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Solution 259.4 – Double integrals
(i) Suppose a2 + b2 = 1. Show that

I =

∫ π/2

0

∫ π/2

0

a2 cos2 θ + b2 cos2 φ√
1− a2 sin2 θ

√
1− b2 sin2 φ

dθ dφ =
π

2
.

(ii) Suppose a, b, c > 0. Show that

J =

∫ a

0

∫ b

0

c dx dy

(c2 + x2 + y2)3/2
= arctan

ab

c
√
a2 + b2 + c2

.

Steve Moon
First part

As it stands this looks relatively intractable. But we can transform the
numerator,

a2 cos2 θ + b2 cos2 φ = (1− a2 sin2 θ) + (1− b2 sin2 φ)− 1

(using a2 + b2 = 1), and then write I thus:

I =

∫ π/2

0

∫ π/2

0

√
1− a2 sin2 θ√
1− b2 sin2 φ

dθ dφ+

∫ π/2

0

∫ π/2

0

√
1− b2 sin2 φ√
1− a2 sin2 θ

dθ dφ

−
∫ π/2

0

∫ π/2

0

1√
1− a2 sin2 θ

√
1− b2 sin2 φ

dθ dφ,

where each of these integrals is separable into elliptic integrals.

In standard notation the complete elliptic integral of the first kind is

K(a) =

∫ π/2

0

dθ√
1− a2 sin2 θ

,

where 0 ≤ a ≤ 1 and we denote this integral as complete because the upper
limit is at the maximum permissible range in [0, π/2]. Similarly we have the
complete elliptic integral of the second kind,

E(a) =

∫ π/2

0

√
1− a2 sin2 θ dθ.

Hence we can express I in terms of complete elliptic integrals,

I = E(a)K(b) + E(b)K(a)−K(a)K(b)

= E(a)K(
√

1− a2) + E(
√

1− a2)K(a)−K(a)K(
√

1− a2). (1)
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If we did not know the form of the answer, we might suspect a depen-
dence upon a. We can investigate this by treating a as an independent vari-
able and considering dI(a)/da. We need dE(a)/da, dE(b)/da, dK(a)/da,
dK(b)/da and proceed by differentiating under the integral sign. Thus

dE(a)

da
=

d

da

∫ π/2

0

√
1− a2 sin2 θ dθ =

∫ π/2

0

−a sin2 θ√
1− a2 sin2 θ

dθ.

Therefore

a
dE(a)

da
=

∫ π/2

0

(
1− a2 sin2 θ√
1− a2 sin2 θ

− 1√
1− a2 sin2 θ

)
dθ = E(a)−K(a);

hence
dE(a)

da
=

E(a)−K(a)

a
(2)

and
dE(b)

da
=

dE(b)

db

db

da
= − a

b2
(
E(b)−K(b)

)
(3)

since db/da = −a/b. Also

dK(a)

da
=

d

da

∫ π/2

0

dθ√
1− a2 sin2 θ

=

∫ π/2

0

a sin2 θ

(1− a2 sin2 θ)3/2
dθ

=
1

a

(∫ π/2

0

dθ

(1− a2 sin2 θ)3/2
−K(a)

)
. (4)

The remaining integral looks awkward, and I needed a pointer from the
Internet to get the identity√

1− a2 sin2 θ

1− a2
− a2

1− a2
· d
dθ

(
sin θ cos θ√
1− a2 sin2 θ

)

=

√
1− a2 sin2 θ

1− a2
− a2

1− a2

(
cos2 θ − sin2 θ√

1− a2 sin2 θ

)
− a4

1− a2
cos2 θ sin2 θ

(1− a2 sin2 θ)3/2

=
(1− a2 sin2 θ)2 − a2(cos2 θ − sin2 θ)(1− a2 sin2 θ)− a4 sin2 θ cos2 θ

(1− a2)(1− a2 sin2 θ)3/2

=
1

(1− a2 sin2 θ)3/2
.
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Therefore∫ π/2

0

dθ

(1− a2 sin2 θ)3/2
=

E(a)

1− a2
− a2

1− a2

[
sin θ cos θ√
1− a2 sin2 θ

]π/2
0

=
E(a)

1− a2
,

and hence from (4),

dK(a)

da
=

E(a)

a(1− a2)
− K(a)

a
. (5)

Finally, recalling that b2 = 1− a2 and hence db/da = −a/b,

dK(b)

da
=

(
E(b)

b(1− b2)
− K(b)

b

)
· −a
b

= − E(b)

ab2
+
aK(b)

b2
. (6)

From differentiating (1) with respect to a,

dI

da
= K(b)

dE(a)

da
+ E(a)

dK(b)

da
+K(a)

dE(b)

da
+ E(b)

dK(a)

da

−K(b)
dK(a)

da
−K(a)

dK(b)

da
.

