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A quantum mechanical treatment of a sloping
potential well
Tommy Moorhouse
Introduction Problem 256.5 [see page 6 of this issue] concerned the sum
of the energies of two identical capacitors of total charge Q. A simple model
for the discharge between two plates can be built by taking the potential
energy to vary linearly between the plates. It is interesting that a quantum
mechanical version of this problem is hard to find in the literature ([Landau
and Lifshitz] considers only an infinitely long well). We will consider here
a variant of the infinite potential well, the sloping well, find the energy
quantization condition and look at the transition to the ‘flat’ well solutions.
Working through the calculations that are indicated here might be a good
way to become familiar with the Airy functions.

The sloping well Consider an infinitely deep potential well, with a particle
confined to move in the x-direction between x = 0 and x = L. Between
these points the potential energy is given by αx, where α = −qV. The
Schrödinger equation for an electron of mass m, charge q and energy E
trapped in the well is

~2

2m

d2ψ

dx2
+ (E + αx)ψ = 0.

We define τ = −λ(E + αx) with λ3 = 2m/(~2α2) to get the equation

ψ′′ − τψ = 0.

The general solution of this equation is a linear combination of the two Airy
functions, which we denote by φa(τ) and φb(τ). Substituting back we get

ψ(x) = Aφa

(
−
(

2m

~2α2

)1/3

(E + αx)

)
+Bφb

(
−
(

2m

~2α2

)1/3

(E + αx)

)
.

The boundary conditions are ψ(0) = 0, ψ(L) = 0. Writing k =
(2m/~2)1/3 and inserting the normalization constant K, these conditions
are satisfied for

ψ(x) = K(φa(−kα−2/3(E + αx))φb(−kα−2/3E)

− φb(−kα−2/3(E + αx))φa(−kα−2/3E))

provided that E is chosen to give a zero of the expression on the right when
x = L. Here K is chosen so that∫ L

0

ψ(x)2dx = 1,



Page 2 M500 259

giving a probability of 1 that the particle is somewhere in the well. Cal-
culating K is a little tedious but not difficult, and is discussed below. If
ρn = −|ρn| is the nth zero of ψ (counting away from zero on the negative
axis) we label the energies as

En = − ρn
α2/3

k
− αL.

This expresses the quantization of energy in the sloping well. As in all well-
behaved Sturm–Liouville problems the eigenvalues (energies) are bounded
below. The solutions ψn(x) at each energy level are distorted standing
waves, and the standard methods of quantum mechanics can be used to
explore the properties of ψn(x). We will not pursue this here.

It ought to be the case that as α tends to zero the sloping well tends
to the standard infinite well and the solutions should tend to some solution
ψn(x) =

√
2/L sin(x

√
2mEn/~). This is indeed the case, and the slightly

delicate proof using the asymptotic expansions of φa and φb is as follows.

The ‘flat’ limit The asymptotic expression for φa(−|z|) as |z| → ∞ is

φa(−|z|) → 1√
π|z|1/4

sin(ζ + π/4),

where ζ = 2|z|3/2/3 (see [Richards]). Similarly

φb(−|z|) →
1√

π|z|1/4
cos(ζ + π/4).

Inserting into ψ(x) and writing β = 1/α we let β tend to infinity. Now,
let z1 = β2/3k(E + x/β) and z2 = β2/3kE, and write ζ1 = 2(β(k(E +
x/β))3/2)/3 and ζ2 = 2(β(kE)3/2)/3. We now need to look more closely at
the normalization constant K. We therefore return to the full expression
for the normalized function ψ(x), concentrating on the constant K. As
mentioned already, a tedious calculation (section 10.4 of [Abramovitz and
Stegun] includes some useful identities that are needed to carry out the
calculation, including a differential equation satisfied by φa(t)2, and the
Wronskian of φa and φb) gives

K =
k1/2α1/6π√

1−
(

φa(−kα−2/3)

φa(−kα−2/3(E + αL))

)2
.
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The asymptotic expression for ψ(x) becomes

ψ(x) ∼ K

π(|z1||z2|)1/4
sin(ζ1 − ζ2).

It is not difficult to show, using the asymptotic expressions and expanding
in powers of α, discarding the positive powers, that

K ∼ k1/2α−1/3
√

2E/L.

