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Solution 261.6 – Determinant equation
Solve ∣∣∣∣∣∣∣∣∣∣∣∣

x 1 2 3 4 5
5 x 1 2 3 4
4 5 x 1 2 3
3 4 5 x 1 2
2 3 4 5 x 1
1 2 3 4 5 x

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Stuart Walmsley
Introduction

The determinant to be solved in the problem has a pattern. The symme-
try of this pattern determines the solution. To facilitate the solution, the
numbers in the determinant are replaced by letters, giving a more general
form.

|M | =

∣∣∣∣∣∣∣∣∣∣∣∣

x a b c d e
e x a b c d
d e x a b c
c d e x a b
b c d e x a
a b c d e x

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The expanded form of the determinant is a polynomial of order 6 in x.
Solution yields a product of six factors, each linear in x, and each involving
a different root of the polynomial.

The solution may be expressed as a new determinant |Λ| in which each
solution is an element on the main diagonal and there are zeroes elsewhere.
Symbolically, |M | → |Λ|. The solution can be found by considering the
square matrix corresponding to the determinant. It may be shown that if the
product of two square matrices A, B is C, AB = C, then the corresponding
determinants have the same property, |A||B| = |C|.

Suppose M is considered as acting on a linear space: Mv = w; that is,
M converts a vector v in the space to a vector w. Change the basis of the
vectors by a matrix T−1:

T−1v = v′, v = Tv′, T−1w = w′, w = Tw′;

v and v′ are the same vector in the two different bases. Substituting and
with some simple manipulation, T−1MTv′ = w′. Since |T−1||T | = 1,
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|T−1MT | = |M |. The problem under consideration is then to find T so
that T−1MT = Λ.

Cyclic matrices and cyclic groups

The matrix M (and the determinant |M |) has elements Mj,k, where j is the
row and k the column. The range of j and k is 0, 1, . . . , 5. The pattern of
the matrix can be described:

Mj,k = Mj,j+m = M0,m = M0,k−j , m = k − j,

j+m and k−j to be taken modulo 6. Such a matrix (determinant) is called
a cyclic matrix (determinant).

The pattern of the matrix is identical to a particular form of the product
table for the elements of a group.

Product pq q = x a b c d e

p = q−1 = x x a b c d e
e e x a b c d
d d e x a b c
c c d e x a b
b b c d e x a
a a b c d e x

The array has the form of the product table of a group arranged so that
the x, the identity occurs along the main diagonal and that therefore corre-
sponding rows and columns refer to pairs of inverse elements. The group is
the cyclic group of order 6. The element a generates a cycle of order 6 and
hence the whole group; b is of order 3, c of order 2, d of order 3, e of order
6 and x of order 1.

a aa = b aaa = c aaaa = d aaaaa = e aaaaaa = x
b bb = d bbb = x
c cc = x
d dd = b ddd = x
e ee = d eee = c eeee = b eeeee = a eeeeee = x

Representations of the group are sought which consist of complex numbers
with multiplication as the product rule.

The representative of the generator a must be a number whose sixth
power is 1. There are six such numbers

ej = exp

(
2πij

6

)
, j = 0, 1, . . . , 5
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with the properties

e∗j = e−j , j mod 6,

ejek = ej+k, j + k mod 6,∑5
j=0 ej = 0,

∑5
k=0 e

∗
jk ekl = 6 δj,l, δj,l =

{
1 if j = l,
0 otherwise.

Each ej generates a representation: a (ej), b (e2j), . . . , x (e6j = e0 = 1).
Here is the full set.

x a b c d e
e0 e0 e0 e0 e0 e0
e0 e1 e2 e3 e4 e5
e0 e2 e4 e0 e2 e4
e0 e3 e0 e3 e0 e3
e0 e4 e2 e0 e4 e2
e0 e5 e4 e3 e2 e1

If the general term is represented by ejk, then ejk = exp(2πijk/6), j, k mod
6. Remembering that

∑
k e
∗
jk ekl = 6 δj,l, a new matrix is defined:

Tj,k =
1√
6
ejk =

1√
6

exp

(
2πijk

6

)
, j, k mod 6.

This matrix is unitary and has inverse T−1:

T−1j,k = T ∗k,j =
1√
6

exp

(
−2πijk

6

)
, j, k mod 6.

General solution

It will now be shown that the matrix T developed in the previous section
provides the solution to the general problem: T−1MT = Λ, Λ being a
diagonal matrix, the non zero elements of which are the solutions of the
polynomial problem. In component terms,∑

q

T−1p,q

∑
r

Mq,rTr,s = Λp,s.
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Then
1

6

∑
q

exp

(
−2πipq

6

)∑
r

Mq,r exp

(
2πirs

6

)
= Λp,s.

The symmetry of the M matrix,

Mq,r = Mq,q+m = M0,m = M0,r−q, m = r − q,

gives

1

6

∑
q

exp

(
−2πipq

6

)∑
r

M0,r−q exp

(
2πi(q +m)s

6

)
= Λp,s.

Factorize the final factor:

1

6

∑
q

exp

(
−2πipq

6

)∑
r

M0,r−q exp

(
2πiqs

6

)
exp

(
2πims

6

)
= Λp,s.