Substituting for the various derivatives using (2), (3), (5) and (6), after
some straightforward manipulation using a2 + b2 = 1 the right hand side
eventually simplifies to zero. Hence we have shown that that I is equal to
some constant independent of a.

In general elliptic integrals are not readily evaluated analytically; but
we can choose any value of a, say a = 0 or 1. Now from the definitions,

E(0) = K(0) =

∫ π/2

0

dθ =
π

2

and

E(1) =

∫ π/2

0

√
1− sin2 θ dθ =

∫ π/2

0

(cos θ) dθ = 1.

Hence, putting a = 0 in (1), we have

I = E(0)K(1) + E(1)K(0)−K(0)K(1) =
π

2
,

as required.
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Second part

The integration in J is over a rect-
angular domain but the presence
of x2 + y2 indicates polar coordi-
nates might be useful.

We divide the domain into two
parts, triangles OXZ and OY Z.
Then with x2 + y2 = r2 and
dx dy = r dr dθ we have over OXZ

-
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O
θ

r

b

a

X

Y Z

J1 =

∫ arctan
a
b

0

∫ b sec θ

0

cr

(c2 + r2)3/2
dr dθ

=

∫ arctan
a
b

0

(
1− c√

c2 + b2 sec2 θ

)
dθ (1)

and over OY Z

J2 =

∫ π/2

arctan
a
b

∫ a cosec θ

0

cr

(c2 + r2)3/2
dr dθ

=

∫ π/2

arctan
a
b

(
1− c√

c2 + b2 cosec2 θ

)
dθ. (2)

Therefore, combining (1) and (2), the integral in the problem becomes

J = J1 + J2

=
π

2
−
∫ arctan

a
b

0

c dθ√
c2 + b2 sec2 θ

−
∫ π/2

arctan
a
b

c dθ√
c2 + b2 cosec2 θ

=
π

2
−
∫ arctan

a
b

0

c(cos θ) dθ√
b2 + c2 cos2 θ

−
∫ π/2

arctan
a
b

c(sin θ) dθ√
a2 + c2 sin2 θ

. (3)

Now we would like to get the second integral in (3) into a similar form
to the first. If we set θ = π/2 − φ, then sin θ = cosφ, dθ = −dφ, and
θ = arctan a/b⇒ φ = arctan b/a. Therefore∫ π/2

arctan
a
b

c(sin θ) dθ√
a2 + c2 sin2 θ

=

∫ 0

arctan
b
a

c(cosφ) dφ√
a2 + c2 cos2 φ

(4)

and resuming from (3) after simply replacing φ by θ in (4) for tidiness as
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well as flipping the sign and reversing the limits,

J =
π

2
−
∫ arctan

a
b

0

c(cos θ) dθ√
b2 + c2 cos2 θ

−
∫ arctan

b
a

0

c(cos θ) dθ√
a2 + c2 cos2 θ

=
π

2
−
∫ arctan

a
b

0

c(cos θ) dθ√
b2 + c2 − c2 sin2 θ

−
∫ arctan

b
a

0

c(cos θ) dθ√
a2 + c2 − c2 sin2 θ

.

Substituting u = c sin θ, du = c cos θ and noting that θ = arctanx/y implies

u = c sin θ = xc/
√
x2 + y2, we have

J =
π

2
−
∫ ac√

a2+b2

0

du√
b2 + c2 − u2

−
∫ bc√

a2+b2

0

du√
a2 + c2 − u2

=
π

2
−
[
arcsin

(
u√

b2 + c2

)] ac√
a2+b2

0

−
[
arcsin

(
u√

a2 + c2

)] bc√
a2+b2

0

=
π

2
− arcsin

(
ac√

a2 + b2
√
b2 + c2

)
− arcsin

(
bc√

a2 + b2
√
a2 + c2

)
= arccos

(
ac√

a2 + b2
√
b2 + c2

)
− arcsin

(
bc√

a2 + b2
√
a2 + c2

)
.

Now we can think of these two expressions as angles θ1 and θ2 respectively.
Then

tan J = tan(θ1 − θ2) =
tan θ1 − tan θ2

1 + (tan θ1)(tan θ2)
. (5)

Moreover,

tan θ1 =

√
(a2 + b2)(b2 + c2)− a2c2

ac
=

b
√
a2 + b2 + c2

ac
,

tan θ2 =
bc√

(a2 + b2)(a2 + c2)− b2c2
=

bc

a
√
a2 + b2 + c2

.