As α vanishes we can expand the denominator of the rest of ψ as

α−1/3k1/2E1/4(E + αx)1/4 = α−1/3k1/2E1/2
(

1 +
αx

4E
+ · · ·

)
.

The second term here vanishes as α → 0, and most of the other terms
(crucially the term in α) cancel with K.

Now we consider the sine term in the asymptotic expansion of ψ, sin(ζ1−
ζ2). Expanding (En +αx)3/2 = E

3/2
n + 3E

1/2
n αx/2 + · · · (valid for small α)

we see that, as α tends to zero, ζ1− ζ2 tends to k3/2E
1/2
n x = x

√
2mEn/~2.

In summary,

ψ(x) →
√

2

L
sin

(
x
√

2mEn
~

)
.

One delicate point here is the dependence of En on α. However, since ρn
also depends on α we must conclude that En tends to the ‘flat’ eigenvalue
n2π2~2/2mL2.
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Problem 259.1 – Four primes
Find a number n such that n is the product of four distinct primes and
every group of order n is Abelian.
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Solution 254.2 – Interesting integral
Show that ∫ π/2

0

cos(tanx)dx =
π

2e

and hence that
∫ a

0
cos(tanx)dx = a/e if a is an integer multiple

of π/2.

Steve Moon
Because of the upper limit π/2 we will need to check at some stage that
the integral converges. First make the substitution u = tanx. The limits
become 0 and ∞ and we have du/dx = sec2 x = u2 + 1. Hence∫ π/2

0

cos(tanx)dx =

∫ ∞
0

cosu

1 + u2
du. (1)

Now
∫∞

0
1/(1 + u2)du = π/2 and since | cosu| ≤ 1 we can be sure that the

integral (1) converges. The function (cosu)/(1 + u2) is even and so we can
write ∫ ∞

0

cosu

1 + u2
du =

1

2

∫ ∞
−∞

cosu

1 + u2
du =

1

2
Re

∫ ∞
−∞

eiu

1 + u2
du. (2)

The integrand has poles at ±i,
where the denominator is zero. We con-
sider integration in the complex plane.
We integrate the function eiz/(1 + z2)
around a closed semicircle Γ centred on
the origin, radius R, so that the pole at
i lies inside.

G1

G2-R R

i

So we can split up the integral:∫
Γ

eiz

1 + z2
dz =

∫
Γ1

eiz

1 + z2
dz +

∫
Γ2

eiz

1 + z2
dz

=

∫ R

−R

cos z

1 + z2
dz + i

∫ R

−R

sin z

1 + z2
dz +

∫
Γ1

eiz

1 + z2
dz.

By Cauchy’s residue theorem,∫
Γ

eiz

1 + z2
dz =

∫
Γ

eiz

(z + i)(z − i)
dz = 2πi(residue at i) = 2πi

ei·i

2i
=

π

e
.
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Now consider Γ1. On Γ1, |eiz| ≤ 1 since z = R cos θ + iR sin θ for some
θ ∈ [0, π]. Also by the triangle inequality |1 + z2| ≥ R2 − 1. Furthermore
the length of Γ1 is πR. Therefore∫

Γ

eiz

1 + z2
dz ≤ πR

R2 − 1
→ 0 as R→∞.

So we are left with

lim
R→∞

∫ R

−R

cosu

1 + u2
du =

∫ ∞
−∞

cosu

1 + u2
du =

π

e
(3)

and, as a bonus,

∫ ∞
−∞

sinu

1 + u2
du = 0. Hence from (1), (2) and (3)

∫ π/2

0

cos(tanx)dx =
π

2e
. (4)

For the final part, since tanx has period π we need consider only [0, π].
In the interval [π/2, π], tanx is negative but runs through exactly the same
profile of absolute values as in (4). So because cos(−x) = cosx,∫ π

π/2

cos(tanx)dx =

∫ π/2

0

cos(tanx)dx.

Hence if a = kπ/2 for some integer k,∫ a

0

cos(tanx)dx =

∫ kπ/2

0

cos(tanx)dx =
kπ

2e
=

a

e
.
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Solution 256.5 – Lost energy
The diagram represents the initial
state of a circuit containing two ca-
pacitors of C farads each, with 100
volts across C1. When the switch
is closed C1 loses charge to C2 until
they equalize at 50 volts across each
capacitor.