Change the sum over r to a sum over m:

1

6

∑
q

exp

(
−2πipq

6

)∑
m

M0,m exp

(
2πiqs

6

)
exp

(
2πims

6

)
= Λp,s.

The expression may now be factorized into two independent sums(
1

6

∑
q

exp

(
−2πipq

6

)
exp

(
2πiqs

6

))(∑
m

M0,m exp

(
2πims

6

))
= Λp,s.

The first factor is T−1T , so that

δp,s
∑
m

M0,m exp

(
2πims

6

)
= Λp,s

and Λ is a diagonal matrix.

It may be noted that the analysis is unchanged if 6 is replaced by any
positive integer, so that the result holds for cyclic matrices of any order.

Discussion

The diagonal elements of Λ give the solutions to the determinantal equation
which is the problem under direct consideration. To shorten the notation,
let

e1 = exp
(2πi

6

)
=

1

2
+

√
3i

2
= w.
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Then

e0 = 1, e1 = w, e2 = −w∗, e3 = − 1, e4 = −w, e5 = w∗.

The solution to the problem then becomes

x+ a+ b+ c+ d+ e = 0,

x+ wa− w∗b− c− wd+ w∗e = 0,

x− w∗a− wb+ c− w∗d− we = 0,

x− a+ b− c+ d− e = 0,

x− wa− w∗b+ c− wd− w∗e = 0,

x+ w∗a− wb− c− w∗d+ we = 0.

Substitution of the numerical values a = 1, b = 2, c = 3, d = 4, e = 5 leads
to

x = − 15, x = 3 + i3
√

3, x = 3 + i
√

3,

x = 3, x = 3− i
√

3, x = 3− i3
√

3.

The full symmetry of the determinant is C6 and the roots of the polynomial
are correspondingly distinct and include complex conjugate pairs. For all
the roots to be real, the matrix would have to be symmetric (or if the values
a, b, . . . include complex numbers, hermitian). In the example here, this
would require a = e and b = d. The solution to the problem then becomes

x+ 2a+ 2b+ c = 0, x+ a− b− c = 0, x− a− b+ c = 0,

x− 2a+ 2b− c = 0, x− a− b+ c = 0, x+ a− b− c = 0.

All the roots are now real and there are two pairs of equal roots. A more
detailed analysis would show that the underlying group is the dihedral group
of order 12 containing C6 as a subgroup. The extreme case is a = b = c =
d = e, when the solutions become:

x+5a = 0, x−a = 0, x−a = 0, x−a = 0, x−a = 0, x−a = 0.

The problem now has full permutation symmetry with group S6. The five
repeated roots correspond to the six vertex regular simplex, which is a figure
in five dimensions.
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zn + zk = 1
Bryan Orman
In this article the polynomial p(z) = zn + zk − 1 will be examined for its
unimodular roots, that is, the roots that lie on the unit circle |z| = 1 in the
complex z-plane. The existence of such roots depends on both n and k, and
in what follows we assume that n ≥ 2 and 1 ≤ k ≤ n− 1 although we start
by examining the simple case where the zk term is omitted.

Consider zn = 1. Evidently all the solutions of this equation are uni-
modular since |zn| = |z|n = 1, giving |z| = 1 for all solutions. Specifically,
the required solutions are

zm = exp

(
2πmi

n

)
, m = 0, 1, 2, . . . , n− 1.

These are equally spaced around the unit circle at angular positions 2πm/n,
with m = 0 corresponding to z0 = 1.

Adding the zk term to the left-hand side results in solutions that are
either unimodular or inside/outside the unit circle. The existence of uni-
modular solutions depends on both n and k, so if we assume that exp(iθ)
is a unimodular solution, where θ = θ(n, k), then p(z) = 0 becomes

einθ + eikθ = 1.

The two unimodular terms on the left-hand side must sum to 1, so they
must be complex conjugates. The only possible pair of complex conjugates
are e±iπ/3. To show this consider eiα + eiβ = 1; then cosα+ cosβ = 1 and
sinα+ sinβ = 0, giving α = ±π/3 and β = ∓π/3. Thus einθ = e±iπ/3 and
eikθ = e∓iπ/3 with general solution

nθ = ± π

3
+ 2πp, kθ = ∓ π

3
+ 2πq,

where p and q are integers.

Eliminating θ from these equations gives n + k = ±6(nq − kp). This
leads to the necessary condition on n and k for unimodular solutions of the
equation zn + zk = 1 that n + k ≡ 0 (mod 6). However, this condition is
not sufficient since, for example, the quartic equation with n = 4 and k = 2
satisfies this condition but ζ = z2 = (−1±

√
5)/2, and clearly the roots will

not be unimodular. The equation with n = 9 and k = 3 can be seen to have
all non-unimodular roots by putting ζ = z3.
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It is clear from these two examples that we should first reduce the order
of the general equation by setting ζ = zλ so that the equation becomes

ζn/λ + ζk/λ = 1.

Since we require both powers to be positive integers we set λ = gcd(n, k),
n = n0λ and k = k0λ, giving the reduced equation of lowest order,

ζn0 + ζk0 = 1 with gcd(n0, k0) = 1.

We will now show that if n0 +k0 ≡ 0 (mod 6) and gcd(n0, k0) = 1, then the
only unimodular roots of this reduced equation are e±iπ/3.