Substitute these expressions into (5) and simplify:

tan J =

b
√
a2 + b2 + c2

ac
− bc

a
√
a2 + b2 + c2

1 +
b2

a2

=
ab

c
√
a2 + b2 + c2

.

Hence

J = arctan
ab

c
√
a2 + b2 + c2

.
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Solution 259.1 – Four primes
Find a number n such that n is the product of four distinct
primes and every group of order n is Abelian.

Stuart Walmsley

Introduction

The key result needed to solve this problem is established. It is found that
there are many numbers which have the property specified. An alternative
version is suggested: to find n such that the number of non-Abelian groups
takes the maximum possible value. Examples are given of numbers which
satisfy both criteria.

The problem is concerned with numbers n which are the product of four
distinct primes, that is n = pqrs in which it is assumed that p > q > r > s.

Groups with prime number order

Start with one prime number p. A group of order p must contain an ele-
ment of order p. This element generates a cycle of order p, giving a cyclic
(Abelian) group of order p, denoted Cp. Hence there is only one group of
order p and it is Abelian. One element of the group, the identity I, has
order 1. The other p− 1 elements are of order p and any one of them may
be used to generate the group.

Abelian groups of order pqrs

Every finite Abelian group may be expressed as a direct product of cyclic
groups, the order of each of which is a power of a prime number. For the
number n under consideration, there is only one possible arrangement

Cp × Cq × Cr × Cs = Cpqrs;

that is, a cyclic group of order n, since p, q, r, s are coprime. There is only
one Abelian group of order pqrs.

Groups of order pq

The possible occurrence of a non-Abelian group is most easily explained
by directing attention to the simpler case of pq (p > q). There can be no
element of order pq since this would generate the Abelian group Cpq.

Specifically, consider n = 6 = 3 · 2. Let A be a group element of order
3 and B of order 2. Then

A3 = I, B2 = I,
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where I is the identity. Then the six elements of the group may be written

I, A, A2, B, AB, A2B.

But BA must be one of the group elements, other than a power of A or B.
There are therefore two possibilities:

BA = AB, or BA = A2B.

In the first case, the group is Abelian and AB is of order 6 with successive
powers

AB, A2, B, A, A2B, I

and the group has the structure C3 × C2 ≡ C6. In the second case, the
group is non-Abelian and the elements B, AB, A2B are all of order 2. It is
the well known dihedral group of order 6.

This result may be generalized in the following way. The group order
is pq and A an element of p and B of order q (< p). A non-Abelian group
exists if there is a consistent relationship of the form BA = AjB. Then
successively

BA = AjB, B2A = A2jB2, . . . ;

but Bq = I, so that A and Bq commute,

BqA = AqjBq = ABq and Aqj = A.

Successive powers of B take A through a cycle of non-zero powers of A: a
cycle of length q which ends at A. All non-zero powers of A must behave
in the same way, so that they are divided into subsets of length q. Hence q
must be a factor of p− 1.

This is the key result: q must be a factor of p− 1.

For an odd prime p, p− 1 is even and q = 2 always fulfils the required
condition for a non-Abelian group. This gives rise to the familiar (non-
Abelian) dihedral group of order 2p.

Ap = I, B2 = I, BA = Ap−1B.

When q = 3, q is a factor of p− 1 for about half the higher primes, for
example p = 7. In this case, the group may be defined by

A7 = I, B3 = I, BA = A2B
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and

BA = A2B, B2A = A4B2, B3A = A8B3 = AB3.

Furthermore, using the defining relations,

BA7 = A6B, B2A7 = A3B2, B3A7 = A7B3

so that the six non-zero powers of A are split into two sets of three under
the influence of B.

The factor A2 in the third defining relationship has to be found by trial
and error, although theory establishes that the relationship exists. This is
in fact the smallest non-Abelian group of odd order.

For higher values of q, the condition for finding a non-Abelian group is
satisfied less and less frequently. For example, there are Abelian groups for
the following pairs pq.

q = 3 p = 7, 13, 19, 31, 37, 43, . . . q = 5 p = 11, 31, 41, 61, . . .
q = 7 p = 29, 43, 71, . . . q = 11 p = 23, 67, 89, . . .
q = 13 p = 53, 79, 131, . . . q = 17 p = 103, 137, 229, . . .

This can be expressed by saying that a non-Abelian group can be con-
structed when 2fq + 1 is a prime p (f a positive integer).

Groups of order pqrs

When the group is extended to the case under consideration, n = pqrs,
the condition for no non-Abelian group takes the same basic form repeated
many times. Thus any of the prime numbers must not be a factor of any
higher prime minus one. For a group of order pqrs, with p > q > r > s to
have no non-Abelian groups:

s must NOT be a factor of r − 1 OR of q − 1 OR of p− 1

AND r must NOT be a factor of q − 1 OR of p− 1

AND q must NOT be a factor of p− 1.