��

C1 0 v

100 v

C2 0 v

0 v

Initially the total energy in the system is the 1002C/2 =
5000C joules stored in C1. But when the circuit has settled
down after the switch is closed, the energy is split between the
two capacitors at 502C/2 joules each, making a total of 2500C
joules. What has happened to the other 2500C joules?

Tommy Moorhouse
A relativistic treatment

Problem 256.5 asked why the sum of the energies of two identical capaci-
tors of total charge Q is half that of a single capacitor carrying the same
charge. It can be shown that getting from the single capacitor state to the
two-capacitor state by allowing charge to flow through a resistor always re-
sults in the loss of half the stored energy, essentially as heat. However, the
transition between the two physical states can occur in any physically al-
lowed manner, and this article considers the relativistic free flow of charged
particles between two plates. The motivation is simply that this is a nice
way to get a feel for the relativistic treatment of a simple problem.

As a manageable model we consider charged particles flowing from a
charged (high voltage) plate to a low voltage plate. The plates, which are
taken to have a high mass, are parallel and separated by a distance δ; and
initially the charged plate holds a charge of Q coulombs. The z-axis runs
perpendicular to the plates. The mass and charge of the particles makes
no essential difference to the outcome, but for now we consider particles of
charge q and mass m. We can think of these as electrons generated at the
high voltage plate and accelerated until they hit the low voltage plate and
are absorbed, releasing energy as heat.

The electric field between the plates is E in the z-direction. This field
is constant between the plates and we consider an electron ejected from
the charged plate at zero speed. We work in the rest frame of the massive
plates, and the motion obeys the relativistic equation

ṗz = qE,
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which we can write, using the expression for relativistic momentum and
noting that v is the speed in the z-direction, as

d

dτ
(γv) =

qE

m
,

where γ = 1/
√

1− v2/c2. The solution with v(0) = 0 is

γv =
qE

m
τ.

Solving for v (which just involves unravelling γ), and writing κ = qE/mc
we find

v(τ) =
cκτ√

1 + κ2τ2
.

Notice—and it is a good idea to check—that the dimensions of κ are T−1.
To find an expression for the speed when the electron hits the low voltage
plate, at time τd, we integrate the speed to get an expression for the distance
travelled:

x(τ) = c

∫ τ

0

v(τ)dτ =
c

κ

√
1 + κ2τ2 + x0.

Since the electron leaves the plate at τ = 0 we have x0 = −c/κ. This gives
for the plate separation δ

τ2
d =

1

c2

((
δ +

c

κ

)2

−
( c
κ

)2
)
.

At the time τd we have

v(τd)
2 =

c2

(δ + c/κ)
2

((
δ +

c

κ

)2

−
( c
κ

)2
)

and we find a simple result for γ:

γ =
κδ

c

(
1 +

c

κδ

)
= 1 +

κδ

c
.

Now we write E = V/δ, where V is the voltage between the plates, and
calculate the relativistic energy γmc2 :

γmc2 = mc2 + κδmc = mc2 + qV.

Happily the energy calculated for the heat released by the relativistic parti-
cle is independent of the mass of the carriers and matches exactly the energy
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calculated by the usual formula for the energy required to move a charge q
through a potential V . The rest mass of the electron is not lost from the
system.

Now suppose that Q = Mq for some M � 1, and that one electron at
a time passes from the high voltage plate to the low voltage plate as above.
The low voltage plate will acquire a charge and eventually the charge on each
plate will be Q/2. The effective charge difference after n electron transfers
will beQ−2nq, and the voltage between the plates will be Vn = (Q−2nq)/C,
where C is the capacitance of the two-plate system. To find the total energy
lost (transferred to the low voltage plate by the electrons, which are stopped
and heat the plate up) we sum Vnq from n = 1 to M/2 :

E =
q2

C

M/2∑
n=1

(M − 2n) =
q2

C

(
M2

2
− M

2

(
1 +

M

2

))
=

Q2

4C
,

where we have used the fact that M � 1.

The total energy lost to heat is half that stored in the original system.
The remaining energy is stored in the electrostatic field: the plates are
fixed, but would ‘like’ to separate, and this is essentially what it means to
say there is ‘stored energy’.

Solved non-relativistically in M500 258 by Mike Lewis, Tony Forbes,
Tommy Moorhouse and John Davidson.