Firstly, it is clear that the above two conditions on n0 and k0 imply that
neither is divisible by 2 or 3; so both integers are congruent to ±1 modulo
6. And so n0 = 6s ± 1 and k0 = 6t ∓ 1, where s and t are non-negative
integers. A direct calculation shows that if ζ = e±iπ/3, then

ζn0 + ζk0 =
(
e±iπ/3

)6s±1
+
(
e±iπ/3

)6t∓1
= 1;

that is, e±iπ/3 are solutions of the reduced equation.

To show that they are the only solutions we assume that ζ = eiθ; then
we must show that θ ≡ ±π/3 (mod 2π). Now the value of θ is given by

θ = 2π
p+ q

n0 + k0
and the values of p and q are found from the following pair

of linear Diophantine equations:

−6k0p+ 6n0q = n0 + k0, 6k0p− 6n0q = n0 + k0.

We now quote a standard theorem (see D. Burton: Elementary Number
Theory, page 40): The linear Diophantine equation ap + bq = c has a
solution if and only if d|c, where d = gcd(a, b). If p0, q0 is any particular
solution of this equation, then all other solutions are given by

p = p0 +
b

d
µ and q = q0 −

a

d
µ

for varying integers µ. In order to apply this theorem we need to check that
d|c; that is gcd(6k0, 6n0) divides n0 + k0. It follows from gcd(n0, k0) = 1
that d = gcd(6k0, 6n0) = 6, and we have assumed that n0 + k0 is divisible
by 6, so we can apply the theorem.

Inserting n0 = 6s ± 1 and k0 = 6t ∓ 1 into the first of these equations
the solution p0 = ±s and q0 = ±t is found. Inserting them into the second
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of these equations the solution p0 = ±5s+ 1 and q0 = 5t− 1 is found. Now

p+ q = p0 + q0 +
(b− a)µ

6
.

For the particular solution p0 = ±s and q0 = ±t, and from the first equation,
a = −6k0 = −36t + 6 and b = 6n0 = 36s + 6; so the value of p + q is
(s+ t)(±1 + 6µ). And since n0 + k0 = 6(s+ t) we have

θ =
2π(±1 + 6µ)

6
.

For the particular solution p0 = ±5s + 1 and q0 = ±5t − 1, and from the
second equation, a = 6k0 = 36t− 6 and b = −6n0 = −36s− 6; so the value
of p+ q is (s+ t)(±5− 6µ). In this case

θ =
2π(±5− 6µ)

6
.

Since µ is any integer these can be taken together and we can write θ ≡
±π/3 (mod 2π), as required. Finally, we use ζ = zλ to complete the analysis
and the following theorem can then be used to determine all the unimodular
roots of p(z).

The function p(z) = zn + zk − 1 has exactly 2λ unimodular roots given
by

zm = exp

(
±i
(
π

3λ
+

2mπ

λ

))
, where 0 ≤ m ≤ λ− 1,

provided 6 divides (n+ k)/λ. Recall that λ = gcd(n, k).

We end with some consequences of this theorem.

• Since n+ k ≡ 0 (mod 6) and gcd(n, k) = 1 imply that neither integer
is divisible by 2 or 3, it follows that there are no unimodular roots for
n = 2α3β , where α, β ∈ N.

• If n ≥ 5 is prime, then there are unimodular roots for which n+ κ is
a multiple of 6, κ being the smallest value of k, and for k = κ + 6m,
m = 1, 2, . . . , with k ≤ n − 1. Since λ = 1 for n prime there will be
exactly one pair of conjugate unimodular roots for each possible k.
The polar angles are just θ = ±π/3.

• It follows that n = 5 and k = 1 are the smallest possible values of n
and k that result in unimodular roots.
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An example: n = 25. The following satisfy n+ k ≡ 0 (mod 6):

25 + 5 = 30, 25 + 11 = 36, 25 + 17 = 42, 25 + 23 = 48,

and the values of λ are respectively 5, 1, 1, 1.

Since λ = 1 for k = 11, 17, and 23, the unimodular roots have polar
angles θ = ±π/3 for these values of k.

For k = 5, we have λ = 5 and the five pairs of unimodular conjugate
roots have polar angles

θ = ± π

15
, ± 7π

15
, ± 13π

15
, ± 19π

15
, ± 25π

15
;

equivalently

θ = ± π

15
, ± 5π

15
, ± 7π

15
, ± 11π

15
, ± 13π

15
.

These are located around the unit circle at alternating angular separations
of 4π/15 and 2π/15, starting with π/15.

A similar analysis with n = 255 and k = 15, 33, 51 produces these patterns
of solutions.

n = 255 k = 15 n = 255 k = 33 n = 255 k = 51
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Integration of polynomial/exponential functions
Ken Greatrix
On two occasions previously, I have shown examples of a technique for the
integration of an exponential function with a polynomial component. In the
first of these, I claimed that there was a proof by induction. In the second
of my examples, I said that a proof would be forthcoming. It is now time
to show that such a proof does exist.

I wish to consider the integration of a generalized function, xaebx
c

, which
does not submit to standard methods of integration. (In the following, I
will be using various indexing numbers (typically j, k). Their value is not
necessarily carried from one expression to the next, and only indicates a
generalized idea within each expression.)