It is then possible to construct examples avoiding the pairs of primes
above which do give non-Abelian groups. In this way 3 · 5 · 17 · 23 fits the
conditions. As a check the factors of p and p− 1 etc. are given.

3 = 3 5 = 5 17 = 17 23 = 23
2 = 2 4 = 2 · 2 16 = 2 · 2 · 2 · 2 22 = 2 · 11

In fact, the number of examples is legion particularly if 3 and 5 are avoided.
For example, four closely spaced primes frequently satisfy the conditions.
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One possibility is 7 · 11 · 13 · 17, and another, 11 · 13 · 17 · 19. Indeed any four
of these five, would provide further examples. As a check the factors of p
and p− 1 etc are given.

7 = 7 11 = 11 13 = 13 17 = 17 19 = 19
6 = 2 · 3 10 = 2 · 5 12 = 2 · 2 · 3 16 = 2 · 2 · 2 · 2 18 = 2 · 3 · 3

Find n such that n is the product of four distinct primes and the
maximum possible number of groups of order n is non-Abelian

Numbers n with the maximum number of non-Abelian groups are much
rarer. The conditions are reversed. For the maximum number of non-
Abelian groups, each term must be a factor of all higher terms minus one.
Thus:

s IS a factor of r − 1, AND of q − 1 AND of p− 1

AND r IS a factor of q − 1 AND of p− 1

AND q IS a factor of p− 1.

Examination of the table of allowed pairs show that a suitable value
is 2 · 3 · 7 · 43. The value 2 always leads to non-Abelian groups for all
higher primes. An example of an odd number with the required property is
3 · 7 · 43 · 3613. Check prime factors of p and p− 1 etc.

3 = 3 7 = 7 43 = 43 3613 = 3613
2 = 2 6 = 2 · 3 42 = 2 · 3 · 7 3612 = 2 · 2 · 3 · 7 · 43

Examples can be constructed by taking a prime s and then finding a prime
of the form r = 2ds+ 1, followed by a prime of the form q = 2ers+ 1 and
then a prime of the form p = 2fqrs + 1, where d, e and f are integers. In
the above example d = 1, e = 1 and f = 2.

Problem 261.1 – Polynomial factorization
As is well known, the polynomial x4 + 1 is irreducible over the integers.
However there exist various factorizations if the domain is extended slightly,

x4 + 1 = (x2 + i)(x2 − i)
= (x2 +

√
2x+ 1)(x2 −

√
2x+ 1)

= (x2 +
√

2 ix− 1)(x2 −
√

2 ix− 1),

or if we work modulo something. Show that for any prime p, there exists
a non-trivial factorization of x4 + 1 modulo p. For instance, x4 + 1 ≡
(x2 + 4)(x2 − 4) (mod 17).
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Short exact sequences and group extensions
Tommy Moorhouse
Introduction

Short exact sequences may sound mysterious but they crop up in many
applications and are actually quite simple to get to grips with. Here, after
a brief introduction, we’ll use them in a construction known as a group
extension, and we’ll find two different extensions of Z3.

Definitions

A sequence of maps between spaces

0→ G
α→H

β→W → 0

is called a short exact sequence if at each stage the image of the left map is
the kernel of the right map. To gain an understanding of what this means,
let’s look at the first map at G, which we will call i : {0} → G. The
image of this map must be the identity element eG of G since α is a group
homomorphism. We call the map from G to H α. The image of i is then
the kernel of α. This means that α(eG) = eH , where we have temporarily
used a subscript on e to indicate which group it belongs to. This in turn
means that α must be one-to-one (injective) since the cosets of e relative
to eG are just the elements of G, and each such coset maps to a different
element of H under α.

We call the map from H to W β. At H the image of α is the kernel of
β: β ◦ α(g) = 0 for all g ∈ G.

Finally we examine the sequence at W . The whole of W is mapped to
a single element. This means that the whole of W is the image of H under
β and so β is onto (surjective).

A short exact sequence thus defines a very definite structure. The maps
are restricted and, effectively, we have G ∼ H/W , with appropriate inter-
pretations of G and W .

Group extensions – two examples The idea of a short exact sequence
can be used to enlarge a given group by ‘multiplying’ it by another group.
The examples we will consider are both extensions of Z3 by Z2, but they
are not isomorphic. In fact one is abelian and the other is not.