Problem 259.2 – Triangle
Dick Boardman

A
r

B
r

Cr

Dr
E
r

(i) In the diagram |AB| = |AC|, ∠BAC = ∠ACE = 20◦ and ∠ABD = 10◦.
What is ∠AED?

(ii) Let ζ = eπi/18. Show that

ζ3(ζ2 − ζ10 + ζ12 − 1)

ζ4 + 2ζ8 − 2ζ10 − ζ14 − 3
=

1√
3
.



M500 259 Page 9

Solution 254.6 – Two octics
Solve x8 + 4x5 + 8 = 0 and x8 + 16x3 + 32 = 0.

Tony Forbes
Take the first equation. It does not split into polynomials with integer coef-
ficients. So we look for a factorization where some coefficients are irrational
algebraic numbers. A sledgehammer is a useful tool. Write

x8 + 4x5 + 8 = (x4 + ax3 + bx2 + cx+ d)(x4 + ex3 + fx2 + gx+ h)

and equate coefficients to obtain

dh = 8, dg + ch = 0, df + cg + bh = 0, de+ cf + bg + ah = 0,

d+ce+bf +ag+h = 0, c+be+af +g = 4, b+ae+f = 0, a+e = 0.

Putting this lot to Mathematica yields 70 solutions but amongst them is
a particularly nice-looking one, a = 2i, b = −2, c = 2− 2i, d = 2 + 2i, e =
−2i, f = −2, g = 2 + 2i, h = 2− 2i, that gives the factorization

x8 + 4x5 + 8 =
(
x4 + 2ix3 − 2x2 + (2− 2i)x+ 2 + 2i

)(
x4 − 2ix3 − 2x2 + (2 + 2i)x+ 2− 2i

)
.

The two quartics, whose coefficients involve integers and nothing more ir-
rational than

√
−1, can now be solved exactly using the method described

in M500 223, or otherwise. Let

D1 =
(

64− 36i+ 12
√

39− 84i
)1/3

, D2 =
(

64 + 36i+ 12
√

39 + 84i
)1/3

,

E1 =
1

3

(
1 +

16 + 12i

D1
+D1

)
, E2 =

1

3

(
1 +

16− 12i

D2
+D2

)
.

Then the eight roots of x8 + 4x5 + 8 = 0 are

1

2

(
−i+ ε1

√
E1 + ε2

√
1− E1 −

ε1 (4− 2i)√
E1

)
,

1

2

(
i+ ε1

√
E2 + ε2

√
1− E2 −

ε1 (4 + 2i)√
E2

)
,

where ε1, ε2 = ±1. If you substitute x→ 2/x, you obtain the other octic:

x8 + 16x3 + 32 =
(
x4 + 2ix3 − (2 + 2i)x2 + (4− 4i)x+ 4 + 4i

)(
x4 − 2ix3 − (2− 2i)x2 + (4 + 4i)x+ 4− 4i

)
.
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Problem 259.3 – Discriminants
Tony Forbes
The discriminant of the cubic

f(x) = x3 + ax2 + bx+ c

is
∆ = a2b2 − 4b3 − 4a3c+ 18abc− 27c2.

Show that the discriminant of

g(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2

is −6912∆2. What we really want is a simple proof without having to
compute the discriminant by brute force. If the coefficient a causes too much
trouble, you may assume a = 0. And to remind readers, the discriminant
of the polynomial P (x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 with complex

roots r1, r2, . . . , rn is defined by

∆P = a2n−2
n

n−1∏
i=1

n∏
j=i+1

(ri − rj)2.

Since the product expands to a sum of symmetric functions of the roots,
there will always be a rational expression for ∆P in terms of the coefficients
a0, a1, . . . , an, as in the case of f(x) and g(x), above.

Problem 259.4 – Double integrals
A couple of fiendish-looking double integrals for you to do.

(i) Suppose a2 + b2 = 1. Show that∫ π/2

0

∫ π/2

0

a2 cos2 θ + b2 cos2 φ√
1− a2 sin2 θ

√
1− b2 sin2 φ

dθ dφ =
π

2
.

(ii) Suppose a, b, c > 0. Show that∫ a

0

∫ b

0

c dx dy

(c2 + x2 + y2)3/2
= arctan

ab

c
√
a2 + b2 + c2

.
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Problem 259.5 – Two darts
Two darts are thrown and hit a dartboard at random, whatever that might
mean. Show that the probability of their separation exceeding the dartboard
radius is 3

√
3/(4π).