Expand the exponential term and multiply the series by the polynomial
term:

xa ebx
c

= xa

(
1 + bxc +

b2x2c

2!
+
b3x3c

3!
+ · · ·+ bkxkc

k!
+ . . .

)

= xa + bxa+c +
b2xa+2c

2!
+
b3xa+3c

3!
+ · · ·+ bkxa+kc

k!
+ . . . .

Integrate:∫
xa ebx

c

dx =
xa+1

a+ 1
+
bxa+c+1

a+ c+ 1
+

b2xa+2c+1

(a+ 2c+ 1)2!
+· · ·+ bkxa+kc+1

(a+ kc+ 1)k!
+. . . .

Now x(a+1)/(a+ 1) can be extracted as a common factor. This initial com-
mon factor is unique and does not follow the recursive pattern of the com-
mon factors in the remainder of this process. Also, since the first term
of any exponential expansion is 1 it follows that this is the integral of the
polynomial component. With the removal of this common factor, I obtain
the first residual series. In the following, for ease of reading, I shall only
be showing the process derived from each successive residual series and not
the full expression:

1 +
(a+ 1)bxc

a+ c+ 1
+

(a+ 1)b2x2c

(a+ 2c+ 1)2!
+ · · ·+ (a+ 1)bkxkc

(a+ kc+ 1)k!
+ . . . .

This can be separated into a sum of two series – firstly, an exponential:

1 + bxc +
b2x2c

2!
+
b3x3c

3!
+ · · ·+ bkxkc

k!
+ . . . = ebx

c

,
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and secondly, a remainder series:

− cbxc

a+ c+ 1
− 2cb2x2c

(a+ 2c+ 1)2!
− · · · − kcbkxkc

(a+ kc+ 1)k!
− . . . .

It will be seen that

− cbxc

a+ c+ 1

can now be considered as a common factor in this series. After it is removed
by division of the remainder series, and with another cancellation in the
factorial term, the next residual series is

1 +
(a+ c+ 1)bxc

a+ 2c+ 1
+

(a+ c+ 1)b2x2c

(a+ 3c+ 1)2!
+ · · ·+ (a+ c+ 1)bkxkc

(a+ (k + 1)c+ 1)k!
+ . . . .

For convenience in writing and for ease of reading I have expressed the final
term in k, rather than the now correct value of k − 1, as my above note
explains.

Repeating this process of separation and common factor extraction, we
have

1 + bxc +
b2x2c

2!
+ · · ·+ bkxkc

k!
+ . . . = ebx

c

and

− cbxc

a+ 2c+ 1
− 2cb2x2c

(a+ 3c+ 1)2!
− · · · − kcbkxkc

(a+ (k + 1)c+ 1)k!
− . . . ,

where the common factor from the second of these series is now

− cbxc

a+ 2c+ 1
.

After this is divided into the remainder series, and another cancellation of
the factorial term, the next residual series becomes

1 +
(a+ 2c+ 1)bxc

a+ 3c+ 1
+

(a+ 2c+ 1)b2x2c

(a+ 4c+ 1)2!
+ · · ·+ (a+ 2c+ 1)bkxkc

(a+ (k + 2)c+ 1)k!
+ . . . .

Having now seen that a pattern is emerging, I can attempt the inductive
process. It would appear that at the jth stage in this process, the residual
series has the form

1+
(a+ jc+ 1)bxc

a+ (j + 1)c+ 1
+

(a+ jc+ 1)b2x2c

(a+ (j + 2)c+ 1)2!
+ · · ·+ (a+ jc+ 1)bkxkc

(a+ (j + k)c+ 1)k!
+ . . . ,
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which I shall use as a basis for induction. In the above, I have demon-
strated that this formula and subsequent process are correct for j = 0, 1, 2
(although, to be pedantic, the process derived from the expression with
j = 0 is not part of the recursive process).

By repeating the above process, this can be shown as a sum consisting
of an exponential series

1 + bxc +
b2x2c

2!
+ · · ·+ bkxkc

k!
+ . . . = ebx

c

and a remainder series

− cbxc

a+ (j + 1)c+ 1
− 2cb2x2c

(a+ (j + 2)c+ 1)2!
− · · · − kcbkxkc

(a+ (j + k)c+ 1)k!
− . . .

with a common factor of

− cbxc

a+ (j + 1)c+ 1
.

To complete the inductive step, after removing the common factors, the
residual series becomes

1 +
(a+ (j + 1)c+ 1)bxc

a+ (j + 2)c+ 1
+ · · ·+ (a+ (j + 1)c+ 1)bkxkc

(a+ (j + k + 1)c+ 1)k!
+ . . . ,

which is the (j + 1)th stage, and thus the inductive step is complete.

The general term in the subtraction is

(a+ jc+ 1)bkxkc

(a+ (j + k)c+ 1)k!
− bkxkc

k!
· a+ (j + k)c+ 1

a+ (j + k)c+ 1
= − kcbkxkc

(a+ (j + k)c+ 1)k!

and the general term in the division to remove the common factor is obtained
by multiplication of the inverse of the common factor term:

kcbkxkc

(a+ (j + k)c+ 1)k!
· a+ (j + 1)c+ 1

cbxc
=

a+ (j + 1)c+ 1

a+ (j + k)c+ 1
· kb

kxkc

bxck!