A short exact sequence of groups such as the one above is said to exhibit
H as an extension of G by W . A little examination shows that the order
of H in our case is 6. We write the elements of Z3 as the integers 0, 1, 2
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with the group operation being addition modulo 3. Notice that this group is
isomorphic to the group of rotational symmetries of the equilateral triangle.

The first case we consider is when H is the cyclic group of order 6 con-
sisting of the integers {0, 1, 2, 3, 4, 5} under addition modulo 6. This group
is isomorphic to the rotational symmetry group of the regular hexagon. The
map α defined by

α(0) = 0, α(1) = 2, α(2) = 4

sends Z3 to the subgroup of H of order 3. Then β sends the elements of
H to their parity (i.e. odd integers are mapped to 1 while even integers
are mapped to 0). This gives the desired short exact sequence, as you can
check.

The nonabelian case is similar. Here we write H multiplicatively, as is
usual for nonabelian groups; H consists of the elements 1, a, a2, c, ac and ca,
a notation chosen for convenience (we could have written ac as d and ca as
g for example). The group table can be constructed from the rule that

c2 = 1, a3 = 1, (ac)2 = (ca)2 = 1 and ac 6= ca.

This group is isomorphic to the full group of symmetries of the plane equi-
lateral triangle, including reflections. We choose α to be the map sending
0 to 1, 1 to a and 2 to a2. Then the choice of β onto Z2 is fairly obvious,
and you just need to check that it a group homomorphism.

Summary This construction allows the formulation of nonabelian groups
from abelian ones. It is interesting to explore other examples of low order
to get a feel for what it is all about. As we have noted, the groups involved
have a natural interpretation acting on geometrical objects and this can also
help to visualise the maps and what they tell us about the extended group.

Useful Books [Lang] is a thorough, if sometimes challenging, book on
the fundamental ideas of algebra, including groups. More accessible is [Al-
lenby], which covers the essentials of group theory, and older texts such as
[Ledermann] (from which I got the idea of looking at groups of order six)
still have much material of interest.

[Allenby] R. B. J. T. Allenby, Rings, Fields and Groups, Butterworth–
Heinmann, 1991.

[Lang] S. Lang, Algebra, Springer–Verlag, 2002.

[Ledermann] W. Ledermann, Introduction to Group Theory, Longmans,
1973.
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The AGM and a formula for π
Tony Forbes
A long time ago I was asked to prepare something for an M500 Winter
Weekend as an emergency backup in case the regular presenter suddenly
became unavailable. Fortunately that never happened. However, the work
was not wasted and indeed much later saw light at a talk for the London
South Bank University Mathematics Study Group on 14th March 2012, a
date that seems appropriate for material concerning the computation of π.
This was Pi-day—in the USA March 14th is often written as 3.14. As this
stuff was originally prepared for M500 members I thought it would be a good
idea to present it here. I’m slightly uncertain about the origin of the mate-
rial. Most likely it was inspired by the book Pi and the AGM: A Study in
Analytic Number Theory and Computational Complexity by J. M. Borwein
& P. B. Borwein. The AGM in the title is short for the arithmetic–geometric
mean.

Start with two numbers, a and b. Compute the arithmetic mean, (a +
b)/2, and call it a1. Compute the geometric mean,

√
ab, and call it b1. Do

it again with a1 and b1 to get a2 and b2. And again, . . . . In general, for
any a, b,

a0 = a, b0 = b,

an+1 =
an + bn

2
, bn+1 =

√
anbn.

It can be shown that for any starting values (a, b), this process converges
to a common limit, called the arithmetic–geometric mean of a and b. The
main purpose of what follows is to investigate an interesting connection
between the AGM and a very efficient formula for computing π to great
accuracy.

Hereafter we denote the AGM of a and b by

A(a, b) = a∞ = b∞.

Thus an → A(a, b) and bn → A(a, b) as n→∞.

For example, A(0, 0) = A(0, 1) = A(1, 0) = 0, A(1, 1) = 1, A(1, 2) ≈
1.45679, A(1, 3) ≈ 1.86362, A(1, 1000) ≈ 189.388. More generally, one can
prove that

A(0, a) = A(a, 0) = 0, A(a, a) = a.

and that

A(a, b) = A

(
a+ b

2
,
√
ab

)
.
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Let

L(a, b) =
2

π

∫ ∞
0

dx√
(x2 + a2)(x2 + b2)

. (1)

Making the substitution x = b tan θ, dx/dθ = b sec2 θ to transform this
integral to

L(a, b) =
2

π

∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

,

we see almost immediately that

L(a, a) =
1

a
. (2)

Moreover, by applying the substitution u =
x

2
− ab

2x
,
du

dx
=

1

2
+

ab

2x2
to the

integral in (3), below, one can verify that

L(a, b) =
1

π

∫ ∞
−∞

du√√√√(u2 +

(
a+ b

2

)2
)(

u2 +
(√

ab
)2) . (3)

Hence

L(a, b) = L

(
a+ b

2
,
√
ab

)
. (4)

So, if an and bn are defined as above, (4) implies

L(an+1, bn+1) = L(an, bn).