When I (TF) tested the problem with 100000 trials on a dartboard of
radius 1 I got a good approximation to the right answer if for the landing
point (x, y) I chose x and y independently and uniformly at random on the
interval [−1, 1] subject to x2 + y2 ≤ 1.

Problem 259.6 – Polygon and floorboards
A regular polygon of maximum diameter 1 (that is, 1 is the maximum
distance between two vertices) and perimeter p is thrown at random on to
floorboards spaced 1 apart. Show that the probability of falling across a
crack is p/π.

Observe that this agrees with 2/π, the result of Steve Moon’s analysis
in M500 255, when the polygon has only two sides and degenerates into a
thin linear object—like a needle.

Problem 259.7 – Admissible numbers
Let k be a positive integer. A positive integer n is called admissible if
n(n − 1) ≡ 0 (mod k(k − 1)) and n − 1 ≡ 0 (mod k − 1). Show that
when k is a prime power the only admissible numbers are k(k− 1)t+ 1 and
k(k − 1)t+ k, t = 0, 1, . . . .

Problem 259.8 – Binomial ratio
Let r and s be positive integers. Suppose p is prime and (ps − 1)/(pr − 1)
is an integer. Is it (i) obviously true, or (ii) true, or (iii) false that s/r is
always an integer.

Problem 259.9 – Polynomial
Show that a polynomial f(x) with non-negative integer coefficients is un-
ambiguously determined by its value at x = f(1) + 1.

(Hint: try it out on 6x7 + 45x6 + 19x5 + 12x4 + 7x3 + 6x+ 4.)
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Solution 243.2 – Cosh integral
Let n be a positive integer. Show that

In =

∫ ∞
−∞

∫ ∞
−∞

dx dy

coshn x coshn+1 y
=

2π

n
. (1)

Of course, one can split it up, evaluate each integral separately
and then multiply. However I feel that because of the truly
elegant nature of (1) there might be an alternative and more en-
lightening proof of appropriate simplicity. If it makes life easier,
you may assume that∫ ∞

−∞

dx

coshx
= π and

∫ ∞
−∞

dx

cosh2 x
= 2.

Steve Moon
My approach to evaluating In uses a reduction formula and still relies on the
separability of the double integral. I tried restating this ‘all space’ integral
in terms of polar coordinates (r, θ) and then trying to find a way in, using
complex analysis, but I couldn’t make contour integration work. So this
effort might not meet the ‘alternative and more enlightening proof’ test;
but here goes anyway.

Let

In = JnJn+1, where Jn =

∫ ∞
−∞

dx

coshn x

and recall that the integral Jn satisfies the well-known reduction formula

Jn =
n− 2

n− 1
Jn−2, J1 = π, J2 = 2.

[See, for example, the two tins of biscuits problem in M500 242. — TF]
Then

In = JnJn+1 = Jn
n− 1

n
Jn−1 =

n− 1

n
In−1,

giving

In =
n− 1

n
· n− 2

n− 1
· · · · · 2

3
· I1 =

2π

n

since I1 = J1J2 = 2π.

A mathematical result is always easy once someone has shown you how to
obtain it.
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Solution 257.4 – Tracks
Your portable music player has tracks T0, T1, . . . , Tn, of lengths
t0, t1, . . . , tn respectively. The device selects tracks at random
and plays them in full. The probability of track Ti getting se-
lected is proportional to ti. For what fraction of the time would
you expect to be listening to track T0?

Reinhardt Messerschmidt
Let pj be the probability that Tj is selected, i.e.

pj =
tj

t0 + t1 + · · ·+ tn
.

Let Xjk be the random variable defined by

Xjk =

{
1 if Tj is selected for the kth play

0 otherwise.

Let Yjk be the proportion of the first k plays for which Tj is selected, i.e.

Yjk =
1

k

k∑
m=1

Xjm.

Let Zjk be the proportion of the playing time of the first k plays for which
Tj plays, i.e.

Zjk =
tj(kYjk)

t0(kY0k) + t1(kY1k) + · · ·+ tn(kYnk)

=
tjYjk

t0Y0k + t1Y1k + · · ·+ tnYnk
.