=
a+ (j + 1)c+ 1

a+ (j + (k − 1) + 1)c+ 1
· b
k−1x(k−1)c

(k − 1)!
.

A negative value divided by another negative value gives a positive result,
so I have not shown the negative signs here.
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At each stage in this process, a term is ‘lost’. Rather than express the
general term in k, (k − 1), (k − 2), etc., I show the ‘next’ term and thus
effectively k 7→ k+ 1 at each stage in this process. So the general term then
becomes

a+ (j + 1)c+ 1

a+ (j + k + 1)c+ 1
· kb

kxkc

k!

as shown in the inductive step (and also in line with my above note).

Putting all the above components together,∫
xaebx

c

dx =
xa+1

a+ 1

(
ebx

c

− cbxc

a+ c+ 1

(
ebx

c

− cbxc

a+ 2c+ 1

(
ebx

c

− . . .

− cbxc

a+ kc+ 1

(
ebx

c

− . . .
))))

.

The common factor extracted from each successive remainder series is such
that the following residual series is a sum of the same exponential series and
the next remainder series. Conveniently, this is the exponential component
of the original integration; but it’s probably governed by the nature of
an exponential rather than my personal choice (since

∫
exdx = ex; with

considerations for constants and function-of-a-function type of expressions).

Since a, b, c are fixed in value and since they and x remain finite,
there is a limiting value of k (in the denominator) such that any further
terms in the series do not contribute to the required level of accuracy. Not
shown here are any constants multiplying the original integration and any
possible constants of integration which would be evaluated with given initial
conditions.

Looking back to my previous articles; for the standard normal CDF,
a = 0, b = − 1

2 , c = 2 and for the χ2 CDF (when ν = 1), a = − 1
2 , b = − 1

2 ,
c = 1.

Since I have now proved the process, it’s accuracy is also proven. How-
ever, as with all recursive processes the limitation of available decimal places
in the calculating device means that inaccuracies creep into the calculation.
With processes that converge quickly this inaccuracy is lessened. At the
time of writing I have no knowledge of the accepted method of evaluation
of integrals of this nature, and so I can’t make a comparison of relative
accuracies. This leaves me with three options: either it’s better, it’s worse
or it actually is the accepted method and I’ve only found something that
wasn’t even lost.
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Hindsight is a wonderful thing. I now realise that had I done this first,
I wouldn’t have needed to produce two example iterations. But then again,
it’s always useful to have worked examples to enhance an explanation.

Initially I shied away from this proof because I didn’t think it would
be straightforward enough and had doubts that my knowledge of maths
was sufficient. Thus I demonstrate some of the many dangers of making
assumptions. The first was assuming that a proof existed without seeking
to find one. Secondly I doubted my capability – before investigating the
possibility of a proof. Obviously it’s a case of ‘try before you shy!’

Solution 213.2 – e
Define a sequence ε2, ε4, ε6, . . . by

εk = k +
1 + εk+2

1 + 2εk+2
, ε∞ = 0.

Show that e = 2 + ε2/(1 + ε2).

Steve Moon
First we perform a few iterations on the expansion 2 + ε2/(1 + ε2):

t1 = 2 +
ε2

1 + ε2
=

2 + 3ε2
1 + ε2

, t2 =
11 + 19ε4
4 + 7ε4

,

t3 =
106 + 193ε6
39 + 71ε6

, t4 =
1457 + 2721ε8
536 + 1001ε8

and so on. We are given that ε0 = ∞; so we deduce limk→∞ εk = 0 and
hence the sequence t1, t2, . . . converges as k → ∞. If we now substitute
εk+2 = 0 in each tk we obtain a sequence

T =

(
2

1
,

11

4
,

106

39
,

1457

536
, . . .

)
and we can say this converges to some number as k →∞.

Now consider the continued fraction expansion of e, which is

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . . ] = 2 +
1

1 +
1

2 +
1

1 +
1

. . .

. (1)
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By evaluating the convergents we obtain the sequence

2

1
,

3

1
,

8

3
,

11

4
,

19

7
,

87

32
,

106

39
,

193

71
,

1264

465
,

1457

536
,

2721

1001
, . . . ,

which can readily be checked. If the nth convergent is pn/qn and an is the
nth term in the continued fraction expansion, then

p1 = a1, q1 = 1, p2 = a1a2 + 1, q2 = a2,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2, n ≥ 3.
(2)

It is a standard result that the alternate ‘odd’ convergents 2/1, 8/3, 19/7,
. . . form a subsequence which converges to e from below and the ‘even’
terms converge to e from above.

Now the terms in T comprise two alternating subsequences, (a) 2/1,
106/39, . . . , where we see the first and fourth members of the subsequence
that converges to e from below, and (b) 11/4, 1457/536, . . . , where we
see the second and fifth members of the subsequence that converges to e
from above. Hence T comprises a subsequence that converges to e from
below, and a subsequence that converges to e from above. We deduce that
2+ε1/(1+ε2) = e, as required, and the convergence is rapid compared with
(1) as we calculate every 3rd term only.