Therefore

L(a, b) = L(a1, b1) = L(a2, b2) = . . . = L(a∞, b∞) = L(A(a, b), A(a, b)).

It looks as if the function L has the same kind of effect on (a, b) as A. Thus
if m = A(a, b),

L(a, b) = L(m,m) and A(a, b) = A(m,m).

Combining with L(a, a) =
1

a
from (2) and A(a, a) = a, this must mean that

for any a, b,

L(a, b) =
1

A(a, b)
. (5)
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Let us pause and reflect. We started off by defining a simple arith-
metic process which converts a pair of numbers to a single number by a
kind of limiting process. All fairly straightforward so far. Then we defined
a hideous looking integral and after a couple of transformations we have
proved that the integral and the AGM process are closely related—the one
is the reciprocal of the other. Indeed, the more you think about it, the more
amazing equality (5) becomes.

Instead of L(a, b) we will work with a related integral. Let 0 < u < 1

and let v =
√

1− u2. Then u2 + v2 = 1 and
dv

du
= −u

v
.

The complete elliptic integral of the first kind is defined by

K(u) =

∫ π/2

0

dθ√
1− u2 sin2 θ

. (6)

Clearly
1

A(1, u)
= L(1, u) =

2

π
K
(√

1− u2
)

=
2

π
K(v)

and, by differentiating (6) with respect to u,

K ′(u) =
dK(u)

du
=

∫ π/2

0

u sin2 θ dθ

(1− u2 sin2 θ)3/2
. (7)

Henceforth we will consider the AGM process with starting values 1 and
u, where u is a variable. Now consider an and bn as functions of u: an(u)
and bn(u). Thus

a0(u) = 1, b0(u) = u,

an+1(u) =
an(u) + bn(u)

2
, bn+1(u) =

√
an(u) bn(u).

Since an(u) and bn(u) are functions of u they can be differentiated. For
brevity we write

a′n(u) =
d

du
an(u), b′n(u) =

d

du
bn(u).

Then

a1(u) =
1 + u

2
, b1(u) =

√
u,

a′0(u) = 0, b′0(u) = 1, a′1(u) =
1

2
, b′1(u) =

1

2
√
u
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and

a′n+1(u) =
a′n(u) + b′n(u)

2
,

b′n+1(u) =

a′n(u)

√
bn(u)

an(u)
+ b′n(u)

√
an(u)

bn(u)

2
.

Recalling that v =
√

1− u2,
dv

du
= −u

v
and

lim
n→∞

an(u) = lim
n→∞

bn(u) = A(1, u) =
π

2K(v)
, (8)

differentiate with respect to u to get

lim
n→∞

a′n(u) = lim
n→∞

b′n(u) =
π u K ′(v)

2 v K2(v)
. (9)

Now let

xn =
an(u)

bn(u)
, yn =

b′n(u)

a′n(u)
, πn =

√
8
b2n+1(u) an+1(u)

a′n+1(u)
.

Using the formulae for an+1, bn+1, a′n+1 and b′n+1, we see that

xn+1 =

√
xn +

1
√
xn

2
, yn+1 =

yn
√
xn +

1
√
xn

yn + 1
, (10)

πn+1 = πn
xn+1 + 1

yn+1 + 1
.

From now on we fix the value of the variable u. Let u = 1/
√

2. Then
v = 1/

√
2, a0(u) = 1, b0(u) = 1/

√
2, x0(u) =

√
2, y0(u) =∞,

x1 =
21/4 + 2−1/4

2
, y1 = 21/4 and π0 = 2 +

√
2.

Using (8), (9) and the definition of πn, we have

πn →
π2

√
2 K(1/

√
2) K ′(1/

√
2)

as n→∞.
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Then from the ‘well-known’ formula (see page 18)∫ π/2

0

∫ π/2

0

sin2 φ dφ dθ

(2− sin2 θ)1/2 (2− sin2 φ)3/2
=

π

4
,

together with (6) and (7), we obtain

√
2 K(1/

√
2) K ′(1/

√
2) = π,

and finally we have the result that we have been aiming for:

πn → π as n→∞.

Traditionally, if you wanted to calculate π to great accuracy, you would
have probably used one of those arctangent formulae, such as Machin’s:

π = 16 arctan
1

5
− 4 arctan

1

239
.