Note that (Xjk)k∈N is a sequence of independent identically distributed
random variables with common expected value pj . By the strong law of
large numbers, Yjk −→ pj as k −→∞, with probability 1. It follows that

Zjk −→
tjpj

t0p0 + t1p1 + · · ·+ tnpn
=

t2j
t20 + t21 + · · ·+ t2n

as k −→∞,

with probability 1.

For example, if t0 = 20 and t1 = t2 = 5 then Z0k −→ 8/9.

Acknowledgement This solution was greatly improved as a result of an
observation made by Tony Forbes.
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Solution 258.1 – Battersea Power Station
From what points in London will the chimneys of Battersea
Power Station appear regularly spaced along the skyline? For
consistency, we label the four chimneys as A, B, C, D, going
clockwise from A at the SW corner, which we take as the origin
of a coordinate system, and assign to them coordinates (0, 0),
(0, 160), (50, 160), (50, 0) respectively.

Ken Greatrix
If we take a simple attitude to the situation, then by aligning chimney C
with the mid-point of the line between chimneys A and B we have a line of
slope 80/50 or 1.6, or similarly in the other direction a slope of −1.6 when
chimney B is aligned with the mid-point between chimneys C and D.

However, if the chimneys are arranged on a perfect rectangle, then it
is impossible to see the required alignment since viewing lines from the
chimneys to the opposite mid-points would be parallel.

That’s the maths done!

Next I looked at a street-map of London which shows the outline of the
building. Towards the North-East, I think Rampayne Street or St John’s
Gardens would give the required view. In the North-Westerly direction
perhaps the junction of Ebury Street and Eaton Terrace; . . . if it wasn’t
for the ’ouses in between (anyone who remembers that old song is probably
older than me).

As the Station is on the Southerly edge of my street-map, I am unable
to suggest view-points in the South-Easterly and South-Westerly directions.

But it is possible to get a reasonable view on ‘Google Street View’ by
accessing Grosvenor Road as it emerges on the Eastward side of Victoria
Bridge.

As a follow-up problem: Four points are arranged in a quadrilateral
which is very nearly a rectangle. By choosing ideal points, there is at least
one external point whereby the points subtend a set of three equal angles.
In reverse, if we than take any angle and construct a quadrilateral between
its lines, is it then possible to trisect this angle?

PS. During Wimbledon tennis (Friday I think, during Andy Murray’s
match) the overhead camera was pointed across London and showed a view
of Battersea power station—the chimneys were almost in equal alignment.
Has David Singmaster got a helicopter?
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Solution 250.3 – Ellipsoid
Show that

SM (a, b, c) = 4π

(
(ab)8/5 + (bc)8/5 + (ca)8/5

3

)5/8

(1)

is quite a good approximation to the surface area of an ellipsoid
with radii a, b and c. For instance, if a = 10 and b = c = 15, the
formula gives 2225.5 whereas the true value is about 2225.0.

Tony Forbes

Write S(a, b, c) for the true surface area. We attempted to do the ellipsoid
in M500 197 and—with the help of the diagram on the front cover of this
issue—produced the formula

S(a, b, c) = 8

∫ a

x=0

∫ B

y=0

ds dt = 8

∫ a

0

∫ B

0

f(x, y) dy dx,

where B = b/a
√
a2 − x2 and f(x, y) was some diabolical expression, which

I now believe to be less than entirely correct when b 6= c. And that’s as far
as we got without the simplification b = c

Then Dick Boardman contributed the (correct!) formula

S(a, b, b) = 2b2π +
2a2b π√
b2 − a2

log
b+
√
b2 − a2

a
. (2)

Putting b = a+ ε and developing (2) as a power series in ε yields

S(a, a+ ε, a+ ε) = 4a2π +
16aπε

3
+

8πε2

5
+

16πε3

105a
+ . . . . (3)

Now do the same for (1) with b = c = a+ ε to get

SM (a, b, c) = 4πa2 +
16πaε

3
+

8πε2

5
+

112πε3

675a
+ . . . ,

which not only agrees with (3) up to the ε2 term but also the difference be-
tween the coefficients of πε3/a is quite small: 112/675−16/105 = 64/4725 <
0.014. Observe that the mysterious exponent 8/5 in (1) arises from the co-
efficient of ε2 in (3). As you can see, (1) is better than a formula based on
the arithmetic mean of the radii,

SA(a, b, c) = 4π

(
a+ b+ c

3

)2

= 4a2π +
16aπε

3
+

16πε2

9
,
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or the geometric mean,

SG(a, b, c) = 4π (abc)
2/3

= 4a2π +
16aπε

3
+

8πε2

9
+ . . . ,

or the 4/5 power mean (which also agrees with (3) up to ε2),

SB(a, b, c) = 4π

(
a4/5 + b4/5 + c4/5

3

)5/2

= 4a2π+
16aπε

3
+

8πε2

5
−16πε3

675a
+. . . .