Also notice that in t1, t2, t3 and t4, the coefficients of εk form the
fractions 3/1, 19/7, 193/71 and 2721/1001, which are also convergents of
e. If we rewrite the problem defining ε∞ = ∞, then, for example, we can
rewrite t4 as

t4 =
2721ε8 + 1457

1001ε8 + 536
=

2721 + 1457/ε8
1001 + 536/ε8

and if we set ‘ε8 =∞’, t4 = 2701/1001. Hence we can use converging frac-
tions formed by the coefficients of εk to obtain e, in the limit, as before, by
following the analysis through. These fractions again form two subsequences
converging to the same limit, e.

Tony Forbes
‘Where does (1) come from?’, I have often and repeatedly asked myself
without—until the above article arrived—ever making any more than a
trivial amount of effort to find out. At last I am enlightened. After a brief
search on the Web I discovered a clever proof due to Henry Cohn.
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Suppose we are given the continued fraction in (1). Recalling the defi-
nitions of an, pn and qn in (2), we have

p3n = 2np3n−1 + p3n−2, q3n = 2np3n−1 + p3n−2,
p3n+1 = p3n + p3n−1, q3n+1 = p3n + p3n−1,
p3n+2 = p3n+1 + p3n, q3n+2 = p3n+1 + p3n,

(3)

n = 1, 2, . . . . Now define three integrals:

An =

∫ 1

0

xn(x− 1)n

n!
exdx, Bn =

∫ 1

0

xn+1(x− 1)n

n!
exdx,

Cn =

∫ 1

0

xn(x− 1)n+1

n!
exdx.

Then

A1 = e−3 = q2e−p2, B1 = 8−3e = p3− q3e, C1 = 11−4e = p4− q4e,

An = −Bn−1 − Cn−1, Bn = −2nAn + Cn−1, Cn = Bn −An, n ≥ 2.

The expressions for A1, B1 and C1 follow by elementary calculus, and the
equality for Cn is straightforward. To prove the equalities for An and Bn,
differentiate xn(x− 1)n+αex to get

nxn−1(x− 1)n+αex + (n+ α)xn(x− 1)n+α−1ex + xn(x− 1)n+αex. (4)

Putting α = 0 in (4) and integrating from 0 to 1 gives

n!
(
Cn−1 +Bn−1 +An

)
=
[
xn(x− 1)nex

]1
0

= 0,

which implies An = −Bn−1 − Cn−1. Similarly but with α = 1 we obtain

n!
(
nAn − Cn−1 + (n+ 1)An +Bn −An

)
=
[
xn(x− 1)n+1ex

]1
0

= 0,

which simplifies to Bn = −2nAn + Cn−1.

Therefore, by induction and making use of (3), we see that An, Bn and
Cn can be evaluated in terms of pk and qk:

An = q3n−1e− p3n−1, Bn = p3n− q3ne, Cn = p3n+1− q3n+1e, n ≥ 1.

But An, Bn and Cn tend to 0 as n→∞. So qne− pn tends to 0 and hence
pn/qn tends to e as n→∞ thus confirming that the continued fraction (1)
really is e.
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Problem 263.1 – 100 people and 100 boxes
One hundred persons numbered 1–100 play a game involving 100 boxes also
numbered 1–100. Box i contains a number φ(i), where φ is some random
permutation of (1, 2, . . . , 100). The object of the game is for each person
to guess which box contains his/her number. To help achieve this, he/she
is allowed to select 50 boxes and view their contents—so a pure guess is
required only when the number is not thereby revealed. Although they may
discuss a strategy beforehand, players must not communicate with each
other whilst the game is in progress.

If every guess is correct, it is good; otherwise not. Show that the proba-
bility of a good outcome can be as high as 0.33. A surprising result consid-
ering that the probability of an individual guessing correctly is only 0.51.

For example, they might agree that player p will inspect boxes with
opposite parity to p and guess box p if his/her number is not revealed. But
the chance of success with this strategy is almost zero. Hint: See Problem 263.5.

Problem 263.2 – Sequences
Show that the number of binary {0, 1} sequences of length n that do not
contain two consecutive 1s is a Fibonacci number. For example, with n = 4
we have

{0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010},
eight sequences, and indeed 8 is the 4th or 5th or 6th Fibonacci number,
depending on where you are supposed to start counting them.

Is there an equally familiar characterization of decimal sequences that
avoid consecutive nines? The numbers for n = 1, 2, . . . , 6 are (TF thinks)
10, 99, 981, 9720, 96309, 954261.

Problem 263.3 – Binomial coefficient gcd
For which positive integers n is it true that

gcd

((
n

a

)
,

(
n

b

)
,

(
n

c

))
> 1 for all a, b, c ∈ {1, . . . , n− 1}?

Problem 263.4 – Arctan integral
Show that ∫ 1

0

arctan(x2 − x+ 1) dx = log 2.
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Solution 188.4 – Sixteen tarts
There are 16 indistinguishable jam tarts. Some jam has been
removed from one and put back into another so that fourteen
weigh the same, one weighs a bit more and one a bit less. Devise
a scheme to find the light and heavy tarts in five weighings.

By a weighing we mean the process of selecting two sets of tarts,
A and B, and determining whether A is lighter than B, A weighs
the same as B, or A is heavier than B.