When combined with the arctan series,

arctanx = x− x3

3
+
x5

5
− x7

7
+ . . . ,

this gives a rapidly converging series for π. However, it is only a simple
power-series and as such the number of decimal places of π delivered by
that formula depends no better than linearly on the number of terms used
in the summation.

Contrast with calculating an algebraic number, α, say. We find a poly-
nomial equation satisfied by α, say P (x) = 0, and we use the Newton–
Raphson method. That is, we guess a first approximation, α0 and then
do

αn+1 = αn −
P (αn)

P ′(αn)

for n = 0, 1, . . . . Take
√
m for instance. Then P (x) = x2 − m and the

recursive part of the Newton–Raphson algorithm becomes

αn+1 =
αn
2

+
m

2αn
.

With m = 2 and α0 = 1 as initial guess, 15 iterations are enough for 20000-
digit accuracy.
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As you can see, in general a recursive algorithm is much better than
summing a power series. However, π is not algebraic. So the Newton–
Raphson method is not available. On the other hand, the algorithm we
have developed, namely (10) together with the starting values,

x1 =
21/4 + 2−1/4

2
, y1 = 21/4 and π0 = 2 +

√
2, (11)

is recursive. And to give some idea how fast it is, starting with (11), only
12 iterations of (10) are needed for 20000 decimal place accuracy.

With a computer equipped with suitable multi-precision software, you
can use (11) together with (10), to write a simple program that quickly com-
putes π to thousands of decimal places. For example, if you have Math-
ematica, try running this code and verify that the result agrees with the
true value of π to at least 20000 decimal places.1

p = 20020; (* Set precision to 20020 places *)

y = Sqrt[Sqrt[2]]; (* y1 *)

x = (Sqrt[Sqrt[2]] + 1/Sqrt[Sqrt[2]])/2; (* x1 *)

pi = (2 + Sqrt[2])(x + 1)/(y + 1); (* π1 *)

Do[y = N[(y Sqrt[x] + 1/Sqrt[x])/(y + 1), p]; (* yn+1 *)

x = N[(Sqrt[x] + 1/Sqrt[x])/2, p]; (* xn+1 *)

pi = N[pi (x + 1)/(y + 1), p], (* πn+1 *)

{n, 1, 12}] (* Loop 12 times *)

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196

4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273

7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094

3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912...

Alternatively, you can use this algorithm to construct possible candi-
dates for circle squaring. The starting values as well as the iterations are
ruler-and-compasses constructible; hence so is πn for all positive integers n.
For example,

π2 =

(
2 +
√

2
) (

4 + 2 4
√

2 + 23/4
) (

2 8
√

2 + 25/8 + 2 · 27/8 + 4
√

2 +
√

2
)

8
(

2
(
1 + 4
√

2
)√

2 +
√

2 + 23/8
(
2 + 3

√
2
)) ,

correct to a modest 8 decimals. The precision is more than doubled by the

1Some readers might accuse me of cheating because I am blatantly using Mathemat-
ica’s on-board square root function. However, this is not a serious issue. There would
be no significant loss of performance if I wrote my own function to compute

√
m to the

necessary precision using the method described on page 16.
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next iteration, π3 = α3/β3, where

α3 =
(

2 +
√

2
)(

4 + 2
4
√

2 + 23/4
)(

2
8
√

2 + 25/8 + 2 · 27/8 + 4

√
2 +
√

2

)
(

4
16
√

2

√
2 +
√

2

+ 4
4

√
2 +
√

2

√
4 + 2

4
√

2 + 23/4 + 23/16
(

2 +
√

2 + 2 · 23/4
))

,

β3 = 32

(
2
(

1 +
4
√

2
)(

2 +
√

2
)3/4√

4 + 2
4
√

2 + 23/4

+ 23/8
4

√
2 +
√

2
(

2 + 3
√

2
)√

4 + 2
4
√

2 + 23/4

+
16
√

2
(

16 + 12
4
√

2 + 9
√

2 + 10 · 23/4
))

,

giving π to about 18 decimal places.

Problem 261.2 – Trigonometric double integral
Show that ∫ π/2

0

∫ π/2

0

sin2 φ dφ dθ

(2− sin2 θ)1/2 (2− sin2 φ)3/2
=

π

4
.

Problem 261.3 – Sums of powers
Tony Forbes
(i) Given a positive integer m, find the smallest positive integer n such that

1m + 2m + · · ·+ (n− 1)m ≥ nm.

For example, when m = 2, n = 5 since 30 = 12 + 22 + 32 + 42 ≥ 52 = 25
whereas 12+22+32 < 42, 12+22 < 32 and 12 < 22. This might or might not
be closely related to another problem, suggested to me by Robin Whitty.