I do not know if (1) is ever actually used in the field. Unless I have
missed something obvious, examples of real-life non-degenerate ellipsoids
seem to be quite rare. As for a general formula, all I can do for the present
is quote from Wikipedia:

S(a, b, c) = 2πc2 +
2πab

sinφ

(
E(φ,m) sin2 φ+ F (φ,m) cos2 φ

)
,

where c ≤ b ≤ a, φ = arccos(c/a), m = a2(b2− c2)/(b2(a2− c2)), and where
F (φ,m) and E(φ,m) are the incomplete elliptic integrals of the first and
second kind respectively, denoted by EllipticF[phi,m] and EllipticE[phi,m]
in Mathematica.

Also I am still interested if anyone can find numbers a > b > 1 such that
S(a, b, 1) can be computed exactly using only elementary functions. I am
reminded that I asked this question in 2004 as ‘Problem 199.1 – Ellipsoid
again.’ Since then nobody has submitted a solution; so I am inclined to
believe that it is not as trivial as it looks.

M500 Winter Weekend 2015
The thirty-fourth M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

Friday 9th – Sunday 11th January 2015.

Cost: £205 to M500 members, £210 to non-members. You can obtain a
booking form either from the M500 web site,

http://www.m500.org.uk/winter/booking.pdf,

or by emailing me.

As well as a complete programme of mathematical entertainments, on
Saturday we will be running a pub quiz with Valuable Prizes.
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Dr Urban Panic’s later adventures
Ralph Hancock
I am sorry to have to inform readers that Dr Panic’s novel food company
TopoSnax is not enjoying the success it perhaps deserves.

He has been having problems with the development of the Flav-R-Act,
a snack intended to provide all the sensations of a six-course meal. This is a
piece of toast in the form of a tesseract, each of whose faces is coated with a
different flavour. As it rotates, our three-dimensional perception of it regis-
ters six faces at a time, flavoured with, say, roast beef, gravy, roast potatoes,
Yorkshire pudding, cauliflower and carrots. Everything worked fine unless
consumers turned their head while enjoying the Flav-R-Act, altering its di-
rection of spin. In one unfortunate orientation it tasted simultaneously of
strawberry, anchovy, curry, coffee, vinegar and Stilton cheese.

He has had little success with a food marketed as a slimming aid, the
Schröding-R-Snak. This is a cardboard box which, owing to quantum uncer-
tainty, may or not contain a bacon sandwich. Since you only get a sandwich
50 per cent of the time, with repeated purchasing you consume only half
as much as is provided by conventional sandwiches. However, when buy-
ers picked up the box, they could tell by its weight whether there was a
sandwich in it or not, an act of measurement that caused the superposition
to collapse before they reached the checkout; and of course, if they found
it was empty they put it back and took another one. Critics complained
that he was simply selling boxes half of which contained sandwiches, and
no quantum effect was involved at all. “But,” said the good Doctor, “how
could you tell?”

His Slim-R-Choc confectionery was equally unsuccessful. Marketed un-
der the slogan ‘Only 10 Calories in a Bar’, it had a window in the wrapper
through which you could see one square of chocolate, with others adjacent
to it extending under the wrapper in all directions. On opening it proved
to be a single square of chocolate surrounded by four little acrylic mirrors.
The public was not amused.

His Ev-R-Hot Coffee Warmer worked perfectly, but only made it as far
as preliminary trials. This was a metal cube which was permanently at a
temperature of 70◦C, and could be dropped into any hot drink. However,
when it was discovered that the metal was plutonium, the device was hastily
withdrawn and has not gone on sale.

Dr Panic has been intrigued by M-Theory, which proposes that space-
time has 11 dimensions, seven of which are not observed because they are
rolled up very small. “If they can be rolled up,” he said, “they can be filled
with raspberry jam.” His Swiss-R-Oll is still in development, but sadly all
workable examples so far have been created in alternative universes.
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