Tony Forbes
As I suggested in M500 188, the problem is interesting because the number
of light–heavy possibilities, 16 × 15 = 240, is only slightly less than the
number of observations provided by five weighings, 35 = 243. Dick Board-
man presented a similar problem involving nine tarts and four weighings
[M500 182], and in my solution it was possible to specify a fixed set of four
weighing instructions [M500 184]. For 16 tarts, however, all my attempts
to provide a single set of five instructions have failed. The 16-tarts problem
is solvable—but not quite as elegantly as I had hoped.

Label the tarts 0, 1, . . . , 9, A, B, C, D, E, F. For a slightly more difficult
problem, we assume only that at most one pair of tarts has been interfered
with. The first weighing will be

W1: weigh {0, 1, 2, 3} against {4, 5, 6, 7}.

If the result of W1 is balanced, do

W2: weigh {0, 1, 4, 5, 8} against {6, 7, 9, A, B},
W3: weigh {2, 5, 6, A} against {3, 7, B, D},
W4: weigh {4, B, C, E} against {1, 6, 7, D}.

Otherwise do

W2: weigh {0, 1, 2, 4, 5, 6, 8} against {3, 7, 9, A, B, C, D},
W3: weigh {5, B, C, D} against {7, 8, E, F},
W4: weigh {0, 4, 9, B, E} against {1, 6, A, C, F}.

From the data provided by W1–W4 we can reduce the light–heavy possibil-
ities to at most three. For convenience, they have been calculated for every
combination and the details are presented in the table on the next page.
In the first column we indicate the results of W1–W4 by letters L, H, B,
according to the relative weight of the tarts on the left; L light, H heavy, B
balanced. The second column gives the corresponding two or three possible
light–heavy combinations.
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A carefully chosen fifth weighing, W5, will correctly identify the light
and heavy tarts. Suppose there are three possibilities,

{a light x heavy, b light y heavy, c light z heavy}.

If a, b and c are distinct, weigh a against b; otherwise if x, y and z are
distinct, weigh x against y. Without loss of generality the only other possible
triple is

{a light x heavy, a light y heavy, b light x heavy},

in which case weigh a and x against two unaltered tarts. If there are only
two l–h entries in the table, the final identification is even easier. Observe
that BBBB includes the possibility that all of the tarts weigh the same.

l h l h l h
BLLL 4 7 5 7 8D
BLLB 0 3 CB EB
BLLH 1 3 8 B FB
BLBL 5 6 C 9 E 9
BLBB 8 9 8 F F 9
BLBH 8 C 8 E DB
BLHL 4 6 CA EA
BLHB 0 2 8 A FA
BLHH 1 2 D9 DA
BBLL CD ED FD
BBLB 2 3 6 7 A 9
BBLH 5 4 9 B AB
BBBL 0 1 CF EF
BBBB CE EC - -
BBBH 1 0 FC FE
BBHL 4 5 B 9 BA
BBHB 3 2 7 6 9 A
BBHH DC DE DF
BHLL 2 1 9D AD
BHLB 2 0 A 8 AF
BHLH 6 4 AC AE
BHBL BD C 8 E 8
BHBB 9 8 9 F F 8
BHBH 6 5 9 C 9 E
BHHL 3 1 B 8 BF
BHHB 3 0 BC BE
BHHH 7 4 7 5 D8

l h l h l h
LLLL 0 7 0 F 2 F
LLLB 0 E 1 F 2 7
LLLH 1 7 1 E 2 E
LLBL 0A 2A E 7
LLBB 0 9 1A 8 7
LLBH 1 9 2 9 F 7
LLHL 0 C 0D 2 C
LLHB 0 B 1 C 2D
LLHH 1 B 1D 2 B
LBLL 0 8 9 7 B 7
LBLB 2 8 3 7 D7
LBLH 1 8 A7 C 7
LBBL 0 6 2 6 3 A
LBBB 0 4 1 6
LBBH 1 4 2 4 3 9
LBHL 0 5 3 C 8 6
LBHB 2 5 3D 8 5
LBHH 1 5 3 B 8 4
LHLL 3 F B 6 D6
LHLB 3 8 B 4 C 6
LHLH 3 E C 4 D4
LHBL 3 6 9 6 B 5
LHBB 9 4 A6 D5
LHBH 3 4 A4 C 5
LHHL 9 5 E 5 E 6
LHHB 3 5 E 4 F 6
LHHH A5 F 4 F 5

l h l h l h
HLLL 4 F 5A 5 F
HLLB 4 E 5 3 6 F
HLLH 5 9 5 E 6 E
HLBL 4 3 4A 5 C
HLBB 4 9 5D 6A
HLBH 5B 6 3 6 9
HLHL 4C 4D E 3
HLHB 4B 6 C 8 3
HLHH 6B 6D F 3
HBLL 4 8 5 1 B 3
HBLB 5 2 5 8 D3
HBLH 5 0 6 8 C 3
HBBL 4 1 4 2 9 3
HBBB 4 0 6 1
HBBH 6 0 6 2 A3
HBHL 7A 7 C 8 1
HBHB 7 3 7D 8 2
HBHH 7 9 7 B 8 0
HHLL B1 B 2 D1
HHLB B0 C 1 D2
HHLH C0 C 2 D0
HHBL 7 F 9 1 9 2
HHBB 7 8 9 0 A1
HHBH 7 E A0 A2
HHHL 7 1 E 1 E 2
HHHB 7 2 E 0 F 1
HHHH 7 0 F 0 F 2
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To complete the solution we really ought to at least provide some indi-
cation of how one might go about verifying that the table is correct. The
obvious direct way would be to work through every entry using human in-
genuity to deduce the l–h combinations from the weighing results. Let us
see how you could do this.