(ii) Show that for any positive integer m,

1m + 2m + · · ·+ (m− 1)m <
mm

e− 1
≈ 0.581977mm. (1)

Also show that you cannot replace e − 1 by a larger number, in the sense
that (1) would fail for some integer m if you did.
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Solution 258.6 – Kolmogorov Distance
Kolmogorov Distance is a non-parametric test of the similar-
ity of two statistical distributions. Kolmogorov Distance is the
maximum separation in the y axis between the CDFs under test.
Prove that the x coordinate of this maximum separation is where
the PDFs of the two distributions cross.

Tony Forbes
If we assume the CDFs are appropriately well behaved, once we unravel
the wording of the problem we find that there is a straightforward answer.
Suppose the distributions have differentiable CDFs C1(x) and C2(x), say,
with corresponding PDFs P1(x) and P2(x). Recall that Pi(x) = dCi(x)/dx.
Then the maximum separation in the y axis between the CDFs will occur
at a point where d(C1(x)−C2(x))/dx = 0; that is, where P1(x)−P2(x) = 0.

On the other hand, things seem to go wrong (at least sometimes) if the
PDFs are discrete, as the following example shows.

x 1 2 3 4 4 6 7 8 9 10
20P1(x) 1 1 2 2 4 4 2 2 1 1
20P2(x) 1 2 3 3 3 3 3 1 1 0
20C1(x) 1 2 4 6 10 14 16 18 19 20
20C2(x) 1 3 6 9 12 15 18 19 20 20
20|C1(x)− C2(x)| 0 1 2 3 2 1 2 1 1 0

So a further problem is suggested. What’s gone wrong?

Equation
Vincent Lynch
Rearrange this equation to produce a seasonal message:

y =
log(x/m− sa)

r2
.

(See somewhere else in this magazine for the answer.)

Problem 261.4 – Projectile
A projectile is fired from a cannon in a uniformly distributed random direc-
tion above the ground. Show that the probability of it exceeding a fraction
α of its maximum range is

√
1− α. As usual, air resistance is non-existent,

the ground is flat and gravity acts vertically downwards.
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Problem 261.5 – Angle Trisection
The diagram represents a Euclidean construction due to Albrecht Dürer for
trisecting an angle—at least approximately—if the angle is not too large.
Angle AOB = θ, |AC| = |AB|/3, angle ACD = 90◦, |AE| = |AD| and
|EF | = |EC|/3. Find an exact expression for ∠AOF as a function of θ.

O A

B

C

D

E F

r r

r

r

r
r r

Problem 261.6 – Determinant equation
Solve ∣∣∣∣∣∣∣∣∣∣∣∣

x 1 2 3 4 5
5 x 1 2 3 4
4 5 x 1 2 3
3 4 5 x 1 2
2 3 4 5 x 1
1 2 3 4 5 x

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Problem 261.7 – Integrals involving roots
Let a and b be positive integers. Compute∫ 1

0

(
1− x1/a

)1/b
dx

and hence show that it is rational.
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M500 Mathematics Revision Weekend 2015
The M500 Revision Weekend 2015 will be held at

Yarnfield Park Training and Conference Centre,

Yarnfield, Staffordshire ST15 0NL

between Friday 15th and Sunday 17th May 2015.

The standard cost, including accommodation (with en-suite facilities) and
all meals from dinner on Friday evening to lunch on Sunday is £285. The
standard cost for non-residents, including Saturday and Sunday lunch, is
£170. There will be an early booking period up to the 16th April with a
discount of £20 for both members and non-members.

Members may make a reservation with a £25 deposit, with the balance
payable at the end of February. Non-members must pay in full at the time
of application and all applications received after the 28th February must be
paid in full before the booking is confirmed. Members will be entitled to a
discount of £15 for all applications.

A shuttle bus service will be provided between Stone station and Yarn-
field Park on Friday and Sunday. This will be free of charge, but seats will
be allocated for each service and must be requested before 1st May. There
is free on-site parking for those travelling by private transport.

For full details and an application form see the Society’s web site at
www.m500.org.uk.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. We expect to offer tutorials for
most undergraduate and postgraduate mathematics OU modules, subject
to the availability of tutors and sufficient applications.

Problem 261.8 – Sin integral
Show that for positive integer n,∫ ∞

0

(sinx)2n−1

x
dx =

∫ ∞
0

(sinx)2n

x2
dx.

Answer to page 19:

y =
log(x/m− sa)

r2
⇒ yr2 = log

( x
m
− sa

)
⇒ meyr

2

= x− sam,

merry = x−mas.
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