66
0 − 691

2730
0

7

6

In a similar manner we use the poly-logarithm function,

Lik(x) =

∞∑
m=1

xm

mk
, (2)

which generalizes the function − log(1 − x) = Li1(x), to define the poly-

Bernoulli numbers B
(k)
n and the generating function Bk(x) by

Bk(x) =
Lik(1− e−x)

1− e−x
=

∞∑
n=0

B(k)
n

xn

n!
. (3)

This is a lot to hold in the mind all at once; so a few remarks are in order.

We would like to think that the B
(1)
n are the same as the ordinary

Bernoulli numbers, and this is indeed nearly always true. If you put k = 1
in (3), then Li1(1−e−x) = x and we get something like (1) but with 1−e−x
in the denominator of the right-hand side instead of ex − 1. The effect of

this difference is that B
(1)
1 = −B1 = 1/2 whereas B

(1)
n = Bn for all other n.

Putting k = 0 gives Li0(x) = x/(1−x), B0(x) = ex and B
(0)
n = 1. Also,

by integrating and differentiating (2) term by term,

Lik+1(x) =

∫ x

0

Lik(t)

t
dt and Lik−1(x) = x

dLik(x)

dx
. (4)

We are particularly interested in negative values of k. So, using the second
equality in (4), we can derive a recursive formula for the generating function:

Bk−1(x) = Bk(x) + (ex − 1)B′k(x).



M500 258 Page 19

Starting from B0(x) = ex we obtain B−1(x) = e2x,

B−2(x) = −e2x + 2e3x,

B−3(x) = e2x − 6e3x + 6e4x,

B−4(x) = −e2x + 14e3x − 36e4x + 24e5x,

B−5(x) = e2x − 30e3x + 150e4x − 240e5x + 120e6x,

B−6(x) = −e2x + 62e3x − 540e4x + 1560e5x − 1800e6x + 720e7x,

and in general B−r(x) is a polynomial of degree r + 1 in ex with leading
coefficient r!. Hence

B(−r)
n =

r+1∑
j=1

br,j j
n,

where br,j is the coefficient of ejx in B−r(x). Thus we can compute B
(k)
n for

small k ≤ 0 and n ≥ 0.

n
k 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1
−1 1 2 4 8 16 32 64 128
−2 1 4 14 46 146 454 1394 4246
−3 1 8 46 230 1066 4718 20266 85310
−4 1 16 146 1066 6902 41506 237686 1315666
−5 1 32 454 4718 41506 329462 2441314 17234438
−6 1 64 1394 20266 237686 2441314 22934774 202229266
−7 1 128 4246 85310 1315666 17234438 202229266 2193664790
−8 1 256 12866 354106 7107302 117437746 1701740006 22447207906

Upon looking at the table one cannot help noticing a striking similarity
between the rows and the columns. On the basis of this observation we are
finally ready to state the problem.

Prove that B
(−s)
r = B

(−r)
s for non-negative r and s.

Problem 258.5 – Integral
Suppose a, b > 0. Show that∫ ∞

0

cos ax− cos bx

x
dx = log

b

a
.
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Solution 255.1 – Elementary trigonometry

Show that cot

(
π

6
− 1

2
arccos

11

14

)
= 3
√

3.

Vincent Lynch
Writing θ for arccos(11/14) and using cos θ = 2 cos2(θ/2) − 1, this gives
cos(θ/2) = 5/(2

√
7), so that tan(θ/2) =

√
3/5. Now we can use

cot

(
π

6
− θ

2

)
=

1 + tan(π/6) tan(θ/2)

tan(π/6)− tan(θ/2)
=

1 + 1/
√

3 ·
√

3/5

1/
√

3−
√

3/5

and this simplifies to give 3
√

3.

More generally, whenever θ = arccos
3k2 + 6k − 1

6k2 + 2
, k rational,

(a) tan(θ/2) will be a rational multiple of
√

3,

(b) cos θ will be rational since cos θ =
1− t2

1 + t2
, where t = tan(θ/2),

and cot

(
π

6
− θ

2

)
= k
√

3. In the problem as stated, k = 3.

Problem 258.6 – Kolmogorov Distance
Mike Lewis
Kolmogorov Distance is a non-parametric test of the similarity of two sta-
tistical distributions. Kolmogorov Distance is the maximum separation in
the y axis between the CDFs under test. Prove that the x coordinate of
this maximum separation is where the PDFs of the two distributions cross.

Problem 258.7 – Counting primes
As usual, π(x) denotes the number of primes ≤ x. Show that

π(x) =

⌊
x−1∑
n=1

sin2

(
n! + 1

n+ 1
· π

2

)⌋
.

Thanks to Robin Whitty for suggestions relating to this problem. (The π
on the right is the usual approximation to 22/7.)
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Letter
Education for all
Dear Members,

I believe that there should be scholarships which would allow the best
students to earn university tuition fees plus money towards living expenses.
The snag is that our current ‘one size fits all’ wouldn’t allow teachers to
give the necessary tuition. To get round this I suggest that courses be made
available on the internet. These courses would start at just below ‘O’ level
and would take pupils to about the old ‘scholarship’ level. There would
be on-line discussion and mutual help groups. The courses should use top
grade teachers, making a high standard of tuition available to everybody.
The cost of this would not be significant in terms of the national education
budget while the benefits, in terms of well qualified students starting their
degree courses would be considerable. The courses themselves would be
reusable year after year while no extra load would be placed on existing
schools and teachers. The courses should eventually cover at least STEM
subjects. The OU could well take a lead in providing these courses. How
the exams would be administered and who would be allowed to sit them
would be for discussion.

I would be interested to read other members’ views on this idea.

R. M. Boardman

Problem 258.8 – Cycle graphs
Tony Forbes

The vertices of an n-cycle graph are la-
belled with distinct integers from the set
{0, 1, . . . , n} in such a manner that each
positive integer from 1 to n occurs exactly
once as the difference between the labels of
two adjacent vertices. For which n is this
possible?

In the example on the right n = 8. The
labels are 0, 1, 2, 3, 4, 5, not 6, 7 and 8. All
integers from 1 to 8 occur as differences.

s
s

s
s

s

s

s

s

@
@
@

�
�
�

@
@
@

�
�
�

0

8

5

2

7

3

1

4

Clearly both 0 and n must be present as adjacent labels (otherwise there
is no way to create difference n). Must 1 and n− 1 both occur as labels?
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