Consider LHLH, for instance. Remembering that the second set for
W2–W4 applies, the results of the weighings are

W1: {0, 1, 2, 3} < {4, 5, 6, 7},
W2: {0, 1, 2, 4, 5, 6, 8} > {3, 7, 9, A, B, C, D},
W3: {5, B, C, D} < {7, 8, E, F},
W4: {0, 4, 9, B, E} > {1, 6, A, C, F}.

From W1, tarts 0, 1, 2, 3 cannot be heavy and 4, 5, 6, 7 cannot be light.
So, using this information together with similar deductions from W2, W3,
W4, we see that

(i) only 3, A, C, D can be light,

(ii) only 4, 8, E can be heavy,

(iii) 0, 1, 2, 5, 6, 7, 9, B, F must have the correct weight.

By cancelling known good tarts we reduce the results to

W1: {3} < {4},
W2: {4, 5, 6, 8} > {3, A, C, D},
W3: {C, D} < {8, E},
W4: {4, E} > {A, C}.

It is now clear from W1 that 4 is heavy or 3 is light (or both). Assume 4 is
heavy. But 4, 3 and A are not weighed in W3 and therefore 3 and A cannot
be light. On the other hand, assume 3 is light, Now observe that W3 omits
3 and 4, and W4 omits 3 and 8, together implying that 4 and 8 cannot be
heavy. So by (i) and (ii), LHLH → {3 light E heavy, C light 4 heavy, D
light 4 heavy}.

All you have to do is repeat a similar tedious analysis for the other 80
entries. Fortunately there is a better alternative. Simply record the results
of the four weighings for each of the 240 light–heavy combinations to create
a function that never maps more than three to one. For example, you should
find that only {3 light E heavy, C light 4 heavy, D light 4 heavy} → LHLH.
This is in fact exactly how the table was generated—and since it was done
by a computer there is zero probability of human error.
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Problem 263.5 – Cycles
Of the n! permutations of {1, 2, . . . , n}, how many consist entirely of cycles
of length at most m? For example, when n = 4 and m = 2 there are 10
permutations with the stated property, namely (), (1, 2), (1, 3), (1, 4), (2, 3),
(2, 4), (3, 4), (1, 2)(3, 4), (1, 3)(2, 4) and (1, 4)(2, 3).

Verbal arithmetic
A cryptarithmic puzzle with the added feature that it consists entirely of
true arithmetical statements. This one is due to Wei-Hwa Huang, who refers
to these things as verbal arithmetic.

ONE + ONE = TWO

TWELVE + TEN = TWENTY + TWO

Find the one-to-one function that maps letters to digits {0, 1, . . . , 9}.
Can readers invent further examples? We would be particularly inter-

ested if you can create a similar puzzle where all ten digits are represented.

The Cotes formula has two square roots
Peter L. Griffiths
The first square root of cosu + i sinu = exp(iu) is cos(u/2) + i sin(u/2) =
exp(iu/2). For the second and subsequent roots, the number of 360◦s
to be added is one less than the number of roots required which is the
divisor of u. The second square root of cosu + i sinu = exp(iu) is
cos((u+360◦)/2)+i sin((u+360◦)/2) = exp(iu/2) exp(i180◦), whose square
is exp(i(u+ 360◦)) = exp(iu).

But this second square root, exp(iu/2) exp(i180◦) is not equal to the first
square root exp(iu/2) because the second square root contains the factor of
exp(i180◦) = −1, shown as follows: cos 180◦+ i sin 180◦ = exp(i180◦) = −1.
This confirms that −1 reflects the difference between the two different roots.
Sometimes it is the obvious which is difficult to explain. All the roots of
the Cotes formulae can be demonstrated in the Cotes format.

Jack is looking at Anne, but Anne is looking at George. Jack is married,
but George is not. Is a married person looking at an unmarried person?

(A) Yes; (B) No; (C) Cannot be determined.
Sent by Eddie Kent
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Problem 263.6 – Simplification
Tony Forbes
Prove that this monstrous expression

1

1 + r + 3r2 − 5r3

(
− 1− r2 − 2r4 + r3

(
4 +

√
(2− r)r

)
+

√
(r − 2)r3

(
−1− 2r2 + 3r4 − 4r

√
(2− r)r − 4r3

(
2 +

√
(2− r)r

))
− r

(√
(2− r)r

+

√
r2 + 2r4 − 3r6 + 4r3

√
(2− r)r + 4r5

(
2 +

√
(2− r)r

)))
is equal to r − 1 (arguing by continuity at the roots of 1 + r + 3r2 − 5r3).

Front cover Plot of kz, where z3003 + zk = |z| = 1; see page 6.


